

Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments

W. KARCZ* and R. KURTYKA

Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland

Abstract

Cd accumulation, its effects on elongation growth of maize coleoptile segments, pH changes of their incubation medium and the membrane potential of parenchymal cells were studied. The Cd content increased significantly with exposure to increasing cadmium concentrations. Coleoptile segments accumulated the metal more efficiently in the range 10 - 100 μ M Cd, than in the range 100 - 1000 μ M Cd. Cd at concentrations higher than 1.0 μ M produced a significant inhibition of both growth and proton extrusion. 100 μ M Cd caused depolarization of the plasma membrane (PM) potential in parenchymal cells. The simultaneous treatment of maize coleoptile segments by indole-3-acetic acid (IAA) and Cd, counteracted the toxic effect of Cd on growth. Moreover, our data also showed that 100 μ M Cd suppressed the characteristic IAA-induced hyperpolarization of the membrane potential, causing membrane depolarization. These results indicate that the toxic effect of Cd on growth of maize coleoptile segments might be, at least in part, caused *via* reduced PM H^+ -ATPase activity.

Additional key words: auxin, cadmium, elongation growth, indole-3-acetic acid, membrane depolarization, *Zea mays*.

Introduction

Cadmium, when present in excess, is one of the most phytotoxic metals (reviewed in Sanità di Toppi and Gabbielli 1999, Seregin and Ivanov 2001). Cd ions are easily taken up by the plant root system and translocated to the shoot where they finally accumulated in the leaves (Salt *et al.* 1995, Di Cagno *et al.* 1999, Haag-Kerwer *et al.* 1999, Wójcik and Tukiendorf 2005). High concentrations of Cd strongly inhibited photosynthesis, respiration, growth and plant development, causing even plant death (Steffens 1990, Greger *et al.* 1991, Krupa *et al.* 1993, Burzyński and Buczek 1994, Krupa and Baszyński 1995, Haag-Kerwer *et al.* 1999, Baryla *et al.* 2001, Linger *et al.* 2005, Dražić *et al.* 2006). Plant growth and development are tightly regulated by phytohormones among which indole-3-acetic acid (IAA) plays a key role (Moore 1989, Davies 2004). It is noteworthy that over the last decade extraordinary progress has been made towards elucidation of the IAA-induced signal transduction pathway, whereas our knowledge of how IAA regulates growth of plant cells in the presence of heavy metals is still very limited.

One important aspect of IAA action, studied in maize

coleoptile segments, is its effect on both cell elongation and proton extrusion (Kutschera and Schopfer 1985a,b, Lüthen *et al.* 1990, Peters and Felle 1991a,b, Claussen *et al.* 1996, Karcz *et al.* 1990, 1995, Karcz and Burdach 2002). According to the "acid-growth theory" (Rayle and Cleland 1970, 1992, Hager *et al.* 1971, 1991) auxin-induced proton pumping causes cell wall acidification, which in turn results in enhanced elongation growth. In maize coleoptile segments auxin-induced H^+ extrusion is mediated by increase in either the activity or the amount of plasma membrane (PM) H^+ -ATPase (Hager *et al.* 1991, Frias *et al.* 1996).

The goal of the present study was to investigate interrelations between the action of IAA and cadmium on growth of plant cells by: 1) determining Cd accumulation in maize coleoptile segments which were incubated in medium containing Cd or Cd together with IAA; 2) studying the effects of Cd on growth in the presence or absence of IAA, where growth and pH changes of the incubation medium were measured simultaneously; 3) establishing membrane potential changes in parenchymal cells treated with Cd or Cd applied together with IAA.

Received 10 January 2006, accepted 8 August 2006.

Abbreviations: d.m. - dry mass; E_m - membrane potential; IAA - indole-3-acetic acid; PM - plasma membrane; SGR - spontaneous growth response.

Acknowledgement: We wish to thank Dr A. Kita (University of Silesia, Department of Analytical Chemistry, Katowice, Poland) for determination of Cd content in plant material using ICP-AES method.

* Corresponding author; fax: (+48) 032 200 9361, e-mail: karcz@us.edu.pl

Materials and methods

Seeds of maize (*Zea mays* L. cv. K33 × F2) were soaked in tap water for 2 h, sown on wet wood wool in plastic boxes and placed in a growth chamber at 27 ± 1 °C. The experiments were carried out with 10 mm long coleoptile segments cut from 4-day-old etiolated maize seedlings. The segments with the first leaves removed were excised 3 mm below the tip and collected in water. An aqueous stock solution (1 mM) of IAA (Serva, Heidelberg, Germany) was prepared. Cd was added to the incubation medium as CdCl_2 .

The growth experiments were carried out in an apparatus, which allowed (using the same tissue sample) simultaneous measurements of elongation growth and pH of the incubation medium (Karcz *et al.* 1990, Karcz and Burdach 2002). In this set-up the optical system used for growth measurements (shadow graph method) permitted recording of the longitudinal extension of a stack of 21 segments (10 mm in length each). The volume of the incubation medium (1 mM KCl, 0.1 mM NaCl, 0.1 mM CaCl_2 ; initial pH 5.8-6.0) in the elongation and pH-measuring apparatus was 6.3 cm^3 ($0.3 \text{ cm}^3 \text{ segment}^{-1}$). It is noteworthy that in this apparatus the incubation medium also flowed through the lumen of the coleoptile cylinders (Karcz *et al.* 1995). This feature permits the treatment solutions to be in direct contact with the interior of the segments, which significantly enhances both IAA-induced growth of the coleoptile segments and acidification of their medium (Karcz *et al.* 1995). Some growth experiments were also performed with an angular position transducer (TWK Electronic, Düsseldorf, Germany) which allowed high resolution measurements of growth rate (Karcz and Burdach 2002). In this system six unabraded coleoptile segments, 10 mm in length each, were strung on a stainless steel needle and inserted vertically in an intensively aerated solution (30 cm^3) with the same composition as that used in the apparatus for simultaneous measurements of elongation and pH of the incubation medium (first system). The length of the segments was sampled every 3 min by a CX 721 converter (Elmetron, Zabrze, Poland) and analysed with *Statistica* program. It should be emphasised that in experiments with an angular position transducer the volume of the incubation medium per coleoptile segment was significantly larger ($5 \text{ cm}^3 \text{ segment}^{-1}$) than in the first system ($0.3 \text{ cm}^3 \text{ segment}^{-1}$). The temperature of all solutions in the elongation-measuring system was 25 ± 1 °C. Measurements of pH were performed with a

pH-meter (type *CP-315*, Elmetron) and pH electrode *OSH 10-10* (Metron, Gliwice, Poland). Growth and pH were read every 30 min under the same conditions.

The electrophysiological experiments were performed on intact, 10 mm long, coleoptile segments. The standard technique was used, as previously described by Stolarek and Karcz (1987) and Karcz and Burdach (2002). Briefly, the membrane potential (E_m) was measured by recording the voltage between a 3 M KCl-filled glass micropipette inserted into the parenchymal cells and a reference electrode in the bathing medium containing the same composition as used in growth experiments. Before the electrophysiological experiments the coleoptile segments were preincubated for 2 h in an aerated bathing medium. After this period one of them was transferred into a perfusion plexiglass chamber, which was mounted on a microscope stage. The flow of the medium was driven by a peristaltic pump (type *PP 1B-05A*, Zalimp, Warszawa, Poland), which allowed a change of the bathing medium in the chamber (usually fourfold within less than 2 min). The microelectrodes were inserted into the cells under the microscope by means of a micromanipulator (*Hugo Sachs Elektronik*, March-Hugstetten, Germany). Micropipettes were prepared as previously described by Karcz and Burdach (2002).

The concentrations of Cd in maize coleoptile segments were measured by emission spectrometry with excitation by argon inductively coupled plasma technique (ICP-AES). Before chemical analysis, 200 coleoptile segments were split along the long axis and preincubated for 2 h in an intensively aerated growth medium (solution with the same composition as that used in growth experiments). The volume of the incubation medium was 60 cm^3 ($0.3 \text{ cm}^3 \text{ segment}^{-1}$). After 2 h of preincubation, Cd (at concentrations 10, 100, 1000 μM) or Cd together with IAA was introduced (for the next 5 h) to the incubation medium. After 5 h of incubation in the presence of cadmium the halves of the segments were removed from the solution and washed 3 times with distilled water, whereupon they were dried at 80 °C to obtain a stable mass. In addition, accumulation of Cd at 100 μM Cd in the medium was studied as a function of time. For Cd analyses, dry plant tissue was digested with ultra-pure concentrated nitric acid (Merck, Darmstadt, Germany). All experiments concerning accumulation of Cd were replicated at least three times.

Results

Cadmium content in maize coleoptile segments: Prior to the growth experiments, in which the effects of various Cd concentrations on growth of maize coleoptile segments were studied, the accumulation of cadmium in this model system had been determined (Fig. 1). At 10

and 100 μM Cd in the medium, cadmium content in maize coleoptile segments, within 5 h, increased to $176.8 \pm 18.4 \text{ mg kg}^{-1}$ (d.m.) and $1900.8 \pm 178.6 \text{ mg kg}^{-1}$ (d.m.) (ca. 10-fold increase of Cd content), respectively. This indicates that the content of Cd in coleoptile segments

increased proportionally with increasing cadmium concentration in the incubation medium. However, a total Cd content of $4401.2 \pm 190.3 \text{ mg kg}^{-1}$ (d.m.), after 5 h, was found in maize coleoptile segments treated with $1000 \mu\text{M}$ Cd, which means that the increase of Cd concentration in the incubation medium from 100 to $1000 \mu\text{M}$ caused only a 2.3-fold increase of the Cd content in the tissue. In turn, at $100 \mu\text{M}$ Cd its content in maize coleoptile segments increased non-linearly (biphasic relation) in time (Fig. 1, inset). IAA did not change the content of Cd in the coleoptile segments (Fig. 1).

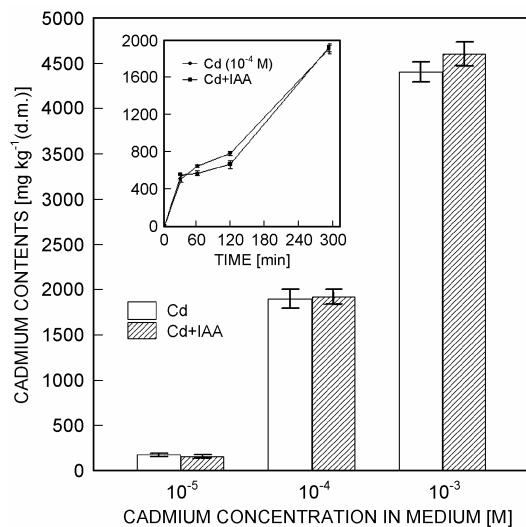


Fig. 1. Cd content in maize coleoptile segments exposed (for 300 min) to either 10, 100 and $1000 \mu\text{M}$ Cd or Cd added together with ($10 \mu\text{M}$) IAA. The segments were firstly preincubated (for 2 h) in control medium, whereupon Cd or Cd with IAA was added. The inset shows the time-dependent accumulation of Cd in maize coleoptile segments which were incubated for 30, 60, 120 and 300 min at $100 \mu\text{M}$ Cd. Results are the means of three independent experiments \pm SE.

Effect of Cd in absence or presence of IAA on growth: Cd added to the incubation medium (after 2 h of segment's preincubation in control medium) at concentrations higher than $0.1 \mu\text{M}$ diminished growth of maize coleoptile segments (Fig. 2). For example, Cd added at a final concentrations 100 and $1000 \mu\text{M}$ inhibited (over 5 h) elongation growth of maize coleoptile segments by 41 and 59 %, respectively, as compared to the growth in control medium ($941.6 \pm 44.8 \mu\text{m cm}^{-1}$). However, in the presence of 1.0 and $10 \mu\text{M}$ Cd the inhibition of the segment elongation did not exceed 15 %. Application of IAA together with Cd at concentrations higher than $0.1 \mu\text{M}$ counteracted the toxic effect of cadmium on growth, *i.e.* at low Cd concentrations growth in the presence of IAA was even greater than growth in control ($941.6 \pm 44.8 \mu\text{m cm}^{-1}$) (Fig. 2). It was observed 40 % decrease of the IAA-induced growth rate at 100 and $1000 \mu\text{M}$ Cd (Fig. 3). Interestingly, at $0.1 \mu\text{M}$ Cd stimulation (by 10 - 15 %) of growth (in the absence or presence of IAA) was observed (Fig. 2).

The effect of cadmium on pH changes of the incubation medium: When the coleoptile segments are incubated in control medium pH initially increased, then within 2 h it usually reached near neutral value, and decreased to 5.5 - 5.7 after 7 h. Addition of IAA to the control medium (after 2 h of preincubation) caused an additional drop of pH to 5.2 - 5.3. Expressing the

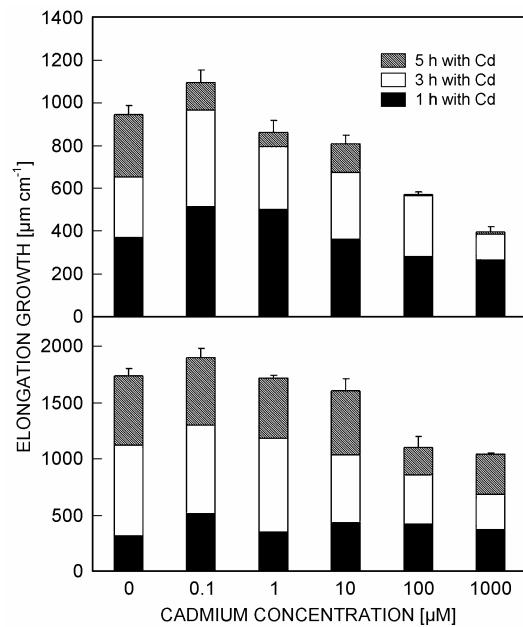


Fig. 2. Effect of Cd (0.1 - $1000 \mu\text{M}$) on the growth of maize coleoptile segments incubated in the absence of IAA (above) or presence of IAA (below). The coleoptile segments after 2 h of their preincubation in control medium were treated 5 h with Cd. The growth of maize coleoptile segments after 1, 3 and 5 h is shown (see legend). Results are the means of 6 to 10 independent experiments \pm SE.

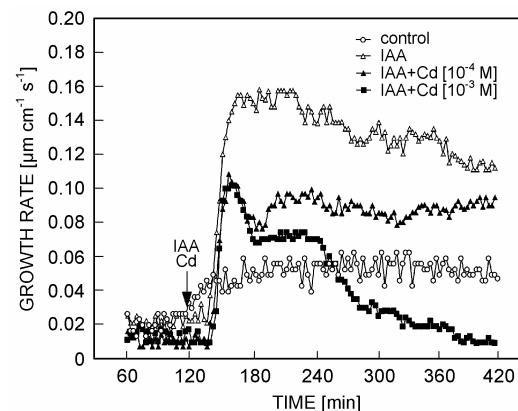


Fig. 3. Effect of Cd (100 - $1000 \mu\text{M}$) on growth rate of maize coleoptile segments incubated in the presence of IAA. The growth rate of six coleoptile segments (10 mm in length) was recorded in an intensively aerated solution ($5 \text{ cm}^3 \text{ segment}^{-1}$) by means of an angular transducer. The coleoptile segments were first preincubated (for 2 h) in control medium (solution without IAA and Cd), whereupon Cd together with IAA was added (arrow). Representative curves are shown.

acidification of the external medium as the difference between pH at 420 min and 120 min (ΔpH ; Figs. 4, 5), suggested that cadmium at concentrations higher than 10 μM significantly suppressed proton extrusion during growth in the absence or presence of IAA.

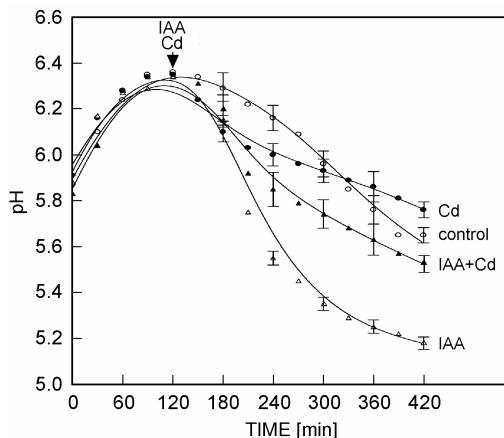


Fig. 4. Effect of Cd (100 μM) on pH changes in the incubation medium measured simultaneously (using the same tissue sample). The segments were first preincubated (for 2 h) in control medium, whereupon IAA, Cd or Cd together with IAA were added. Representative curves for each treatment are shown. Adequate mean values are indicated in Fig. 5.

The effect of Cd and IAA on the membrane potential (E_m): The E_m of the parenchymal cells, before being changed in response to Cd, was 124.6 ± 3.8 mV. The

Discussion

Despite the considerable research devoted to the responses of plants to Cd, the mechanism by which Cd affects growth of plant cells remains unsolved. The main

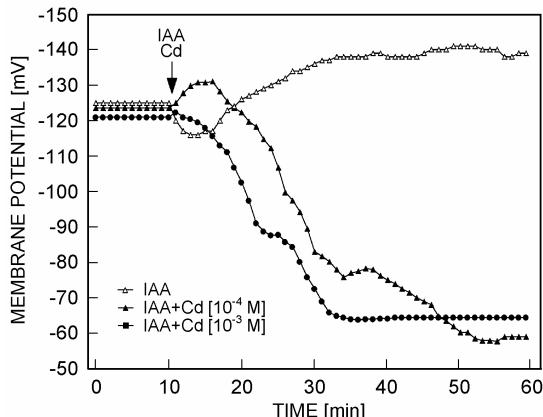


Fig. 6. Membrane potential (E_m) changes of parenchymal coleoptile cells upon addition of Cd (100 μM), IAA (10 μM) and Cd together with IAA. At time 10 min (arrow) the control medium was changed for a new one, at the same salt composition, containing in addition Cd, IAA or Cd together with IAA. Mean curves for each treatments are shown.

addition of Cd to the incubation medium (Fig. 6) caused depolarization of E_m during which the membrane potential became by 59 ± 6.3 mV more positive than the original potential. However, when Cd was added together with IAA a transient hyperpolarization followed by a rapid depolarization of the E_m by 65.6 ± 6.8 mV. By contrast, IAA alone (10 μM) caused a transient depolarization of E_m followed by a delayed hyperpolarization, during which the membrane potential became by 15.6 ± 3.6 mV more negative than the original potential.

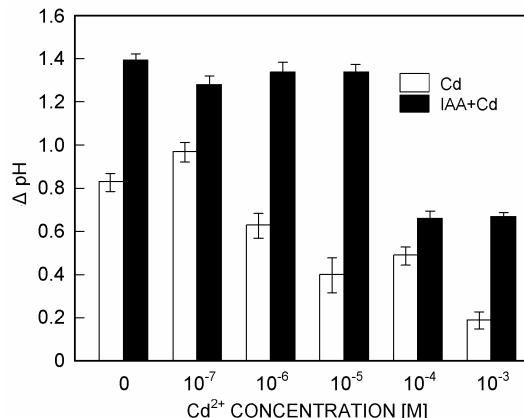


Fig. 5. Effect of Cd (0.1 - 1000 μM) on the medium pH. After preincubation of the coleoptile segments for 2 h in control medium Cd or Cd together with IAA were added. ΔpH - absolute values of difference of pH at 420 min and 120 min. Bars indicate \pm SE.

objective of this work was to evaluate the effect of Cd on growth of maize coleoptile segments and pH changes of their incubation medium measured simultaneously with growth. Moreover, we have also determined the capacity of coleoptile segments to accumulate this metal and the effect of Cd on the membrane potential of parenchymal cells.

Our data concerning Cd accumulation clearly show that the accumulation of this metal by maize coleoptile segments is a concentration and time-dependent process. In the range 10 - 100 μM Cd, coleoptile segments accumulated the metal more efficiently than in the range 100 - 1000 μM Cd. Our results on the accumulation of Cd in maize coleoptile segments support the idea that the Cd-influx is firstly linear (associated with the accumulation of Cd in the apoplast), and then non-linear (saturable component associated with transporter-mediated Cd-influx across the plasma membrane) (Cohen *et al.* 1998, Hart *et al.* 1998).

The simultaneous measurements of elongation growth and pH of the incubation medium showed that in maize coleoptile segments Cd at concentrations higher than 10 μM produced a significant inhibition of growth (Fig. 2) as well as a reduction in proton extrusion (Figs. 4

and 5). Moreover, Cd at the concentration of 100 μ M caused a depolarization of the membrane (Fig. 6). An explanation of the inhibition of growth by Cd might be suggested on the basis of the hypothesis proposed for the nature of the "spontaneous growth response" (SGR - growth acceleration of the segments observed 2 - 4 h after their excision from the seedlings). It has been proposed that this growth acceleration is caused by a stimulation of IAA synthesis in the coleoptile segments after their excision from the seedlings (Evans and Schmitt 1975, Weiler *et al.* 1981) or by a time-dependent increase in tissue sensitivity to the low endogenous IAA which remains after excision of the segments (MacDowell and Sirois 1977, Vesper and Evans 1978, Hatfield and LaMotte 1984). An alternative hypothesis has also been proposed by Hager (2003), who suggested that the SGR of coleoptile segments submerged in water is, at least in part, the result of respiratory CO_2 that accumulates in the tissue causing acidification of the cytoplasm, which in turn leads to PM H^+ -ATPase activation. Also, some recent investigations, showing that the changes in extracellular proton concentration share similarity with the endogenous growth rate in excised maize coleoptile segments, suggest that the PM H^+ -ATPase is involved in the induction of the SGR (Peters *et al.* 1998, Karcz and Burdach 2002). A different scenario can be proposed for the explanation of Cd inhibition of growth. Firstly, Cd decreasing IAA synthesis or tissue sensitivity to IAA may diminish PM H^+ -ATPase activity. Secondly, Cd may affect respiration in maize coleoptile segments. There are data indicating that Cd inhibits respiration in different plants (Greger *et al.* 1991, Burzynski and Buczek 1994, Haag-Kerwer *et al.* 1999, Llamas *et al.* 2000). Thus, toxic effect of Cd on growth in maize coleoptile segments may result from indirect inhibition of PM H^+ -ATPase activity. Both Cd-produced inhibition of proton extrusion and depolarization of the membrane potential observed here in the presence of Cd might support this hypothesis. Our hypothesis agrees with the previous findings of other authors who also found an inhibition of PM H^+ -ATPase (Fodor *et al.* 1995, Ros *et al.* 1992b) and depolarization of the membrane potential by Cd (Kennedy and Gonsalvez 1987, Aidid and Okamoto 1992, Llamas *et al.*

2000).

The growth, proton extrusion and changes in membrane potential observed here in the presence of IAA are in agreement with the results obtained with maize coleoptile segments by other authors (Kutschera and Schopfer 1985a, Felle *et al.* 1986, 1991, Lüthen *et al.* 1990, Peters *et al.* 1992, Claussen *et al.* 1996) and recently also by us (Karcz and Burdach 2002). These authors showed that in this model system IAA stimulates rapid growth, proton extrusion and a transient depolarization followed by a slow membrane hyperpolarization. To date, there is no doubt that the slow plasma membrane hyperpolarization is a consequence of a stimulated proton extrusion through the PM H^+ -ATPase (Lohse and Hedrich 1992, Rücke *et al.* 1993, Hedrich *et al.* 1995).

Application of IAA together with Cd counteracted the toxic effect of cadmium on growth in maize coleoptile segments (Fig. 2). Moreover, our data also showed that cadmium at 100 μ M suppressed the characteristic IAA-induced hyperpolarization of the membrane, causing depolarization of the E_m (Fig. 6). The experiments in which IAA was added showed that Cd at concentrations higher than 10 μ M inhibits proton pumping, which is responsible for IAA-induced growth. However, how Cd diminishes PM H^+ -ATPase activity is not entirely resolved, although it was suggested that Cd might decrease H^+ -ATPase activity by the alteration of the membrane fluidity and lipid composition (Ros *et al.* 1992a, Fodor *et al.* 1995, Hernández and Cooke 1997, Ouariti *et al.* 1997) or by the binding of the metal to sulphydryl groups of the enzyme (Stobart *et al.* 1985, Van Assche and Clijsters 1990, Lagriffoul *et al.* 1998).

In conclusion, the obtained results show that in maize coleoptile segments Cd at concentrations higher than 10 μ M produced a significant inhibition of growth as well as a reduction in the proton extrusion. The treatment of maize coleoptile segments by IAA added together with Cd counteracted the toxic effect of Cd on growth. In addition, it was found that Cd at 100 μ M suppressed the characteristic IAA-induced hyperpolarization of the membrane. It is suggested that the toxic effect of Cd on the growth of maize coleoptile segments might be, at least in part, caused via reduced PM H^+ -ATPase activity.

References

Aidid, S.B., Okamoto, H.: Effects of lead, cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of *Impatiens balsamina*. - Environ. exp. Bot. **32**: 439-448, 1992.

Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M.: Leaf chlorosis in oilseed rape plants (*Brassica napus*) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. - Planta **212**: 696-709, 2001.

Burzyński, M., Buczek, J.: The influence of Cd, Pb, Cu, and Ni on NO_3^- uptake by cucumber seedlings. I. Nitrate uptake and respiration of cucumber seedlings roots treated with Cd, Pb, Cu, and Ni. - Acta Physiol. Plant. **16**: 291-296, 1994.

Claussen, M., Lüthen, H., Böttger, M.: Inside or outside? Localization of the receptor relevant to auxin-induced growth. - Physiol. Plant. **98**: 861-867, 1996.

Cohen, C.K., Fox, T.C., Garvin, D.F., Kochian, L.V.: The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. - Plant Physiol. **116**: 1063-1072, 1998.

Davies, P.J.: Plant Hormones: Biosynthesis, Signal Transduction, Action. 3rd Ed. - Kluwer Academic Publishers, Dordrecht 2004.

Di Cagno, R., Guidi, L., Stefani, A., Soldatini, G.F.: Effects of cadmium on growth of *Helianthus annuus* seedlings: physiological aspects. - New Phytol. **144**: 65-71, 1999.

Dražić, G., Mihailović, N., Lojić, M.: Cadmium accumulation in *Medicago sativa* seedlings treated with salicylic acid. - *Biol. Plant.* **50**: 239-244, 2006.

Evans, M.L., Schmitt, M.R.: The nature of spontaneous changes in growth rate in isolated coleoptile segments. - *Plant Physiol.* **55**: 757-762, 1975.

Felle, H., Brummer, B., Bertl, A., Parish, R.W.: Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells. - *Proc. nat. Acad. Sci. USA* **83**: 8992-8995, 1986.

Felle, H.H., Peters, W.S., Palme, K.: The electrical response of maize to auxins. - *Biochim. biophys. Acta* **1064**: 199-204, 1991.

Fodor, E., Szabó-Nagy, A., Erdei, L.: The effects of cadmium on the fluidity and H^+ -ATPase activity of plasma membrane from sunflower and wheat. - *J. Plant Physiol.* **147**: 87-92, 1995.

Frias, I., Caldeira, M.T., Pérez-Castañeda, J.R., Navarro-Aviñó, J.P., Culiañez-Maciá, F.A., Kupping, O., Stransky, H., Pagés, M., Hager, A., Serrano, R.: A major isoform of the maize plasma membrane H^+ -ATPase: characterization and induction by auxin in coleoptiles. - *Plant Cell* **8**: 1533-1544, 1996.

Greger, M., Brammer, E., Lindberg, S., Larsson, G., Idestam-Almqist, J.: Uptake and physiological effects of cadmium in sugar beet (*Beta vulgaris*) related to mineral provision. - *J. exp. Bot.* **42**: 729-737, 1991.

Haag-Kerwer, A., Schäfer, H.J., Heiss, S., Walter, C., Rausch, T.: Cadmium exposure in *Brassica juncea* causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. - *J. exp. Bot.* **50**: 1827-1835, 1999.

Hager, A.: Role of the plasma membrane H^+ -ATPase in auxin-induced elongation growth: historical and new aspects. - *J. Plant Res.* **116**: 483-505, 2003.

Hager, A., Debus, G., Edel, H.G., Stransky, H., Serrano, R.: Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma membrane H^+ -ATPase. - *Planta* **185**: 527-537, 1991.

Hager, A., Menzel, H., Krauss, A.: Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. - *Planta* **100**: 1-15, 1971.

Hart, J.J., Welch, R.M., Novell, W.A., Sullivan, L.A., Kochian, L.V.: Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. - *Plant Physiol.* **116**: 1413-1420, 1998.

Hatfield, R.D., LaMotte, C.E.: IAA-induced growth responses of decapitated corn seedlings. - *Plant Physiol.* **74**: 302-306, 1984.

Hedrich, R., Bregante, M., Dreyer, I., Gambale, F.: The voltage-dependent potassium-uptake channel of corn coleoptiles has permeation properties different from other K^+ channels. - *Planta* **197**: 193-199, 1995.

Hernández, L.E., Cooke, D.T.: Modification of the root plasma membrane lipid composition of cadmium-treated *Pisum sativum*. - *J. exp. Bot.* **48**: 1375-1381, 1997.

Karcz, W., Burdach, Z.: A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. - *J. exp. Bot.* **53**: 1089-1098, 2002.

Karcz, W., Stolarek, J., Lekacz, H., Kurtyka, R., Burdach, Z.: Comparative investigation of auxin and fusicoccin-induced growth and H^+ -extrusion in coleoptile of *Zea mays* L. - *Acta Physiol. Plant.* **17**: 3-8, 1995.

Karcz, W., Stolarek, J., Pietruszka, M., Małkowski, E.: The dose-response curves for IAA induced elongation growth and acidification of the incubation medium of *Zea mays* L. coleoptile segments. - *Physiol. Plant.* **80**: 257-261, 1990.

Kennedy, C.D., Gonsalvez, F.A.N.: The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H^+ efflux of excised roots. - *J. exp. Bot.* **38**: 800-817, 1987.

Krupa, Z., Baszyński, T.: Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions. - *Acta Physiol. Plant.* **17**: 177-190, 1995.

Krupa, Z., Öquist, G., Huner, N.P.A.: The effects of cadmium on photosynthesis of *Phaseolus vulgaris*. A fluorescence analysis. - *Physiol. Plant.* **88**: 626-630, 1993.

Kutschera, U., Schopfer, P.: Evidence against the acid-growth theory of auxin action. - *Planta* **163**: 483-493, 1985a.

Kutschera, U., Schopfer, P.: Evidence for the acid-growth theory of fusicoccin action. - *Planta* **163**: 494-499, 1985b.

Lagriffoul, A., Mocquot, B., Mench, M., Vangronsveld, J.: Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (*Zea mays* L.). - *Plant Soil* **200**: 241-150, 1998.

Linger, P., Ostwald, A., Haensler, J.: *Cannabis sativa* L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. - *Biol. Plant.* **49**: 567-576, 2005.

Llamas, A., Ullrich, C.I., Sanz, A.: Cd^{2+} effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (*Oryza sativa* L.) roots. - *Plant Soil* **219**: 21-28, 2000.

Lohse, G., Hedrich, R.: Characterization of the plasma-membrane H^+ -ATPase from *Vicia faba* guard cells. Modulation by extracellular factors and seasonal changes. - *Planta* **188**: 206-214, 1992.

Lüthen, H., Bigdon, M., Böttger, M.: Reexamination of the acid growth theory of auxin action. - *Plant Physiol.* **93**: 931-939, 1990.

MacDowell, F.D.H., Sirois, J.C.: Importance of time after excision and of pH on the kinetics of response of wheat coleoptile segments to added indole acetic acid. - *Plant Physiol.* **59**: 405-410, 1977.

Moore, T.S.: Biochemistry and Physiology of Plant Hormones. 2nd Ed. - Springer-Verlag, New York 1989.

Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., Ghorbal, M.H.: Cadmium- and copper-induced changes in tomato membrane lipids. - *Phytochemistry* **45**: 1343-1350, 1997.

Peters, W.S., Felle, H.: Control of Apoplast pH in corn coleoptile segments. I: The endogenous regulation of cell wall pH. - *J. Plant Physiol.* **137**: 655-661, 1991a.

Peters, W.S., Felle, H.: Control of apoplast pH in corn coleoptile segments. II: The effect of various auxins and auxin analogues. - *J. Plant Physiol.* **137**: 691-696, 1991b.

Peters, W.S., Lüthen, H., Böttger, M., Felle, H.: The temporal correlation of changes in apoplast pH and growth rate in maize coleoptile segments. - *Aust. J. Plant Physiol.* **25**: 31-35, 1998.

Peters, W.S., Richter, U., Felle, H.H.: Auxin-induced H^+ -pump stimulation does not depend on the presence of epidermal cells in corn coleoptiles. - *Planta* **186**: 313-316, 1992.

Rayle, D.L., Cleland, R.E.: Enhancement of wall loosening and elongation by acid solutions. - *Plant Physiol.* **46**: 250-253, 1970.

Rayle, D.L., Cleland, R.E.: The acid growth theory of auxin induced cell elongation is alive and well. - *Plant Physiol.* **99**: 1271-1274, 1992.

Ros, R., Cook, D.T., Martinez-Cortina, C., Picazo, I.: Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton pumping of rice (*Oryza sativa* L. cv. Bahia) shoots. - *J. exp. Bot.* **43**: 1475-1481, 1992a.

Ros, R., Morales, A., Segura, J., Picazo, I.: *In vivo* and *in vitro* effects of nickel and cadmium on the plasmalemma ATPase from rice (*Oryza sativa* L.) shoots and roots. - *Plant Sci.* **83**: 1-6, 1992b.

Rücke, A., Palme, K., Venis, M.A., Napier, R.M., Felle, H.H.: Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in *Zea mays* protoplasts. - *Plant J.* **4**: 41-46, 1993.

Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I.: Mechanisms of cadmium mobility and accumulation in Indian mustard. - *Plant Physiol.* **109**: 1427-1433, 1995.

Sanità di Toppi, L., Gabbielli, R.: Response to cadmium in higher plants. - *Environ. exp. Bot.* **41**: 105-130, 1999.

Seregin, I.V., Ivanov, V.B.: Physiological aspects of cadmium and lead toxic effects on higher plants. - *Russ. J. Plant Physiol.* **48**: 523-544, 2001.

Steffens, J.C.: The heavy metal-binding peptides of plants. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **41**: 553-575, 1990.

Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., Sherwood, R.P.: The effect of Cd²⁺ on the biosynthesis of chlorophyll in leaves of barely. - *Physiol. Plant.* **63**: 293-298, 1985.

Stolarek, J., Karcz, W.: Effects of UV-C radiation on membrane potential and electric conductance in internodal cells of *Nitellopsis obtusa*. - *Physiol. Plant.* **70**: 473-478, 1987.

Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants. - *Plant Cell Environ.* **13**: 195-206, 1990.

Vesper, M.J., Evans, M.L.: Time-dependent changes in auxin sensitivity of coleoptile segments. - *Plant Physiol.* **61**: 204-208, 1978.

Weiler, E.W., Jourdan, P.S., Conrad, W.: Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. - *Planta* **153**: 561-571, 1981.

Wójcik, M., Tukiendorf, A.: Cadmium uptake, localization and detoxification in *Zea mays*. - *Biol. Plant.* **49**: 237-245, 2005.