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Abstract

The objective of this study was to examine the effects of different abiotic stresses on the activity of an NADP-
dependent malic enzyme (NADP-ME) and the corresponding gene transcription in the leaves of the hexaploid wheat
(Triticum aestivum L.) The activity of the NADP-ME enzyme was increased by water stress (20 % polyethylene glycol
6000), low temperature (4 °C), darkness, salinity (200 mM NacCl), abscisic acid and salicylic acid. The transcription of
the TaNADP-ME]I gene decreased in response to all of the stresses except darkness and NaCl. In addition, the
transcription of TaNADP-ME?2 was down-regulated by all of the tested treatments and could not be detected under dark

stress.
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The NADP-dependent malic enzyme (NADP-ME)
catalyzes the following reaction: (L)-malate + NADP —
pyruvate + CO, + NADPH (Edwards and Andreo 1992,
Taub and Lerdau 2000, Cheng and Long 2007). In plants,
NADP-ME is divided into photosynthetic and non-
photosynthetic forms according to various physiological
roles held by the enzyme (Drincovich et al. 1998, Laporte
et al. 2002). The photosynthetic forms of the NADP-ME
supply CO, for carbon fixation in the bundle sheath
chloroplasts of C, plants as well as in the cytosol of CAM
plants. The non-photosynthetic forms of the NADP-ME
enzyme are involved in regulating the cellular pH, ionic
balance, fatty acid biosynthesis and the synthesis of other
organic acids (Famiani et al. 2000, Shearer et al. 2004,
Gerrard Wheeler ef al. 2008). Recently, some of the non-
photosynthetic forms of the NADP-ME enzymes have
also been associated with the plant defence (Fushimi et al.
1994, Casati et al. 1999, Pinto et al. 1999, Maurino et al.
2001, Chi et al. 2004).
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The NADP-ME has been well studied in C, and CAM
plants (Honda e# al. 2000, Drincovich et al. 2001,
Falcone-Ferreyra ef al. 2003, Saigo et al. 2004), however,
few studies have been conducted on C; plants such as rice,
tobacco, Arabidopsis thaliana and wheat (Casati et al.
1997, Maurino et al. 1997, Liu et al. 2007, Miiller et al.
2008, Wheeler ef al. 2008). In this study, we measured
the effects of various stressors including polyethylene
glycol (PEG), NaCl, low temperature (4 °C), salicylic
acid (SA), abscisic acid (ABA) and darkness on the
NADP-ME enzyme activity and the gene transcription in
the leaves of wheat plants.

Wheat (Triticum aestivum L.) cv. Jinmai 47 was
grown in Vermiculite at 25 °C, relative humidity
60 - 70 % and irradiance of 400 umol m™ s with a 12-h
photoperiod. The selected treatments were applied by
transferring 2-week-old seedlings into a Hoagland
solution containing either 200 mM NaCl, 20 % (m/v)
PEG 6000, 200 pM ABA, or 3 mM SA. The low

Abbreviations: ABA - abscisic acid; CAM - Crassulacean acid metabolism; ME - malic enzyme; PEG - polyethylene glycol;

SA - salicylic acid.
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temperature and dark treatments were administered by
transferring the plants into the 4 °C or into dark. The
untreated seedlings were used as a control. The leaves
were harvested at 0, 3, 6, 12, 24 and 48 h after treatments
and used for the enzyme assay and the RNA extraction.

Approximately 0.5 g of wheat leaves were homoge-
nized in an extraction buffer containing 100 mM Tris-
HCI (pH 7.5), 5 mM MgCl,, 2 mM EDTA, 10 % (v/v)
glycerol, 10 mM 2-mercaptoethanol and 1 mM phenyl-
methylsulfonyl fluoride (PMSF) and then centrifuged at
9000 g for 10 min. The supernatants were used for the
measurement of the NADP-ME activity according to Liu
et al. (2007), by monitoring on the spectrophotometer
(type, producer, location) the increase in absorbance at
340 nm as the NADPH was produced. The standard
reaction mixture contained 0.95 cm’ of the reaction buffer
(50 mM Tris-HCI, pH 7.5, 10 mM MgCl,, 0.5 mM
NADP, 4 mM L-malate) and 0.05 cm® of the supernatants
of the enzyme into a final volume of 1 cm® of solution.
The reaction was then started by adding 0.05 cm’ of
4 mM L-malate into the mixture. One unit of enzyme
activity is defined by an increase of 0.01 in the
absorbance of the mixture at 340 nm per minute.

The plastidic TaNADP-MEI (EU170134) and the

cytosolic TaNADP-ME2 (EU082065) were cloned from
the leaf tissue of the hexaploid wheat before and after
above mentioned treatments. A semi-quantitative
RT-PCR was performed using the total RNA that was
extracted from the wheat leaves. The DNA-free RNA was
then reverse transcribed using the PrimeScript reverse
transcriptase at 42 °C for 1 h. The gene-specific primers
were designed in the 3’ untranslated region. The specific
primers are as follows:
TaNADP-MEI: Bel-5 (5-GAAGCATACAAATGGA
CCAAGG-3) and Bel-3 (5-CAAGAACAG CGACAG
ACAACAA-3); TaNADP-ME2: Be2-5 (5-GTGGAG
TACGAGGGGAAAAC-3) and Be2-3 (5-GCATAT
GGGGGAAGGAGATT-3). The primers for the wheat
actin gene (WAC-F:5-GTTCCAATCTATGAGGGA
TACACG-3, WAC-R: 5-GAACCTCCACTGAGAACA
ACATTACC-3) were used as the internal standard in this
study.

The statistical analysis was performed by a one-way
ANOVA using the SPSS software package. The data are
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the average of a minimum of three replicates. The
smallest significant differences (LSD) between the means
were estimated at the 95 % confidence level.

The activity of the NADP-ME was mostly enhanced
under various stresses (Table 1). Under the PEG, SA and
NaCl stresses, the NADP-ME activity initially increased
being highest after 6-h (NaCl) or 12-h (PEG, SA)
treatments and then decreased. Both the cold and dark
stresses caused a continuous rise in the NADP-ME
enzyme activity, with activity peaks after 48-h treatment
that were 4.3 and 4.7 times higher than the control,
respectively. The ABA treatment resulted in an increase
in the enzyme activity with time, except in the 24-h
treatment. Likewise, the enzyme activity in the 48-h ABA
treated plants was more than four times higher than that
of the control. Based on the enhanced enzyme activity
under all of the tested treatments, we conclude that the
wheat NADP-ME responds to various abiotic stresses.
Previous researches have also reported that NADP-ME
activity can be induced by wounding, pathogen attacks,
by cellulase or UV-B irradiation (Maurino et al. 1997,
2001, Casati et al. 1997, 1999, Pinto et al. 1999). We
believe that some inactive isozymes may turn into active
isoforms through phosphorylation during stress. Under
stress the catalyzing efficiency of the NADP-ME enzyme
might be further enhanced with the consumption of
NADPH. Furthermore, plants have many pathways for
adaptation to abiotic stresses (Ferreira et al. 2008).

The semi-quantitative RT-PCR showed that the
transcript accumulation of NADP-ME in the leaves is
distinctly affected by various stresses (Fig. 1). The
expression levels of TaNADP-MEI in the leaves
gradually decreased until 24 h following the application
of PEG. When the leaves were treated with NaCl, the
TaNADP-ME1 was down-regulated in the first 6 h of the
treatment and then began to rise until 24 h of treatment.
At a low temperature (4 °C), the production of the
TaNADP-ME] transcripts was depressed until 3 h of
treatment, at which point they began to ascend until 6 h
of treatment, and finally they diminished at 24 h of
treatment. After the SA treatment, the mRNA amounts
were reduced in the first 6 h, they then began to increase
until 24 h of treatment. Under the ABA treatment, the
TaNADP-ME] transcript levels declined through the

Table 1. The activity of the wheat NADP-ME [U mg ' (protein)] under different treatments (PEG, NaCl, cold, SA, ABA and
darkness) during the experimental period. Means + SE of at least 3 replicates. Different letters marked significantly different

observations at P < 0.05.

Treatment Oh 3h 6h 12h 24 h 48 h

Control 0.47 £ 0.04c 0.68 + 0.04c 1.95+0.26a 1.69 + 0.39ab 1.07 £ 0.05bc 0.92 £ 0.05¢
PEG 0.47 £ 0.04c 1.40 +0.08b 2.58 +0.19a 1.72£0.19a 2.53 £0.09a 1.87+£0.17b
NaCl 0.47 £0.04d 2.28 +0.48b 346+0.28a 2.48 +0.27b 2.28 +0.28b 1.40 = 0.06¢
Dark 0.47 £0.04¢c 1.27 £0.18¢ 2.68 £0.35b 2.98+0.17b 3.57 £0.38ab 428 +0.29a
cold 0.47 £0.04¢e 1.93 +£0.15d 2.63 +£0.10c 2.86+0.12¢ 3.46+0.13b 3.98 £0.28a
SA 0.47 £0.04d 2.46 + 0.46bc 2.83 +0.32bc 5.01 £0.42a 3.62 + 0.24ab 1.63 £0.10cd
ABA 0.47 £ 0.04e 0.93 £0.07d 3.13+0.19¢ 3.90 £ 0.10b 3.38+0.19¢ 479+0.21a
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Fig. 1. The expression of the TaNADP-ME genes in the leaves of Jinmai47 under the various treatments administered. The DNA-free
total RNA was analyzed using a semi-quantitative RT-PCR. The actin (accession no. AB181991) transcript was used as an internal
control. The experiments were repeated at least four times with similar results. 4 - The expression of TaNADP-ME] in the leaves
under various treatments. B - The expression of TaNADP-ME? in the leaves under various treatments. C - The expression of
TaNADP-ME]1 in the leaves under darkness. D - The expression of TaNADP-ME? in the leaves under darkness.

first 6 h of treatment and then rose slightly at the 24 h
treatment point (Fig. 14).

Compared with the expression of the TaNADP-ME1
gene, the expression of TaNADP-ME2 gene was mostly
down-regulated (Fig. 1B). In the PEG and NaCl
treatments, the TaNADP-ME?2 expression levels conti-
nuously decreased. The expression levels were hardly
detected in the 6 h treatment with PEG. When the leaves
were exposed to the cold, the TaNADP-ME? transcript
levels dropped to a minimum value in the first 6 h, and
then recovered over the next 18 h. Under the SA
treatment, the expression of the TaNADP-ME? transcripts
decreased in the first 3 h and then began to rise slightly at
6 h, after which it decreased until 24 h. We could not
detect any transcripts in the ABA treatment.

Previous studies have reported that several enzymes,
such as Rubisco, glyceraldehyde 3-phosphate dehydro-
genase, ribulose 5-phosphate kinase, fructose-1,6-
bisphosphatase, pyruvate orthophosphate dikinase
(PPDK) and maize chloroplastic NADP-ME are activated
by irradiance (Buchanan 1980, Faske et al. 1995, Sage
and Seemann 1993, Scheibe 1987, Edwards et al. 1985,
Tausta et al. 2002, Murmu et al. 2003). To determine
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whether the two NADP-ME genes were responsive to
irradiance, we examined their expression patterns under
dark. The expression of TaNADP-ME] decreased slightly
in the first 12 h after dark treatment, and then began to
recover through 48 h (Fig. 1C). The expression of
TaNADP-ME?2 through transcripts was not detected
during the dark treatment (Fig. 1D). In addition, the
putative molecular mass of the TaNADP-ME2 gene
transcript is 63 kDa according to ChloroPl.1 server
(http://www.cbs.dtu.dk/services/chloroP/). The photosyn-
thetic isoforms of the NADP-ME enzyme have been
reported to range from 62 to 67 kDa (Casati et al. 1999,
Honda et al, 2000). We therefore postulate that although
it reacts to different abiotic stresses, the TaNADP-ME?2
gene may be a light-activated gene and may have a
photosynthetic role in C; wheat. Since abiotic stresses
often limit the photosynthetic rate and the subsequent
crop production (Pandey and Yeo 2008, Santos et al.
2009, Wang et al. 2009, Yu et al. 2009), the breeding of
wheat with TaNADP-ME2 activity might improve yields
under conditions of abiotic stress, especially drought
stress. This effect is particularly interesting as non-
cytosolic NADP-ME has not been previously reported to



have a photosynthetic role in C; plants. It should be
mentioned, however, that in addition to the mode of light-
regulation and subunit size, the photosynthetic MEs can
also be distinguished from non-photosynthetic isoforms
by using optimum pH, subcellular localization and higher
affinity for malate (Maurino et al. 1997, Drincovich et al.
2001, Tausta et al 2002). Further biochemical
experiments are needed to verify the photosynthetic
function of TaNADP-ME?2 gene.

Under various stress treatments, the enzymatic
activity was enhanced while the transcript accumulation
for the two TaNADP-ME genes was decreased. We
speculate that hexaploid wheat, which possesses a large
genome, may have some additional isozymes and more
than two TaNADP-ME genes. Three or four NADP-ME
genes have been identified in tobacco, maize, rice and
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