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Abstract

This study investigated the effects of exogenous hydrogen sulfide (H,S) on the redox states of ascorbate (AsA) and
glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate
peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), y-glutamylcysteine synthetase (y-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH),
malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA
(AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H,S donor) further enhanced the
activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and
GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde
content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above
mentioned parameters compared with the control. Our results suggest that exogenous H,S could maintain the redox
states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an
important role for acquisition of salt stress tolerance in maize.
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Salt stress is one of the main environmental factors that  denaturation caused by oxidation of protein thiol groups

adversely affect plant growth, productivity, and survival
(Shi et al. 2007, Ferreira-Silva et al. 2012). Salt stress
usually induces the overproduction of reactive oxygen
species (ROS) in plant cells. Plants can protect
themselves against oxidative damage by ROS-scavenging
systems (Mittler 2002). Ascorbate (AsA) and glutathione
(GSH) are two crucial nonenzymatic antioxidants. A
fundamental role of AsA and GSH is to protect metabolic
processes against H,O, and other ROS. They play
important roles in enzyme-catalysed reactions to detoxify
H,0,. Besides, GSH can also protect proteins against the

(Noctor and Foyer 1998). The functions of AsA and GSH
are closely related to their redox states (Kocsy et al.
2001) and plants can adjust redox states of AsA and GSH
by modulating their regeneration and biosynthesis.
L-galactose pathway is the main biosynthetic pathway of
AsA Dbiosynthesis in plants, L-galactono-1,4-lactone
dehydrogenase (GalLDH; EC 1.3.2.3) is the last enzyme
in L-galactose pathway (Wheeler ef al. 1998). Gamma-
glutamylcysteine synthetase (y-ECS; EC 6.3.2.2) is the
first enzyme for glutathione biosynthesis (Dringen 2000).
AsA-GSH cycle is the pathway for the regeneration of
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AsA and GSH. In this cycle, ascorbate proxidase (APX;
EC 1.11.1.11), monodehydroascorbate reductase
(MDHAR; EC 1.6.5.4), dehydroascorbate reductase
(DHAR; EC 1.8.5.1), and glutathione reductase (GR;
EC 1.6.4.2) are the key enzymes (Noctor and Foyer
1998). Thus, the enzymes involved in the biosynthetic
and recycling pathways of ascorbate and glutathione play
important roles in maintaining the redox states of
ascorbate and glutathione in plants.

Hydrogen sulfide (H,S) is the third gaseous signalling
molecule after nitric oxide (NO) and carbon monoxide
(CO) in animals (Hosoki ef al. 1997). In plants, H,S can
promote root organogenesis (Zhang et al. 2009a), seed
germination (Zhang et al. 2010a), and it is involved in
responses to heavy metal, salt, drought, and osmotic
stresses (Zhang et al. 2008, 2009b, 2010b, Li ef al. 2012,
Wang et al. 2012). However, whether H,S participates in
the regulation of ascorbate and glutathione metabolism in
plants under salt stress remains unknown. Hence, we
investigated the effects of exogenous H,S on the
activities of enzymes involved in ascorbate and
glutathione metabolism and the ratios of AsA/DHA and
GSH/GSSG in maize under NaCl stress.

Seeds of maize (Zea mays L.) cv. Xindan29 were
sown in plastic trays filled with a sand/Vermiculite mix
(1:1, v/v) and grown in a greenhouse under temperature
of 25 - 30 °C, relative humidity of 70 %, irradiance of
500 umol m™ s™' (photosynthetically active radiation), and
a 10-h photoperiod. The seedlings were watered with
distilled water every day. Fourteen days old seedlings of
uniform height were selected for all experiments.

Roots of plants were washed thoroughly with tap
water, placed in distilled water for 8 h, and then placed in
beakers containing 100 cm® of 100 mM NaCl solution
for 48 h at 25 °C and a continuous irradiance of
500 pumol m? s'. The beakers were wrapped with
aluminum foil to keep the roots in dark. In order to study
the effect of H,S, a group of plants were pretreated with
0.6 mM NaHS for 8 h and then exposed to 100 mM NaCl
or distilled water (control) for 48 h under the same
conditions as described above. After 24 or 48 h, the top
full expanded leaves were collected, frozen in liquid
nitrogen, and then kept at -80 °C until used for analyses.
Five seedlings were used for each analysis.

APX, GR, DHAR, and MDHAR were extracted by
grounding each sample (0.5 g) into fine powder in liquid
nitrogen and then homogenising the fine powder in 6 cm’
of 50 mM KH,PO, (pH 7.5) containing 0.1 mM
ethylenediaminetetraacetic acid, 0.3 % (v/v) Triton
X-100, and 1 % (m/v) polyvinylpolypyrrolidone, with an
extra addition of 1 mM AsA for APX assay (Grace and
Logan 1996). The extract was centrifuged at 13 000 g and
2 °C for 15 min and the supernatant was used for assays.
The activities of APX, GR, MDHAR, and DHAR were
assayed according to Nakano and Asada (1981), Grace
and Logan (1996), Miyake and Asada (1992), and Dalton
et al. (1986), respectively. One unit of APX activity was
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defined as the amount of APX catalyzing the oxidation of
1 umol of ascorbate per min. One unit of GR activity was
defined as the reduction of 1 pmol of NADPH per min.
One unit of DHAR activity was defined as the amount of
enzyme that produces 1 pmol of AsA per min. One unit
of MDHAR activity was defined as the amount of
enzyme that oxidizes 1 umol of NADH per min.

GalLDH was extracted and measured by the method
of Tabata et al (2001). y-ECS was extracted and
measured by the method of Riieggseger and Brunold
(1992). One unit of GalLDH activity was defined as the
amount of extract required to oxidize 1 nmol of L-Gal
(equivalent to the formation of 2 nmol of reduced Cyt ¢)
per min. One unit of y-ECS activity was defined as
1 pmol of cysteine-dependently generated PO,>~ per min.
AsA and DHA were measured according to Hodges et al.
(1996). GSSG and GSH were measured according to
Griffith (1980). Malondialdehyde (MDA) content and
electrolyte leakage were measured according to Hodges
et al. (1999) and Zhao et al. (2004), respectively. Protein
content was assayed according to Bradford (1976).

The experimental design was a randomized complete
block design with five replications. Means were
compared by one-way ANOVA and Duncan’s multiple
range test at the 5 % level of significance.

There were no obvious changes in the activities of
APX, GR, DHAR, MDHAR, GalLDH, and y-ECS in
control plants after 24 and 48 h. Compared with the
controls, NaCl stress (24 or 48 h) significantly increased
the activities of the above mentioned enzymes.
Pretreatment with H,S significantly increased the
activities of APX, GR, DHAR, GalLDH, and y-ECS
compared with NaCl alone. However, pretreatment with
exogenous H,S alone did not affect the activities of the
enzymes in ascorbate and glutathione metabolism
compared with the controls (Table 1).

There were also no obvious changes in the ratios of
AsA/DHA and GSH/GSSG in control leaves after 24 and
48 h. Compared with the control, the salt stress
significantly decreased the ratios of AsA/DHA and
GSH/GSSG after 24 or 48 h, however, less after
pretreatment with H,S. The pretreatment with H,S alone
did not affect these ratios (Table 1).

To investigate whether H,S has an important role for
salt stress tolerance in maize leaves, the effects of
pretreatment with exogenous H,S on electrolyte leakage
and MDA content under salt stress were studied. The
results show that there was no difference between the
controls and pretreatment with H,S alone in the
electrolyte leakage and MDA content after 24 and 48 h of
the treatment. The addition of NaCl significantly
increased the electrolyte leakage and MDA content
compared to the controls but less after the pretreatment
with H,S (Table 1).

Many studies have proved that salt stress can induce
oxidative damage in plants (Fatehi et al. 2012, Sorkheh
et al. 2012). In our study, enhanced lipid peroxidation, as
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Table 1. Effects of salt stress (100 mM NaCl) and H,S (0.6 mM NaHS) pretreatment on the activities of enzymes involved in
ascorbate and glutathione metabolism, the ratios of AsA/DHA and GSH/GSSG, malondialdehyde content, and electrolyte leakage in
maize leaves measured after 24 or 48 h. Means + SE, n = 5. Different letters within the same row indicate statistically significant

differences according to Duncan’s test (P < 0.05).

Parameters Time [h] Control NaHS NaCl NaHS + NaCl
APX [U mg’l(protein)] 24 1.50 £ 0.10c 1.60 £ 0.10c 2.30+£0.15b 3.00%+0.19a
48 1.30 £ 0.08¢ 1.50 £ 0.11¢ 2.50+£0.17b 3.30 £ 0.20a
GR [U mg ! (protein)] 24 1.70 £ 0.11¢ 1.60 £ 0.11c 2.40 £ 0.14b 3.30+0.18a
48 1.60 +0.09¢ 1.60 + 0.08¢ 2.30+£0.12b 3.20+0.20a
DHAR [U mg ! (protein)] 24 2.50+0.15¢ 2.30+0.12¢ 3.65+0.24b 5.00+041a
48 2.70+0.17¢ 2.50 +0.14c¢ 3.85+0.28b 490+ 0.38a
MDHAR [U mg'l(protein)] 24 0.80 £ 0.05b 0.90 +0.07b 1.50 £ 0.10a 1.70 £ 0.10a
48 0.70 £ 0.05b 0.90 + 0.06b 1.70+0.11a 1.60 + 0.09a
v-ECS [U mg'l(protein)] 24 1.50 £ 0.09¢ 1.60 £ 0.12¢ 2.30 £ 0.14b 3.20%0.19a
48 1.60 £ 0.10c 1.50 £ 0.11c¢ 2.50 +0.15b 3.50+0.23a
GalLDH [U g'l(f.m.)] 24 0.90 + 0.06¢ 1.00 £ 0.07¢ 1.60 £ 0.12b 2.40+£0.16a
48 1.00 £ 0.08¢c 1.10 £ 0.09¢ 1.70 £ 0.12b 2.30+0.14a
AsA/DHA 24 199+ 1.43a 19.3+1.36a 13.5+ 1.04c 16.5+1.18b
48 19.5+1.38a 19.5+1.41a 13.0+ 1.01c 16.7+1.13b
GSH/GSSG 24 21.0+1.58a 20.7 + 1.52a 12.0 £ 0.99¢ 16.8 + 1.16b
48 20.5+ 1.42a 20.5+1.51a 12.3 £ 1.03¢ 17.0 £ 1.20b
MDA content [nmol g'l(f.m.)] 24 7.50 £ 0.49¢ 7.20 £ 0.45¢ 140+ 1.11a 10.0 £ 0.81b
48 8.00+0.61c 7.50 £ 0.50¢ 19.0+1.33a 13.0 + 1.06b
Electrolyte leakage [%] 24 8.60 £ 0.68¢c 8.50 £ 0.65¢ 150+ 1.14a 11.0+0.91b
48 9.00 £ 0.73¢ 8.50 + 0.64c¢ 19.0 £ 1.34a 14.0+1.15b

indicated by the increased MDA content, and the
electrolyte leakage were observed in the maize leaves in
response to the 100 mM NaCl treatment. This result
suggests that salt stress also induced oxidative stress in
maize. To cope with it, the activities of antioxidants were
up-regulated.

Our results show that the ratio of AsA/DHA decreased
under the salt stress that was consistent with a previous
study (Ferreira-Silva et al. 2012). The redox state of
ascorbate is controlled by enzymes involved in its
biosynthetic and recycling pathways. In the present study,
the salt stress increased the activities of APX, DHAR,
and MDHAR. Similarly, it has been reported that salt
stress increases APX activity in lentil and mungbean
(Bandeoglu et al. 2004, Nazar et al. 2011) and DHAR
and MDHAR activities in pea (Hernandez et al. 1999,
2000). However, Ferreira-Silva et al (2012) reported that
salt stress decreases APX activity in cashew leaves.
Talukdar (2012) reported that salt stress does not affect
MDHAR  activity in  Lathyrus sativus. These
discrepancies may be due to the use of different plant
species. Besides, we also found that the salt stress
increased the GalLDH activity in the maize leaves. Many
studies showed that H,S, as a signal molecule, can
modulate antioxidant response in plants under stresses
(Wang et al. 2010, Chen et al. 2013). It has been reported
that pretreatment with H,S increases APX activity in
alfalfa under salt stress (Wang et al. 2012). In the present

study, we found that the pretreatment with H,S increased
the APX activity under the NaCl stress that is consistent
with a previous study (Wang et al. 2012). Besides, H,S
increased the activities of DHAR and GalLDH, and the
ratio of AsA/DHA in the maize leaves under the salt
stress. On the other hand, the MDHAR activity was not
increased. These results suggest that the pretreatment
with H,S could increase AsA/DHA through the stimu-
lation of the biosynthetic and recycling pathways of AsA.

The redox state of glutathione can be maintained by
v-ECS and GR which are involved in the biosynthetic and
recycling pathways of glutathione, respectively. Increase
in GR activity in response to salinity stress in pea plants
has been reported (Hernandez et al. 1999, 2000). Mittova
et al. (2003) reported that salt stress up-regulates y-ECS
protein in tomato. In the present study, the salt stress up-
regulated the activities of y-ECS and GR in the maize
leaves which is consistent with previous studies
(Hernandez et al. 1999, 2000, Mittova et al. 2003). The
NaCl stress decreased the ratio of GSH/GSSG in the
maize leaves. However, Ferreira-Silva et al (2012)
reported that salt stress increases the ratio of GSH/GSSG
in cashew. In the present study, H,S increased the
activities of y-ECS and GR, and the ratio of GSH/GSSG
under the salt stress. Therefore, the pretreatment with H,S
could maintain the redox state of GSH under the salt
stress.

Signal molecules, such as Ca’**, H,0,, NO, abscisic
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acid (ABA), and jasmonic acid (JA), can regulate
ascorbate and glutathione metabolism and have important
roles in responses to stresses (Li et al. 1998, Jiang and
Zhang 2003, Wendehenne et al. 2004, Arasimowicz and
Floryszak-Wieczorek 2007, Ai et al. 2008, Hu et al
2008). In the present study, we found that H,S may
regulate the ascorbate and glutathione metabolism and
has an important role in defencing oxidative stress in
maize leaves. Wang et al. (2012) reported that NO is
involved in the signal transduction of H,S in regulating
antioxidant response to salt stress in alfalfa. It has also
been reported that ABA and JA can induce the production
of H,S and H,0, in the process of stomatal closure (Hou
et al. 2011, Liu et al. 2011). However, the signal
transduction of H,S in regulating ascorbate and
glutathione metabolism remains unclear. So, it will be
very interesting to investigate the relationship between
H,S and above signal molecules in regulating ascorbate
and glutathione metabolism in plants.

NaHS in solutions has been widely used for
production of H,S (Hosoki et al. 1997). However, these
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