Revision of the barley WRKY gene family phylogeny and expression analysis of the candidate genes in response to drought

B. YAZDANI1,2, S. SANJARI2, R. ASGHARI-ZAKARIA1*, F. GHANEGOLMOHMADI3, E. POURABED1, M. SHAHBAZI4, and Z.-S. SHOBBAR2**

Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabili 56199-11367, Iran
Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj 31359-33151, Iran
Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Prefecture 277-8562, Japan
Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran

Abstract

The WRKY belongs to an important plant specific transcription factor families which are involved in response to various environmental stresses, as well as in growth and developmental processes. In the present report, a genome-wide identification and characterization of WRKY gene family in barley led to revision of HvWRKYS to 93 members. The phylogenetic tree was also reconstructed based on the full-length WRKY protein sequences in barley and Arabidopsis. HvWRKYs were classified into three major groups (I, II, and III) and group II was further divided to 5 subgroups (a to e). HvWRKYs were named after this classification. Interestingly, some specific motifs were discovered in subgroups IIa, IIb, and III. Analyzing the available microarray data revealed eight candidate WRKY genes which were up-regulated under drought and salinity stresses compared to the optimum conditions at seedling stage in barley. Expression profiles of these WRKY genes were validated by quantitative real-time PCR. All the investigated candidate genes (HvWRKY_IId2, HvWRKY_III11, HvWRKY_Iib2, HvWRKY_IId4, HvWRKY_III23, HvWRKY_Iia5 and HvWRKY_Iic19) except for HvWRKY_I8 were significantly up-regulated by drought stress at the seedling stage in drought-tolerant genotype, indicating their role in drought tolerance. We hope the presented information would be helpful toward achieving drought tolerant cultivars through genetic engineering or molecular breeding.

Additional key words: Arabidopsis thaliana, chromosomal location, drought tolerance, Hordeum vulgare.

Introduction

Putative transcription factor (TF) genes constitute 7 % of all plant genes. TFs are proteins which play a major role in gene expression regulation (Cowell et al. 1992). When these specific proteins bind to the upstream of transcription start site (gene regulatory regions), the transcription activity will be affected (Ryu et al. 2007). The WRKY family is an outstanding higher plant TF type, which has not been found in both fungal and animal genomes (Zhang and Wang 2005, Rushton et al. 2010). Based on the phylogenetic tree classification, Magnoliophyta have more WRKY members compared to Pinophyta, Pteropsida, and Bryophyta. These TFs play a very important role in the regulation of Magnoliophyta gene expression (Berri et al. 2009). Phylogenetic analysis of WRKY family in Arabidopsis thaliana and Oryza sativa genomes has modified initial classification (Wu et al. 2005, Xie et al. 2005, Zhang and Wang 2005).

Based on the number of WRKY domain (WD) sequences (tryptophan-arginine-lysine-tyrosine) and the identity of the zinc-finger motif, the WRKY genes are classified into three main groups (I, II, and III). Furthermore, group II was divided into five subgroups (Iia, Iib, Iic, Iid, and Iie). All WRKY proteins have one (groups II and III) or two (group I) conserved WDs which have a signature peptide

Submitted 5 May 2019, last revision 6 August 2019, accepted 21 August 2019.
Abbreviations: ABA - abscisic acid; TF - Transcription factor; WD - WRKY domain (sequence tryptophan-arginine-lysine-tyrosine).
Acknowledgements: This work was supported by the Agricultural Biotechnology Research Institute of Iran under project number 91001-9151-0551-05-1. The authors are grateful to Mr. Mohammad Jedari for creating the artworks. The first two authors contributed equally to the article.
* Corresponding author; e-mail: shobbar@abrii.ac.ir, r-asghari@uma.ac.ir
sequence of WRKYGQK at the N-terminus. Also, a C_H2O-
(groups I and II) or a C_H2C-type zinc-finger motif (group
III) at the C-terminus, with a total length of approximately
60 amino acids (Eulgem et al. 2000). Variants of the
WRKYGQK signature motif comprise WRKYGEK
and WRKYGKK, with several atypical WRKY motifs
suggesting the consensus W(R/K)(K/R)Y (Xie et al.
2005). Most WRKY proteins bind preferentially to the
W-box DNA sequence -C(T)TGAC(T/C)- (Rushton et al.
1999). Nevertheless, some WD sequences can present
different binding preferences such as binding with either
the SURE (sugar-responsive cis-element) or the W-box
(Sun et al. 2003, Van Verk et al. 2008). Invariable WRKY
amino acids signature as well as cysteine and histidine
residues of the WD, which tetrahedral coordinate a zinc
atom, are necessary for W-box dependent binding activity
(Maéo et al. 2001).

While WRKY TFs have been implicated in some
developmental processes (Johnson et al. 2002, Lagac
and Matton 2004, Miao et al. 2004), their key functions
are defense responses against biotic and abiotic stresses
(Johnson et al. 2002, Zhou et al. 2008, Jiang and Deyholos
et al. 2011). Most of the genes in group Ila and Ild are
involved in biotic and abiotic responses. Genes in group
I play a role in developmental processes and biotic and
abiotic stress responses in crops, while the functions of
most genes in group III should be characterized (Chen
et al. 2017). In addition, all WRKY subfamilies have
drought and salt stress responsive members. Also, genes
in group IIC might be the crucial TFs involved in drought
and salt stress responses in crops (Chen et al. 2017). Some
WRKY genes in several plant species are highly expressed
during seed development stage (Bakshi and Oelmüller
2014). Previous studies have suggested that WRKY TFs
have major roles in pathogen-associated molecular pattern
(PAMP)-triggered immunity (PTI) and effector-triggered
immunity (ETI), which are important innate immune
systems in the plant (Pandey and Somssich 2009). In
response to stress, WRKY TFs are involved in ABA
mediated signaling pathway (Jiang et al. 2017). Members
of WRKY TFs family have been identified in some plants
including 92 TaWRKY in Triticum aestivum (Zhu et al.
2013), 99 OsWRKY in Oryza sativa (Ross et al. 2007), and
72 AtWRKY in Arabidopsis thaliana (Wu et al. 2005).

Barley (Hordeum vulgare L.) is a major food source
with harvestable yields in harsh environments and one
of the main cereal crops in developing countries. It has
the highest drought stress tolerance among other crops
including rice, maize and wheat, and can considerably
adapt to various environmental conditions (Ullrich 2011).
The barley genome (Morex genotype) has been completely
sequenced (Consortium 2012), and this fact provides an
excellent opportunity to raise research on barley. In the
present study, we attempted to recognize members of
WRKY TFs family, and their characteristics in barley via
in silico approaches. We also conducted gene expression
analysis of their candidate genes involved in drought stress
tolerance in barley.

Materials and methods

Identification of WRKY gene family members in barley:
Barley (126) and Arabidopsis (72) TF sequences were
downloaded from the plant TFs database (PlantTFDB v.
4.0; http://planttfdb.cbi.edu.cn/; Jin et al. 2017). WRKY
proteins from each Arabidopsis subfamily were used as
a query for tBLASTn analysis in the international barley
sequencing consortium (IBSC) IPK BLAST server
(http://webblast.ipk-gatersleben.de/barley/) (Consortium
2012) against full length cDNA, high confidence (HC) and
low confidence (LC) databases. Further, all sequences with
a unigene accession number (60 unigene) for barley WRKY
proteins were downloaded from the National Center for
Biototechnology Information (NCBI) database (http://www.
cbi.nlm.nih.gov), as well. Additionally, hidden Markov
model (HMM) profiles of WD (PF03106) were obtained from
Pfam database (http://pfam.xfam.org/; Finn et al.
2016) and used to find putative WRKY proteins against
barley_HighConf_genes _MIPS_23Mar12_ProteinSeq
and barley_LowConf_genes_MIPS_23Mar12_ProteinSeq
(Consortium 2012) using HMMER v. 3.1b1 where the
e-value threshold was set at 1. Finally, redundant sequences
were removed manually. To find all the HvWRKY transcript
sequences, cDNA and protein sequences were used as
queries for BLASTn and tBLASTn searches against Ensembl
plants database (IBSC v. 2; http://plants.ensembl.org/
index.html), respectively. All non-redundant sequences
were checked in the Pfam database for existence of WD.

Chromosomal Location of HvWRKYs on barley
genome: The cDNA and protein sequences were employed
as the queries for BLASTn and tBLASTn searches against
EnsemblPlants database (http://plants.ensembl.org/index.
html) to find the location of HvWRKY genes on barley
chromosomes, respectively. The distribution of HvWRKYs
was created using the MapChart v. 2.3 software (Voorrips
1994).

Phylogenetic analysis: Multiple sequence alignment
(MSA) of the WRKY transcription factors for full-
length protein sequences from Arabidopsis and barley
were obtained using ClustalX program (Larkin et al.
2007). Phylogenetic tree was constructed using the
neighbor-joining (NJ) method by MEGA7 (http://www.
megasoftware.net/; Kumar et al. 2006), and 1 000 boot
strapping replicates. The Gonnet matrix method was used
to compute the evolutionary distances and estimate the
number of amino acid substitutions per site.

Detection of additional conserved motifs of WRKY
proteins: Recognition of the HvWRKY protein motifs was
performed using motif elicitation tool (MEME; v. 4.11.4;
The setting options included any number of repetitions,
ten and sixty amino acids for the minimum and maximum
width of a motif, respectively, and 15 for the maximum
number of motifs to find. All discovered motifs by MEME
were scanned in InterPro database (http://www.ebi.ac.uk/
In silico WRKY gene expression survey: Microarray data, 22 K Affymetrix gene chip array (Barley I), were downloaded from GEO (http://www.ncbi.nlm.nih.gov/gds/) containing accession numbers GSE3170, GSE6990, GSE15970, and GSE17669 for drought, plus GSE3097 and GSE5605 for salinity. Based on the annotation results, 22 probes were detected for HvWRKYs in the Affymetrix barley I chip. Affymetrix raw data [cell intensity (CEL)] files were used as input files in Expression Console software (v. 1.3.1.187). The raw data was normalized using robust multi-array analysis (RMA) through sketch quantile normalization approach (Irizarry et al. 2003). Then, the Flexarray software package (v. 1.6.1) was employed to statistically analyze the normalized array data via analysis of variance (ANOVA). A hierarchical cluster map was created (Pearson method) to find the differentially expressed genes using online heat mapper (http://www.heatmapper.ca/expression/).

Plants and drought stress treatments: Seeds of spring barley (Hordeum vulgare L.) cv. Yousef (a drought-tolerant Iran native cultivar) and Morocco 9–75 (a drought-susceptible international cultivar) were obtained from the Seed and Plant Improvement Institute (SPII) and the International Center for Agricultural Research in the Dry Area (ICARDA), respectively (Ceccarelli 1994, Abedini et al. 2017). The plant growth and water treatment were done as previously described (Abedini et al. 2017). Briefly, the culture was performed in a greenhouse located at the Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran (a 12-h photoperiod with an average photosynthetic active radiation density of 180 µmol m⁻² s⁻¹ and day/night temperatures of 23/20 °C), as a complete random design (CRD) with three biological replications (a replication included a pot containing 6 plants). Two levels of water irrigation including 70 and 10 % of water holding capacity of soil were considered as optimum and severe drought stress conditions, respectively. The samples were obtained from young fully expanded leaves of both 36-day-old genotypes grown under optimum conditions or a gradual drought stress for 21 days. Then, leaves were rapidly dipped into liquid nitrogen and stored at -80 °C until RNA extraction.

Expression study of HvWRKYs genes under drought stress: Total RNAs were isolated using Trizol reagent (Invitrogen, Carlsbad, USA) and were treated with RNase-free DNase (Geneall, Seoul, Korea) according to the manufacturer’s instruction. RNA samples were reverse transcribed to cDNA with oligo (dT)₁₅ and random primers using cDNA synthesis kit (Takara, Tokyo, Japan).

Gene-specific primers for eight HvWRKY genes (HvWRKY_Ic2, HvWRKY_III11, HvWRKY_Ib2, HvWRKY_Iil4, HvWRKY_Iil23, HvWRKY_I8, HvWRKY_Ia5, and HvWRKY_Ilc19) were designed using Oligo software (Rychlik 2010) that are described in Table 1 Suppl1. Real time qRT-PCR was performed on a LightCycler® 96 (Roche, Mannheim, Germany) using SYBR Green Supermix (Takara). The reactions were performed using the following program: 95 °C for 5 min and 40 cycles (95 °C for 30 s, 58° or 61°C for 30 s and 72 °C for 30 s). Barley Actin gene was used as the internal control (Tommasini et al. 2008). Each reaction was carried out in three independent biological replicates with the relative expression was calculated using the 2⁻ΔΔCT method (Schmittgen and Livak 2008) by REST 2009 software (Pfaffl et al. 2009). Gene expression in drought-sensitive genotype under optimum condition was used as a calibrator for calculating the relative gene expression. The relative gene expressions of candidate genes were analyzed by a complete random design where the average values of treatments were calculated by the least significant difference (LSD) test using SAS statistical package (P < 0.01) (Afifi et al. 2003).

Results and discussion

In this study, 93 WRKY gene loci were discovered encoding 497 proteins in Hordeum vulgare. In the first study of WRKY gene family in barley, 46 members were recognized and named from HvWRKY1 to HvWRKY46 (Mangelsen et al. 2008). Then, fifteen novel HvWRKY members, HvWRKY57 to HvWRKY61, were found (Meng and Wise 2012). A recent study in barley discovered 34 additional WRKY TFs from HvWRKY62 to HvWRKY95 (Liu et al. 2014). Notably, previous studies revealed that HvWRKY1 was also published as HvWRKY38 (Eckey et al. 2004, Mangelsen et al. 2008). Further, HvWRKY56 was the full-length protein of HvWRKY8 (Liu et al. 2014).

Our investigation revealed that HvWRKY35 (DQ863119) and HvWRKY41 (AK365469/DQ863124) reported in the previous studies belong to the same unigene accession (Hv.9019). According to the results, HvWRKY72 (MLOC_3853) includes the complete protein and coding sequence version of HvWRKY49 (JQ806390) and, the genes are mapped to the same locus (HORVU3Hr1G081000) on the barley genome. Although, there are different unigene accessions for HvWRKY3 (AK359706) and HvWRKY52 (AK368514); (Hv.13567 and Hv.32682, respectively), the protein and coding sequence alignments indicated that they are different transcripts of HORVU5Hr1G065420. In addition, HvWRKY31 (DQ863115/MLOC_5971) and HvWRKY95 (MLOC_15430) were completely similar to different transcripts of HORVU1Hr1G069620. We also found three novel WRKY TFs. The additional information on HvWRKY TFs including previous and new WRKY names, chromosomal locations, unigenes, cDNA, and protein accession numbers, Ensembl and MIPS accession numbers, number of the introns, as well as the protein length and position of WD have been provided in Table 1 Suppl2.

The full length protein sequences of WRKY TFs in barley and Arabidopsis were aligned and the unrooted phylogenetic tree was constructed. Based on the number of WRKY domains, the sequence similarity of both WRKY domain and zinc-finger motif, as well as on the phylogenetic tree, HvWRKYs were classified into three main groups (I, II, III) which is in accordance to previous reports in barley.
and other plants (Eulgem et al. 2000, Mangelsen et al. 2008, Meng and Wise 2012, Liu et al. 2014). Furthermore, group II was divided into five (a, b, c, d, and e) subgroups, respectively. In barley, the zinc finger motif in group II was similar to group I, with the CX4-5CX22-23HXH pattern, while the zinc finger in group III had CX7CX23HXC pattern based on WRKY domain alignment (Fig. 1 Suppl.). HvWRKY genes were given a generic name based on their classification (HvWRKY I, HvWRKY IIa, HvWRKY IIb, HvWRKY IIc, HvWRKY IId, HvWRKY Ile, HvWRKY III) with an additional number (e.g., 1, 2, 1...) and also decimal for different transcripts encoded by the same locus (e.g., HvWRKY I1.1-HvWRKY I1.2) (Table 1 Suppl2.).

Comparison between the unrooted phylogenetic tree in this study and the preceding report by Liu et al. (2014) revealed that all the members were placed in the same chromosomal locations of 10 genes (HvWRKY I12, HvWRKY IIb5, HvWRKY IIc19, HvWRKY IIc20, HvWRKY IIc21, HvWRKY IIc22, HvWRKY III28, HvWRKY III29, HvWRKY III30, and HvWRKY III31) were indistinct on the barley genome. However, the rest of HvWRKY genes (83 out of 93) were physically mapped on barley chromosomes according to the Ensembl database (Fig. 2). The HvWRKY members were distributed on all chromosomes of barley, whereas chromosome 3 contained the maximum number of HvWRKYs, having 21 of them (23 %), followed by 17 HvWRKYs (18 %) on chromosome 5, and 5 HvWRKYs (5 %) on chromosome 6.

Fig. 1. An unrooted phylogenetic tree of WRKY proteins from barley (HvWRKY) and Arabidopsis (AtWRKY). Protein sequences were aligned using ClustalX and the unrooted phylogenetic tree was constructed using MEGA7 by the neighbor-joining method with 1 000 bootstraps. The WRKY proteins were classified into seven subgroups (I, IIa, IIb, IIc, IId, Ile, and III).
subgroups except four members (i.e. HvWRKY_IId3, HvWRKY_IId4, HvWRKY_IIId20, and HvWRKY_IIId29). HvWRKY_IId3 and HvWRKY_IId4 belonged to the IId in the aforementioned report while they were clustered into IId subgroup in this study. These members joined AtWRKY65 which has classified in Ile or IId subgroups according to two previous studies (Wu et al. 2005, He et al. 2012). Anyway, IId and Ile subgroups always cluster into a single clade. In addition, HvWRKY_IIId20 and HvWRKY_IIId29 were located in subgroup III in the present study while they were classified in Ile and Ile in the former report, respectively (Liu et al. 2014). AtWRKY41, AtWRKY53, AtWRKY54, AtWRKY55, and AtWRKY70 belonging to the group III based on the phylogenetic tree of Arabidopsis (Wu et al. 2005) were joined to the HvWRKY_IIId20 and HvWRKY_IIId29.

Group I contained 12 and 13 WRKYs in barley and Arabidopsis, respectively (Fig. 1). AtWRKY1 joined to group II in Arabidopsis and barley uprooted phylogenetic tree but it has two WRKY domains thereby was classified into group I. All members in group I had two WRKY domains except for HvWRKY_IId10 with one WRKY domain. This phenomenon was observed in foxtail millet (Zhang et al. 2017). Also, 6 out of 31 WRKY members belonging to group I in radish had one WD (Karanja et al. 2017). This suggests that they might have either experienced domain loss or gain events during evolution (Ross et al. 2007). According to the studies on unicellular green alga Chlamydomonas reinhardtii with a great genetic similarity with plant ancestors, there is only one WRKY gene which is a part of group I (with two WDs). This can indicate that group I is the actual ancestor of WRKY family from which other groups of the family have been evolved (Goel et al. 2016). Searching in GeneBank revealed that there are WRKY genes which are similar to group I in two non-photosynthetic eukaryotic organisms: one in Dictyostelium discoideum (AAO52331) and the other one in a protozoan called Giardia lamblia (EAA40901). This generally confirms the hypothesis of group I as being the true ancestor of WRKY genes. WRKY genes originated about one and a half to two billion years from early eukaryotes, prior to their transfer into the plant kingdom. However, there is no logical explanation behind their expansion into plants kingdom while being absent in yeasts and animals (Ülker and Sonnissich 2004).

Group II was classified into five subgroups in barley: Ila, Iib, Iic, IId, and Ile (Fig. 1) as in the classification of WRKY family in wheat, rice, and Arabidopsis (Wu et al. 2005, Rushton et al. 2010, Zhu et al. 2013). Subgroup Ila, Iib, Iic, IId, and Ile contained 5, 5, 22, 10, and 8 members, respectively. Similar to Jatropha curcas, 10 out of 12 members in group II in barley had an extra plant zinc domain (pfam10533) upstream of the WRKY (Xiong et al. 2013). In other studies, the evolution of group II from group I have been acknowledged given the loss of amino terminal WD. The results also suggested that group II has been evolved from the carboxyl terminal WD of group I (Zhang and Wang 2005). In proteins of group I, carboxyl domain and amino domain help DNA-binding activities and specialization of the bind, respectively. So, because of the transcription factor DNA-binding nature, the evolution of group II from carboxyl domain seems to be logical.

On average, about 20 % of WRKY gene family in higher plants belongs to group III while the members of this group do not exist in moss (Physcomitrella patens). This indicates that group III of WRKY genes has evolved following groups I and II (Dong et al. 2003, Kalde et al. 2003) and exists only in higher plants. Interestingly, HvWRKY_IIId24 and HvWRKY_IIId30 had two WDs, but they were classified in group III given the zinc finger motif pattern (C2-H2). 33 % (31 members) where 18 % WRKY members in barley and Arabidopsis belonged to group III, respectively (Fig. 1). Compared to Arabidopsis, group III in rice was far more active in terms of evolution since in the sequences of the group III of rice, additional duplication has been observed (Eulgem et al. 2000) with 34 % of WRKY genes falling into group III in rice (Ross et al. 2007). Hence, the diversity in the number of WRKY members in group III was represented by an expansion of WRKY members of this group in barley. Alignment of multiple HvWRKY domain amino acid sequences (Fig S1) showed group I and II had histidine (H) in the conserved domain whereas group III had cysteine (C). Not only, HvWRKYIII2, HvWRKYIII8, HvWRKYIII15, and HvWRKYIII17 followed group III conserved domain pattern, but also they shared same amino acid motifs pattern according to the Fig. 2 Suppl. Therefore, these genes were classified into group III.

The additional conserved motifs (15 putative motifs) were discovered by MEME program using the longest proteins transcript of all members of WRKY subfamily in barley. Typically, most WRKY members within the same cluster in phylogenetic tree shared the same motif compositions. Therefore, these WRKY proteins have similar functions (Xie et al. 2018). Predictably, most of the HvWRKYs in the same subgroups had similar motif arrangements (Fig. 2 Suppl.). Therefore, the reliability of the grouping in barley was supported by phylogenetic analysis results along with the similarities of conserved motif compositions in each subgroup. The motif 1 and motif 9 contained conserved WRKYYGQK domain where at least a number of them were present in all barley WRKY amino acid sequences. The motif 7 consisted of plant zinc domain which only existed in most of the subgroup IId members. On the other hand, biological functions of other motifs were unknown by InterPro database scanning (Table 2 Suppl.1.). Furthermore, motif 8 and motif 12 were observed in members of subgroups Ila and Iib. Also, motif 5 and 10 were only found in some of the members in group III. These specific motifs seem to be important in the functional divergence of WRKY genes.

To recognize differentially expressed HvWRKYs under drought stress conditions at seedling and reproductive stages, four microarray datasets (GSE3170, GSE6990, GSE17669, and GSE15970) were investigated. Evaluating gene expression in barley seedlings of cv. Morex under different soil water content (SWC) (GSE6990) revealed that HvWRKY_Iic2, HvWRKY_Iib2, HvWRKY_IIId23, HvWRKY_Iia5, and HvWRKY_Iic19 were significantly up-regulated under lower soil water content. Further, HvWRKY_
YAZDANI et al.

IIb2 gene expression was up-regulated more when soil moisture declined gradually (Fig. 3). Comparisons between drought stress and control conditions at seedling stage in cv. Oregon Wolfe dominant and recessive genotypes indicated that the transcription of HvWRKY_I8 and HvWRKY_Ic19 were elevated under drought stress (Fig. 3). Differential gene expression analysis in two drought-tolerant and a drought-sensitive genotypes at reproductive stage under drought stress revealed that HvWRKY_Ile3 was highly expressed in both drought-tolerant genotypes. Furthermore, the transcription of HvWRKY_III11 and HvWRKY_II7 grew in only one drought-tolerant genotype (Fig. 3). Finally, assessing differential gene expression on the photosynthetic organs of the barley spike (lemma, palea, and awn) and seed between drought and control conditions indicated that HvWRKY_IIb2 was the only up-regulated

Fig. 2. Distribution of HvWRKY genes (83 out of 93) on the barley chromosomes (chromosomal distances are given in megabases). Chromosomal locations of 10 HvWRKY members are uncertain on the barley genome.
member in the awn under drought (Fig. 3). Thus, it seems that \(\text{HvWRKY}_{\text{IIc2}}, \text{HvWRKY}_{\text{IIb2}}, \text{HvWRKY}_{\text{III23}}, \text{HvWRKY}_{\text{I8}}, \text{HvWRKY}_{\text{IIa5}}, \) and \(\text{HvWRKY}_{\text{IIc19}} \) are involved in the response to drought stress at the seedling stage. On the other hand, \(\text{HvWRKY}_{\text{III7}}, \text{HvWRKY}_{\text{IIe3}}, \) and \(\text{HvWRKY}_{\text{IIb2}} \) play a role in response to drought stress at the reproductive stage.

To investigate the \(\text{HvWRKY} \) gene expression patterns under salinity stress, three microarray datasets were considered. Studying differential gene expression at seedling stage under control conditions and salinity (GSE3097) with three time points indicated that \(\text{HvWRKY}_{\text{III10}} \) was up-regulated under salinity (Fig. 3). According to a previous report (Walia et al. 2007), two kinds of genes with specific gene expression patterns would be good candidate genes to enhance the salinity tolerance: 1) genes with down-regulated expression under salinity stress while altered in pre-treatment with jasmonic acid (JA) followed by salinity; 2) genes which were up-regulated in JA pre-treatment followed by salinity stress which also responded to salinity and JA treatments as well. Therefore, we predict that \(\text{HvWRKY}_{\text{IIc2}}, \text{HvWRKY}_{\text{III11}}, \text{HvWRKY}_{\text{IIb2}}, \) and \(\text{HvWRKY}_{\text{IIId4}} \) may enhance salinity tolerance at the seedling stage (GSE5605) based on their gene expression patterns (Fig. 3).

Some \(\text{HvWRKY} \) genes (\(\text{HvWRKY}_{\text{IIc2}}, \text{HvWRKY}_{\text{IIb2}}, \text{HvWRKY}_{\text{III23}}, \text{HvWRKY}_{\text{I8}}, \text{HvWRKY}_{\text{IIa5}}, \) and \(\text{HvWRKY}_{\text{IIc19}} \)) were selected based on the aforementioned microarray datasets analysis to confirm the gene expression patterns at seedling stage in drought-sensitive and tolerant genotypes under drought conditions by real-time PCR. Drought and salt stresses both cause cellular dehydration. Further, their signal transduction pathways have cross-talk with each other (Bartels and Sunkar 2005, Miller et al. 2010). \(\text{HvWRKY}_{\text{III11}} \) and \(\text{HvWRKY}_{\text{IIId4}} \) were significantly up-regulated in response to salinity via JA pathway. We hypothesized that they may play a role in response to drought stress; thus, we selected them for further investigation under drought conditions as well.

The phylogenetic analysis revealed that one (\(\text{HvWRKY}_{\text{I8}} \)), one (\(\text{HvWRKY}_{\text{IIa5}} \)), one (\(\text{HvWRKY}_{\text{IIb2}} \)), two (\(\text{HvWRKY}_{\text{IIc2}} \) and \(\text{HvWRKY}_{\text{IIc19}} \)), one (\(\text{HvWRKY}_{\text{IIId4}} \)), and two (\(\text{HvWRKY}_{\text{III11}} \) and \(\text{HvWRKY}_{\text{IIId4}} \))
YAZDANI et al.

III23) candidate genes belong to the group I, IIa, IIb, IIc, IId, and III cluster, respectively (Fig. 2). Analysis of variance indicated that the effects of water treatments were significant on the relative expression of all eight HvWRKY genes \((P \leq 0.01)\) under both optimum and drought stress conditions (Table 3 Suppl1.). The expression of HvWRKY_IIC2, HvWRKY_III11, HvWRKY_IIB2, HvWRKY_IID4, and HvWRKY_III23 was significantly up-regulated in the tolerant cultivar (Yousef) while their expressions remained unchanged in the sensitive genotype (Morocco) under drought stress. HvWRKY_Ha5 was significantly up-regulated in both genotypes under drought stress at the seedling stage though more in Yousef than in Morocco. HvWRKY_IIC19 was notably up-regulated in the tolerant (Yousef) genotype under severe drought stress, while it was down-regulated in the susceptible Morocco genotype. No significant change was found in the transcription of HvWRKY_I8 in Yousef, while it was reduced in Morocco under drought stress at the seedling stage (Fig. 4).

Based on the phylogenetic tree, HvWRKY_IIC2 and

![Graphs showing relative expression profiles of eight HvWRKY genes](image)

Fig. 4. Relative expression profiles of eight HvWRKY genes at the seedling stage with three independent biological replicates in drought-tolerant (Yousef) and drought-sensitive (Morocco) cultivars of barley under severe drought stress. Transcription in the sensitive genotype under water optimum conditions was used as a calibrator. Y-axis and error bars represent the fold change and standard deviation, respectively.
were closely joined together, while HvWRKY_IId5 gene was clustered with HvWRKY_IId4, HvWRKY_IId3, AtWRKY18, and AtWRKY60 (Fig. 2). A previous report indicated that HvWRKY_Ic19 (Hv-wrky19) and HvWRKY_IId4 (Hv-WRKY2) are up-regulated in vegetative organs of the resistant genotype but not in the sensitive genotype of barley under drought (Li et al. 2014). Also, HvWRKY_IId3 (Hv-WRKY38) is involved in response to abiotic stress including cold and drought stress at the seedling stage in barley via an ABA-independent way (Mar et al. 2004). AtWRKY18 and AtWRKY60 in the cluster are transcriptional activators in response to ABA and abiotic stresses such as drought and salinity in Arabidopsis wild type (Chen et al. 2010). Based on the obtained gene expression results (Fig. 4), the aforementioned microarray data (Fig. 3), and phylogenetic clustering (Fig. 2), the wrky54/wrky70 double mutant reveals earlier leaf senescence compared to wild type in Arabidopsis. Thus, these two genes co-operate with each other and they are negative regulators in senescence (Besseau et al. 2012). In addition, AtWRKY46, AtWRKY54, and AtWRKY70 are related to OsWRKY47 in rice. Knock-out and overexpression of OsWRKY47 lead to drought susceptibility and tolerance, respectively (Raineri et al. 2015). Overall, the obtained results suggest that HvWRKY_III11 might act as a negative regulator of leaf senescence, helping the genotype to survive under drought conditions.

Conclusions

In the present study, 93 members of WRKY gene family were identified in barley, classified into three groups and seven subgroups based on unrooted phylogenetic tree in barley and Arabidopsis. Eight drought-responsive candidate WRKY genes were predicted based on analysis of available microarray datasets under drought and salinity at the seedling stage in barley. Furthermore, the gene expression patterns in tolerant and susceptible genotypes by qRT-PCR indicated that all of candidate genes (HvWRKY_Ilc2, HvWRKY_III11, HvWRKY_IId2, HvWRKY_IId4, HvWRKY_III23, HvWRKY_IId5, and HvWRKY_Ic19) are involved in the response to the drought stress at the seedling stage in barley. The achieved results provided useful information regarding the HvWRKY gene family and its drought-responsive members for further functional analysis. They might also be beneficial for achieving drought tolerant cultivars through molecular breeding or genetic engineering.

References

Voorrips, R.E.: Computer note mapchart: software for the graphical presentation of linkage maps and QTLs. - J. Hered.
93: 77-78, 2002.

