

Table 1 Suppl. The results of two-way ANOVA analysis of the individual parameters (WSD, ψ_s , proline content, F_v/F_m , and dehydrins content) evaluated with respect to genotype (Amulet and Tadmor) and salt treatments (0, 100, 300, 0-300, 100-300 mM NaCl) variables. P values lower than 0.05 are considered statistically significant (*), P values lower than 0.01 are highly significant (**). Zero P -values mean that they are lower than 10^{-7} .

Variables	Genotype	Treatment	Genotype \times treatment
WSD	0.523	0**	0.394
ψ_s	0**	0**	0.00001**
Proline	0.03*	0**	0.33697
F_v/F_m	0**	0**	0**
Dehydrins	0.058	0**	0.52147

Table 2 Suppl. Correlation coefficients (r) for selected parameters obtained in leaf samples of Amulet and Tadmor as mean of all samplings (* - a statistically significant correlation at a 0.05 level and ** - a statistically significant correlation at a 0.01 level).

	WSD	ψ_s	Proline	F_v/F_m	Dehydrins
WSD	1				
ψ_s	-0.542**	1			
Proline	0.593**	-0.867**	1		
F_v/F_m	-0.285	0.787**	-0.567**	1	
Dehydrins	0.409*	-0.605*	0.801**	-0.173	1

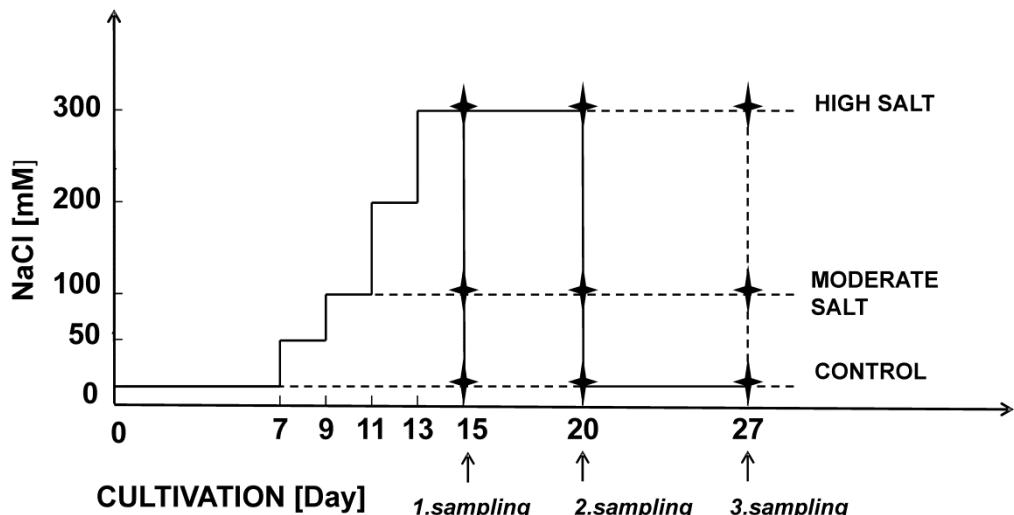


Fig. 1 Suppl. A scheme of salinity treatments and the three samplings. 1st sampling included two genotypes (Amulet, Tadmor) and three treatments ([control 0 mM NaCl (0) and a gradual increase to 100 mM NaCl (100) and to 300 mM NaCl (300))]; 2nd sampling included the same genotypes and five treatments (control (0), a gradual increase to 100 mM NaCl (100) and to 300 mM NaCl (300); an one-step transfers from 0 mM NaCl to 300 mM NaCl (0-300) and from 100 to 300 mM NaCl (100-300)); 3rd sampling included the same genotypes and treatments as the 2nd sampling, but after a 7-day recovery.

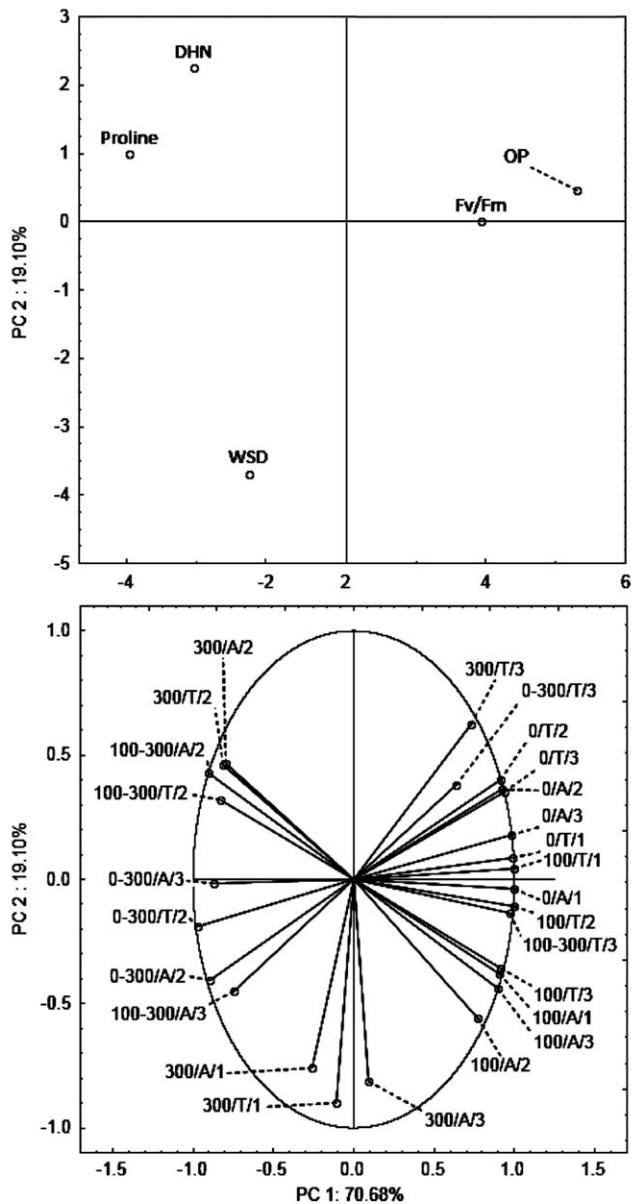


Fig. 2 Suppl. The Principal component analysis (PCA) of water saturation deficit (WSD), osmotic potential (ψ_s , here as OP), proline content, maximum quantum yield of PS II photochemistry F_v/F_m , and dehydrin relative accumulation (DHN) in leaf samples of Amulet (A) and Tadmor (T) in all samplings (1 – 1st sampling; 2 – 2nd sampling; 3 – 3rd sampling) and treatments ([control (0); a gradual increase to low salinity (100); high salinity (300); one-step transfers from 0 to 300 mM NaCl (0-300) and from 100 to 300 mM NaCl (100-300)]. In A, the position of the individual parameters is given. In B, the position of the individual samples is given.