

Table 1 Suppl. Primers used for amplification of *Vitis amurensis* and *Arabidopsis thaliana* genes in real-time qPCRs.

cDNA/DNA	Primers, 5'-3'
<i>VaSTS1</i> , 7, designed to the 3' end of the protein coding region of the <i>VaSTS1</i> or <i>VaSTS7</i> mRNA (the cloning <i>VaSTS1</i> and <i>VaSTS7</i> have the same end)	TAG CAT TCC TAC AAT TAC AAA T
pSAT-term-a, designed to the CaMV 35S terminator in the pSAT1 vector	GAG AGA CTG GTG ATT TTT GCG
For nptII real time PCR, designed to protein coding region of the nptII mRNA	ATG TGG ATT GAA CAA GAT GG TCA GAA GAA CTC GTC AAG AA
For <i>VaSTS1</i> and for <i>VaSTS7</i> genes for bisulfite sequencing, designed to protein coding region of the <i>VaSTS1</i> and <i>VaSTS7</i> mRNA	TAY TTT GAT TTY YGA GAA YAT AGA G CTA CRC ARC ACA ACA RTT TCR AT

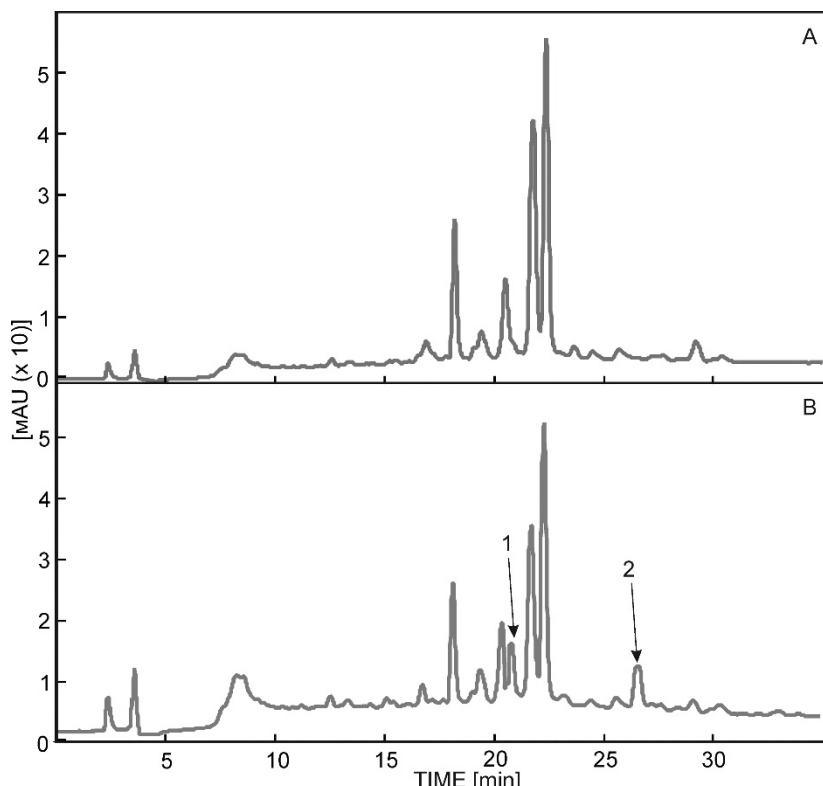


Fig. 1 Suppl. A representative HPLC-UV profile (310 nm) for the extracts from transgenic *Arabidopsis* plants. KA0 - transgenic plants overexpressing only selective marker *nptII* gene (A), ST1-3 - plant line overexpressing *VaSTS1* gene having the highest stilbene content (B). *Trans*-piceid (1) and *trans*-resveratrol (2). The units of the y axes are intensity of absorbance at 310 nm (in units of mAU, or milli-Absorbance Units).