Germinal excision and reinsertion frequencies of the mobile element *Ds* transposed from two unlinked T-DNA loci in tomato

J. BŘÍZA, D. PAVINGEROVÁ, H. NIEDERMEIEROVÁ and S. RAKOUSKÝ

Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic, Branišovská 31, CZ-370 05, Czech Republic

Abstract

Acceptor sites of unlinked transposed Ds element from two T-DNA loci in tomato were mapped. Experimental data obtained from TC₁ progeny testing were employed for estimation of germinal excision frequency (GEF) of Ds element and frequency of its reinsertion (FR). The donor T-DNAs 1481J and 1601D, containing a 35S:NPT transformation marker, a 35S:BAR or nos:BAR excision marker conferring phosphinothricine resistance and a Ds element in the 5' untranslated leader of the nos (or 35S):BAR gene, were located on chromosome 7 and 8, respectively. Ds transposition was induced by 10512I T-DNA carrying stabilized Ac (sAc) which provides a source of transposase and 2':GUS marker conferring β-glucuronidase activity. Tomato plants harbouring the Ds in 1481J or 1601D locus and sAc were crossed and F₁ seedlings heterozygous for both Ds and sAc were identified. These plants, 72 with Ds in 1481J and 65 with Ds in 1601D, were crossed individually as seed parents to wild-type plants to generate TC₁ progenies. TC₁ seed was germinated on phosphinothricine (Basta)-containing medium, and individual seedlings carrying a transposed Ds and lacking sAc were identified by PCR (to detect the Ds) on phosphinothricine resistant individuals that lacked β-glucuronidase activity. From segregation ratio in TC₁ the germinal excision and reinsertion frequencies of the Ds element were estimated for individual F₁ plants. A total of 14560 TC₁ seedlings of 1481J and 16195 TC₁ seedlings of 1601D was analyzed. We observed high variation between individual plants as regards both GEF and FR despite of donor locus (1481J or 1601D), however, the average germinal excision frequencies as well as average frequencies of reinsertion were very similar for both donor loci: $GEF_{1481J} = 24 \%$, $GEF_{1601D} = 25 \%$, $FR_{1481J} = 42 \%$, $FR_{1601D} = 46 \%$.

Additional key words: Lycopersicon esculentum, phosphinothricine (Basta) resistance, β-glucuronidase, stabilized Ac.

Introduction

When studying chromosome breakage in the 1940s, McClintock (1947, 1948) discovered transposable elements Activator (Ac) and Dissociation (Ds) in maize. Since then intensive genetic and molecular studies have revealed that transposons are present in prokaryotic and eukaryotic genomes and how mobile elements behave (Shapiro 1995). Ac/Ds elements, (Baker at al. 1986) have been shown to be active in a heterologous plant species (tobacco). Soon afterwards, Ac was shown to be able to transpose in many plants (see review Kunze 1996) and was used for isolation of genes by strategy called trans-

poson tagging (for review see Balcells *at al.* 1991). In these studies, and in numerous others, the characteristic features of transposon behaviour were revealed - among others the frequency of transposition was estimated for variety of different species. There are plant species where *Ac/Ds* elements were shown to be very active (tomato - Yoder 1990, Carroll *et al.* 1995; tobacco - Jones *et al.* 1989, 1991). On the contrary, *Arabidopsis* (Schmidt and Willmitzer 1989), lettuce (Yang *et al.* 1993), flax (Ellis *et al.* 1992), *Petunia* (Robbins *et al.* 1994) and *Nicotiana plumbaginifolia* (Marion-Poll *et al.* 1993) revealed very

Received 1 October 1999, accepted 16 November 1999.

Acknowledgements: We thank Dr. Jonathan D. G. Jones for supplying seeds of tomato lines harbouring T-DNAs with *Ds* or sAc. We are grateful to Mrs. V. Tetourová for excellent technical assistance. This study was supported by the Grant Agency of the Czech Republic (GA 521/96/0724), the AS CR programme (KSK2052601) and carried out within the network EEC (CIPDCT-94-0050). Fax: (+420) 38 5300357, e-mail: briza@umbr.cas.cz.

low transposition frequency of Ac. In tomato, Carroll et al. (1995) found that germinal excision frequencies of Ds averaged 15 - 40 % but large variation between and within plants were observed. The authors found that reinsertion frequency of excised Ds was 27 - 61 %, this means lower when compared with 50 - 70 % of maize (McClintock 1956, Dooner and Belachew 1989).

In this paper, the data obtained by testing of TC₁ progeny generated within the framework of experimental

strategy designed for the generation, recovery and mapping of unlinked transposed *Ds* elements from two T-DNA loci are used for estimation of germinal excision and reinsertion frequencies. High variation between individual plants despite of donor locus was observed both for germinal excision and reinsertion frequency. However, the average values of both frequencies were very similar for both donor loci.

Materials and methods

Plants harbouring T-DNAs with Ds or sAc and crossing strategy: The DNA constructs used in this project as well as transgenic tomato lines of variety Moneymaker were designed and described by Carroll et al. (1995). Briefly, the T-DNAs harbouring Ds element and lying on chromosome 7 and 8, respectively, contained a marker of transformation (35S:NPT), a marker of Ds excision (35S or nos:BAR conferring resistance to Basta) and a Ds element in the 5' untranslated leader sequence of the BAR gene. To mobilise the Ds element, the Ds lines were crossed to transgenic line carrying stabilised Ac (sAc) as a source of transposase and 2':GUS gene coding for β -glucuronidase. Number of plants of F₁ generation, heterozygous for both Ds- and sAc-containing T-DNAs (verified by PCR, see Fig. 1), were pollinated with non-transformed plants of the same variety to form TC₁ generation. Each F₁ plant gave rise to one TC₁ population that consisted of about 5 sub-populations derived from individual fruits of the plant.

Selection of Basta^R plants and GUS assay: All TC_1 sub-populations were screened separately to identify the plants expressing Ds excision marker (*i.e.* resistant to herbicide Basta) and, at the same time, lacking GUS activity (*i.e.* without sAc). The screening was performed

essentially as described elsewhere (Bříza *et al.* 2000). In this way, four classes of the TC₁ seedlings could be identified: Basta^R/GUS⁺, Basta^R/GUS⁻, Basta^S/GUS⁺, and Basta^S/GUS⁻. Individual seedlings of choice (*i.e.* Basta^R/GUS⁻) were assayed by PCR for *Ds* (Fig. 2) and the plants harbouring *Ds* (*i.e.* with reinserted tr*Ds*) were recovered for next greenhouse propagation and self-pollination (Bříza *et al.* 2000).

Germinal excision and reinsertion frequency estimations: The estimations were calculated essentially as described by Carroll *et al.* (1995) in individual progenies of F_1 plants. Since BAR gene codes for phosphinothricin acetyltransferase that shows noncell autonomous phenotype in tomato (Jones *et al.* 1993), somatic and germinal transpositions cannot be distinguished in plants carrying the transposase gene. Therefore, only progeny lacking the sAc were employed for the germinal excision frequency estimation.

Isolation of genomic DNA and Southern analysis: The method of genomic DNA isolation was essentially as described by Tai and Tanksley (1991). Following that Southern analyses were performed as described by Bříza *et al.* (2000) to determine number of tr*Ds* and uniqueness of transposition events.

Results

After PCR verification of *Ds* and *sAc* heterozygous constitution of F₁ plants (Fig. 1) all plants (*i.e.* 72 with *Ds* in 1481J locus and 65 with *Ds* in 1601D locus) were pollinated with non-transformed tomato. Seeds from 5 individual fruits harvested from individual F₁ plants were sown for screening separately and number of seedlings in Basta^R/GUS, Basta^R/GUS, Basta^R/GUS, and Basta^S/GUS phenotype classes were scored (Table 1 and 2). Since mapping of unlinked transposed *Ds* elements was a final aim of the study only Basta^R seedlings lacking *sAc*, *i.e.* lacking GUS activity that was used as a histochemical marker for the presence of *sAc*, were recovered and subjected PCR assay for *Ds*, *i.e.* for reinsertion of excised *Ds* (Fig. 2).

From a total of 16195 TC₁ individual seedlings the average germinal excision frequency (GEF) over the 65 double heterozygotes with *Ds* in 1601D locud was 27 % and reinsertion frequency (FR) was 47 % (Table 1). The average GEF and FR for 1481J locus from 72 heterozygotes was 25 % and 42 %, respectively and these values were derived from 14560 TC₁ individuals (Table 2). Thus, both *Ds*-containing lines revealed very similar average values of both frequencies. However, large variation was detected between individual F₁ plants (Table 1 and 2) as well as between individual fruits on the same plant (data not shown). Differences between F₁ individuals in the GEF ranged from 0 to 89 % and reinsertion frequency varied from 0 to100 %. These data

confirm that transposition activity in tomato is high: only one F₁ plant (No. 104) showed no Basta^R TC₁ progeny even among GUS⁺ seedlings, and two F₁ plants (Nos. 5 and 71) revealed no Basta^R progeny among GUS seedlings. On the contrary, a few F₁ individuals (Nos. 132, 83, 84, 69) gave rise progeny consisting of several tens Basta^R/GUS seedlings indicating either high transposition activity during F₁ plant development or excision event in early developmental stage of the F₁ plants. Analysis of one out of such progeny derived from F₁ plant No. 132 is given in Table 3. From data in the table is apparent that even plants originated in the same

fruit harboured different transposition events. On the contrary, there were plants derived from different fruits of different fruit bunches that harboured same transposition events. However, F_1 plants were found too that gave rise progeny largely consisting of seedlings harbouring identical transposition - 9 out of 15 Basta R/GUS seedlings derived from F_1 plant No. 23 harbouring unlinked trDs carried a clonal transposed Ds element defined by 3.5 kb EcoR I band (data not shown). Totally, we hybridised DNA from 240 TC₂ families and revealed that 12 % out of that harbouring single copy of Ds carried the same transposition events.

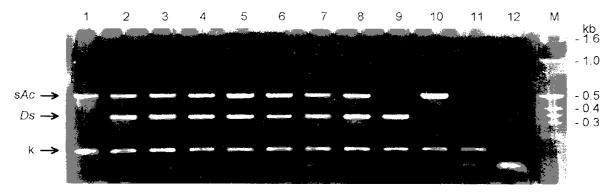


Fig. 1. Example of ethidium bromide stained products of PCR analysis for detection of T-DNAs carrying *Ds* and *sAc* elements in plants of F₁ generation. PCR analysis was carried out using intact leaf or cotyledon tissue as a template as described by Klimyuk *et al.* (1993) and three pairs of oligonucleotide primers were added to each reaction: D60 (5'-GTG.ATC CAG ATG TGA AGC AAG-3') and D75 (5'-ACG AAC GGG ATA AAT ACG GTA ATC-3') amplified a 334-bp fragment of the 3' end of *Ds*, JB1 (5'-GCG ACA GCA AAC AGC CCA TGC ATC-3') and JB2 (5'-ACC CCT TTT GAA GCA TAG TGG TCA-3') amplified a 512-bp fragment of the *sAc* element, 2995AL (5'-CGA GAG AGA TTC AAG AAT AGA CCC-3') and 2995AR (5'-TAT AAC CAA ATG CAA CTC CGT CTT-3') amplified a 141-bp fragment from tomato chromosome 11 as a positive control. *Lane 1 - 8*. F₁ individuals: *lane 9*. line 1481J harbouring T-DNA with *Ds*: *lane 10*, line 10512l harbouring T-DNA with *sAc*: *lane 11*, nontransformed tomato; *lane 12*, negative control; *lane M*. marker DNA (1kb ladder, BRL). *sAc*. 512-bp fragment of *sAc*; *Ds*, 334-bp fragment composed of the 3' end of *Ds*; k, 141-bp fragment of chromosome 11 (positive control). It is obvious that F₁ plant in *lane 1* does not contain *Ds* element; therefore, it was discarded from next experiments.

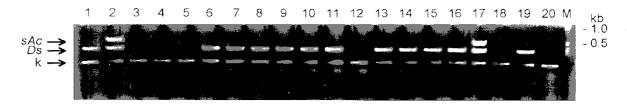


Fig. 2. Example of ethidium bromide stained products of PCR analysis for detection of reinserted Ds element and for lacking of sAc element in plants of TC₁ generation. For details of PCR and primers used see Figure 1. Lane 1 - 2 θ , individual TC₁ plants; lane M, marker DNA (1-kb ladder, BRL). sAc, 512-bp fragment of sAc; Ds, 334-bp fragment composed of the 3' end of Ds: k, 141-bp fragment of chromosome 11 (positive control). Plants in lanes 2 and 17 harboured sAc; therefore, they were omitted from next experiments.

Discussion

Using sAc/Ds system of maize mobile element we estimated the average frequency of germinal excision of Ds element from two loci on tomato chromosomes 7 and

8, and we also calculated Ds reinsertion frequency. Our findings, mentioned in Tables 1 and 2 and derived from about 31000 TC₁ seedlings, show that average values of

J. BŘÍZA *et al*.

Table 1. Germinal excision (GEF) and reinsertion (FR) frequencies of the Ds element in progeny derived from individual F_1 plants harbouring the Ds in 1601D locus on chromosome 8.

Plant number of F ₁	Segregation in TC GUS [*] /Basta ^R	GUS*/Basta ^S	GUS ⁻ /Basta ^R	GUS /Basta ⁸	GUS /Basta ^R /, Ds' plants	GEF [%]	FR [%]
ı	29	68	7	86	3	15 2	43
2 3	1 76	65 164	1 39	85	1	2	100
4	21	41	9	228 53	16 6	29 29	41 67
5	5	147	Ó	157	Ö	0	0
6	16	75	4	98	3	8	75
7 8	36 39	69 92	22 19	88 113	0	0 29	0 47
9	50	107	19	131	9 11	25	58
ıó	45	100	9	142	4	12	44
11	14	69	22	94	11	38	50
12	23	49	13	98	12	23	92
13 14	15 50	33 77	5 13	47 105	4 5	19 22	80 38
15	60	102	27	147	3 7	31	26
16	31	70	2	102	İ	4	50
17	32	71	13	71	6	31	46
18	16	34	2	54	2	7	100
19 20	31 19	67 41	6 18	93 48	2 12	12 55	33 67
21	25	41	13	78	8	29	62
22	43	109	20	137	5	25	25
23	27	84	21	105	16	33	76
24 25	30 21	70 54	16 11	93 101	10 5	29 20	63 45
26	27	87	39	118	3	50	8
27	22	64	8	67	4	21	50
28	52	103	19	135	9	25	47
29	40	95	10	128	3	14	30
30 31	36 25	75 75	8 1 i	105 105	2 4	14 19	29 36
32	19	53	6	65	6	17	100
33	24	57	4	73	2	10	50
34	49	137	16	157	6	18	38
35	4	40 84	19	41 104	2 5	63 27	11 31
36 37	36 22	46	16 20	56	8	53	40
38	51	107	26	174	19	26	73
111	30	70	17	87	16	33	94
112	20	80	13	86	9	26	69
113 114	24 31	71 111	13 t l	82 153	3 5	27 13	23 45
115	52	84	29	155	9	32	31
116	15	67	6	66	2	17	33
117	44	75	15	115	9	23	60
118 119	57 31	104 83	34 8	142 116	16 4	39 13	47 50
120	35	76	6	112	1	10	17
121	40	93	17	152	ıΰ	20	59
122	43	24	6	48	6	22	100
123	8	58	4	64	0	12	()
124 125	70 45	64 52	12 38	119 76	12 30	18 67	100 79
126	176	130	33	250	19	23	58
127	83	164	24	216	15	20	63
128	28	66	22	86	16	41	73
129 130	49 52	61 95	25 30	105 148	14 12	38 34	56 40
131	70 70	95 128	28	197	9	34 25	32
132	127	165	93	216	22	60	24
133	53	60	[]	105	5	19	45
134	69	89	16	125	9	23	56
135	56 31	71	37	96 80	17 4	56 30	46 29
136 137	31 68	41 135	14 27	186	16	25	59 59
							-
1601D	2569	5239	1122	7265	522	27	47

Table 2. Germinal excision (GEF) and reinsertion (FR) frequencies of the Ds element in progeny derived from individual F_1 plants harbouring the Ds in 1481J locus on chromosome 7.

Plant number of F ₁	Segregation in T GUS*/Basta ^R	CC ₁ GUS'/Basta ⁸	GUS /Basta ^R	GUS'/Basta ^S	GUS ⁻ /Basta ^R / Os ⁺ plants	GEF [%]	FR [%]
39	34	103		124	5	12	63
40	33 42	49 65	36 3	66 116	33 2	71 5	92 67
41 42	26	42	5	72	4	13	80
43	11	30	5	33	i	26	20
44	22	67	11	82	5	24	45
45	28	63	1.3	88	4	26	31
46	3.3	50	11	82	7	24	64
47	34	63	2 8	88 89	2 6	4 6	100 75
48 49	30 60	56 77	21	102	3	34	14
50	9	23	6	28	5	35	83
51	37	78	10	131	7	14	70
52	31	58	8	65	2	22	25
53	43	75	. 7	90	7	14	100
54	22	50	16	46	I 2	52	6
55	35	79 79	11 14	94 71	7 4	21 33	64 29
56 57	22 35	68	14	65	14	35	100
58	44	80	8	115	5	13	63
59	35	58	11	79	7	24	64
60	12	51	3	69	1	8	33
61	29	52	30	80	2	55	7
62	24	75	9	97	4	17	44
63	47	68	11	126	8	16	73
64	42	93	8	153 97	2 3	10 12	25 50
65 66	31 35	74 73	6 11	101	3 4	20	36
67	49	77	7	117	6	11	86
68	46	74	16	113	9	25	56
69	61	69	63	79	52	89	83
70	27	65	7	90	1	14	14
71	32	72	0	91	0	0	0
72	52	121	22	175	12	22 15	55 30
73 74	37 20	84 48	10 4	121 59	3	13	25
74 75	20 44	48 56	6	111	2	10	33
76	18	31	3	55	3	10	100
77	26	43	8	74	2	20	25
78	37	73	13	129	8	18	62
79	23	75	6	110	2	10	33
80	25	45	12	65	5	31	42
81	83	49 39	26 8	177 105	14 4	26 14	54 50
82 83	46 82	30	77	174	1	61	1
84	105	50	68	130	Ö	69	0
85	58	32	21	172	13	22	62
86	15	17	5	54	3	17	60
87	27	28	11	100	6	20	55
88	42	64	17	123	3	24 27	18 38
89 90	32 50	56 84	13 35	83 81	5 1	60	38
90 91	70	87	22	135	4	28	18
92	33	105	10	115	4	16	40
93	15	37	2	40	2	10	100
94	7	28	1	17	0	11	0
95	11	24	2	29	1	13	50
96	67	122	18	165	10	20 10	56 67
97 98	17	46 48	3 6	55 62	<u>2</u> 3	18	50
98	18 14	32	7	39	4	30	57
100	3	13	4	14	i	44	25
101	21	74	6	90	2	13	33
102	31	59	3	83	2	7	67
103	32	66	12	93	8	23	67
104	0	50	0	47	0	0	0
105	17	47	8	63	5 0	23 9	62 0
106	15 24	25 43	2 8	44 59	6	24	75
107 108	24 88	4.5 150	40	243	18	28	45
109	49	96	30	94	14	48	47
110	75	90	9	126	6	13	67
1481J	2530	4423	957	6650	403	25	42

both frequencies are, irrespective of donor loci of Ds element, almost the same and that both frequencies reveal very high variance among individual plants or even among fruits of the same plant. Since all F₁ plants used in the study harboured sAc in the identical chromosome position and T-DNA with Ds were localised in two different loci only (1601D or 1481J) we cannot use the position effect when explaining variability among different plants. In addition, we mentioned high variation among fruits of the same plant. High variability of GEF in tomato was also observed by Carroll et al. (1995) and Peterson and Yoder (1995). The latter authors reported high or low activity state of the Ac element even the Ac lied in the identical chromosomal position and they connected this activity state with amplification of the element - they revealed that amplification of the element is the consequence of its transposition. According to Schwartz and Dennis (1986) methylation of the Ac seems to be responsible for this different status of Ac element activity.

Among progeny of 137 F_1 plants several progenies (No. 69, 83, 84, 125, 132) were revealed which exhibited high excision activity of Ds element. Since estimation of germinal excision and reinsertion frequencies of the Ds element was not main aim of the whole project only F_1 progenies harbouring unlinked trDs were assayed for Ds copy number and uniqueness of transposition by Southern analysis. Therefore, results for only one out of high activity Ds F_1 progeny could be presented (Table 3).

In this progeny, 9 out of 15 families (i.e. 60 %) were shown to carry two or more copies of trDs. From these 9 families 3 and 2 ones harboured same transposition events while remaining 4 families carried independent transpositions. Out of 6 families with single Ds copy, 2 families had the same transposition event and 4 harboured trDss in unique locations. Conversely to the F_{\perp} plants exhibiting very high transposition activity of Ds, a few plants of F_{\perp} generation were shown to exhibit no or very low activity of Ds transposition (F₁ plants No. 104, 71 and 5). It is probable that differences observed among GEF of individual F₁ progenies harbouring both Ds and transposase source (sAc) in identical chromosomal locations are caused by different degree and specificity of sAc methylation like in Arabidopsis (VanSluys et al. 1993). However, which factor(s) influence(s) such different methylation pattern in the plants with same genetic background is not clear. According to McClintock (1951) the developmental timing of transposition is controlled during transposition of mobile elements. Levy and Walbot (1990) found that the excision frequency of the Ds2 element reached 0.2 - 1 % during proliferation of the alcurone layer in maize. This reflects either temporal fluctuations in transposase expression or the influence of a transposition-modulating host factor. In maize, Heinlein (1995) did not prove the presence of a modifier gene. It suggests that mild changes in transposase expression may result in spatially and temporally characteristic transposition patterns.

Table 3. Analysis of progeny derived from F_1 plant No. 132 (a - the same Romanic figure means the same fruit bunch, b - Bříza *et al.* (2000), c,d,e - the same transposition events).

	Number of Basta ^R /GUS plants	Number of Basta ^R /GUS Ds plants	Number of plants derived from same fruit '	Number of families with linked/unlinked tr/)s *	Number of families with different copy number of unlinked trDs and size of the Ds containing band [kb]			Map position of trDs in family with 1 copy of Ds b
					Геору	2 copies	>2 copies	
132	93	22	9 (11)	1/8	3 (2.8, 3.7', 3.7')	3 (7.5±13, 2.1±4 ^d , 2.1±4 ^d)	2 (2.2±3.4±6.5, 2.25±4.8±8)	Ch 12 (family with 3.7-kb band)
			2 (12)	0/2	1 (6)	1 (1.9+4)°	0	Ch 11
			2 (13)	()/2	0	1 (1.9÷4)°	t (8.5+10.5+13)	-
			2 (11 2)	0/2	1 (2.5)	$\frac{1}{(2.1\pm4)^d}$	Ò	no RFLP polymorphism
			2 (III 1)	2/0	0	0	0	-
			3 (1112)	2/1	t (4.2)	0	0	Ch 1
			2 (died)	-	-	-	-	-

Average reinsertion frequency of excised *Ds* almost reached identical value for both donor T-DNAs - 46 and 42 %. The findings are consistent with data presented by Carroll *et al.* (1995) for tomato as well as by Dooner and Belachew (1989) for maize. Frequency of reinsertion for progeny of individual F₁ plants also revealed high

variation when ranged from 0 to 100 %. It is probable (but not verified by Southern analysis) that progeny of F_1 plants exhibiting very high FR (80 - 100 %) consisted of plants harbouring the same transposition events (for example 30, *i.e.* 91 %, out of 33 TC₁ plants derived from F_1 plant No. 40 or 48, *i.e.* 92 %, out of 52 TC₁ plants

derived from F_1 plant No. 69 showed very closed linkage between donor Γ -DNA and trDs). Similarly when FR is 0 we can suppose that all such Basta (GUS plants originated from single transposition events without following Ds reinsertion (for example see progeny of F_1 plant No. 84 where none out of 68 Basta (GUS TC₁ plants carried Ds).

The data shown in this study suggest that, in some cases, high values of germinal excision frequency resulted from early transposition events (F₁ plant No. 23 for example) but in other cases, the high GEF is a consequence of high transposition activity *Ds* during F₁ plant development when many independent transposition

events generate many new independent *Ds* locations in genome. In addition, in some cases transposition gives rise to multiple transposed *Ds* element in individual plants which is in agreement with findings that transposition of *Ac/Ds* from replicated to unreplicated DNA makes for increasing of copy number of DNA mobile elements (Greenblatt 1984, Chen *et al.* 1992).

In conclusion, for the use and prospects of transposon tagging of genes of interest in tomato is important that transposition activity of maize Ac/Ds system is very high in this species, and at the same time that sibling progeny frequently harbour unique transposition events.

References

- Baker, B., Schell, J., Loerz, H., Fedoroff N.: Transposition of the maize controlling element "Activator" in tobacco. -Proc. nat. Acad. Sci. USA 83: 4844-4848, 1986.
- Balcells, L., Swinburne, J., Coupland, G.: Transposons as tools for the isolation of plant genes. - TIBTECH 9: 31-31, 1991.
- Bříza, J., Niedermeierová, H., Pavingerová, D., Thomas, C.M., Klimyuk, V.I., Jones, J.D.G.: Transposition patterns of unlinked transposed *Ds* elements from two T-DNA loci on tomato chromosomes 7 and 8. - Plant J., in press, 2000.
- Carroll, B.J., Klimyuk, V.I., Thomas, C.M., Bishop, G.J., Harrison, K., Scofield, S.R., Jones, J.D.G.: Germinal transpositions of the maize element *Dissociation* from T-DNA loci in tomato. - Genetics 139: 407-420, 1995.
- Chen, J., Greenblatt, I.M., Dellaporta. S.L.: Molecular analysis of Ac transposition and DNA replication. - Genetics 130: 665-676, 1992.
- Dooner, H.K., Belachew, A.: Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122: 447-457, 1989.
- Ellis, J.G., Finnegan, E.J., Lawrence, G.J.: Developing a transposon tagging system to isolate rust-resistance genes from flax. Theor. appl. Genet. 85: 46-54, 1992.
- Greenblatt, I.M.: A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, *Modulator*, in maize. - Genetics 108: 471-485, 1984.
- Heinlein, M.: Variegation patterns caused by excision of the maize transposable element *Dissociation* (*Ds*) are autonomously regulated by affele-specific *Activator* (*Ac*) elements and are not due to *trans*-acting modifier genes. Mol. gen. Genet. **246**: 1-9, 1995.
- Jones, J.D.G., Carland, F.M., Maliga, P. Dooner, H.K.: Visual detection of transposition of the maize element *Activator* (Ac) in tobacco seedlings. - Science 244: 204-207. 1989.
- Jones J.D.G., Harper, L., Carland, F.M., Ralston E.J., Dooner, H.K.: Reversion and altered variegation of an SPT:Ac allele in tobacco. - Maydica 36: 329-335, 1991.
- Jones, J.D.G., Jones, D.A., Bishop, G.J., Harrison, K., Carroll, B.J., Scofield, S.R.: Use of the maize transposons *Activator* and *Dissociation* to show that phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. - Transgen. Res. 2: 63-78, 1993.

- Klimyuk, V.I., Carroll, B.J., Thomas, C.M., Jones, J.D.G.: Alkali treatment for rapid preparation of plant tissue for reliable PCR analysis. - Plant J. 3: 493-494, 1993.
- Kunze, R.: The maize transposable element Activator (Ac). In: Saedler, H., Gierl, A. (ed.): Transposable Elements. Pp. 161-194. Springer, Heidelberg 1996.
- Levy, A.A., Walbot, V.: Regulation of the timing of transposable element excision during maize development. -Science 248: 1534-1537, 1990.
- Marion-Poll, A., Martin, E., Bonnefoy, N., Pautot, V.: Transposition of the maize autonomous element *Activator* in transgenie *Nicotiana plumbaginifolia* plants. - Mol. gen. Genet. 238: 209-217, 1993.
- McClintock, B.: Cytogenetic studies of maize and *Neurospora*. Carnegie Inst. Wash. Year Book **46**: 146-152, 1947.
- McClintock, B.: Mutable loci in maize. Carnegie Inst. Wash. Year Book 47: 155-169, 1948.
- McClintock, B.: Chromosome organization and genic expression. - Cold Spring Harbor Symp. Quant. Biol. 16: 13-47, 1951.
- McClintock, B.:Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21: 197-216. 1956.
- Peterson. P.W., Yoder J.I.: Amplification of Ac in tomato is correlated with high Ac transposition activity. Genome 38: 265-276, 1995.
- Robbins, T.P., Jenkin, M., Courtney-Gutterson, N.: Enhanced frequency of transposition of the maize transposable element *Activator* following excision from T-DNA in *Petunia hybrida*. - Mol. gen. Genet. 244: 491-500, 1994.
- Schwartz. D., Dennis, E.: Transposase activity of the *Ac* controlling element in maize is regulated by its degree of methylation. Mol. gen. Genet. **205**: 476-482, 1986.
- Shapiro, J.A.: The discovery and significance of mobile genetic elements.
 In: Sherratt. D.J. (ed.): Mobile Genetic Elements. Pp. 1-17. IRL Press and Oxford University Press, New York 1995.
- Schmidt, R. Willmitzer, L.: The maize autonomous element *Activator* (*Ac*) shows a minimal germinal excision frequency of 0.2 % 0.5 % in transgenic *Arabidopsis thaliana* plants. Mol. gen. Genet. **220**: 17-24, 1989.
- Tai. T., Tanksley, S.: A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. - Plant mol. Biol. Rep. 8: 297-303, 1991.

J. BŘÍZA et al.

- VanSluys, M.A., Scortecci, K.C., Tempe, J.: DNA methylation associated to Ac element in Arabidopsis. - Plant Physiol. Biochem. 31: 805-813, 1993.
- Yang, C.H., Ellis, J.G., Michelmore, R.W.: Infrequent transposition of Ac in lettuce, Lactuca sativa. - Plant mol.
- Biol. 22: 793-805, 1993. Yoder, J.I.: Rapid proliferation of the maize transposable element *Activator* in transgenic tomato. Plant Cell 2: 723-730, 1990.