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Induction of oxidative stress and antioxidant activity by hydrogen peroxide
treatment in tolerant and susceptible wheat genotypes
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Abstract

We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to
water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes
activity. H,O, treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of
nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase.
These effects increased with increasing H,O, concentrations. However, no change was observed in the activity of
superoxide dismutase and proline accumulation.
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Introduction

Hydrogen peroxide accumulation, along with superoxide
radical and hydroxyl radical as a result of drought, high/or
low temperature or salinity stress are the main causes of
oxidative stress. Superoxide radical and its reduction
product, hydrogen peroxide can directly attack membrane
lipids and inactivate HS-containing enzymes (Armstrong
and Buchanan 1978, Navari-1zzo er a/. 1994). Beside this,
these reactive oxygen species (ROS) cause damage to
DNA, proteins, lipids, chlorophyll and almost any other
organic constituent of a living cell (Fridovich 1986,
Liebler er al. 1986, Halliwell 1987, Davies 1987, Imlay
and Linn 1988, Wise and Naylor 1987). H,0, produced
during environmental stresses is reported to act both as an
agent of oxidative stress and a regulator of various
antioxidant enzymes involved in the amelioration of
oxidative stress (Prasad et al. 1994). H,0, induced an
increase in membrane permeability, chlorophyll damage,

Materials and methods

Wheat (Triticum aestivum L.) cvs. C 306 (tolerant to
water stress) and Hira (recommended for irrigated

Received 13 September 1999, accepted 25 January 2000.

lipid peroxidation (Lin and Kao 1998, Patra and Panda
1998), increase in activity of glutathione reductase,
ascorbate peroxidase and superoxide dismutase (Pastori
and Trippi 1992, Guo et al. 1997) and synthesis and
activity of catalase and peroxidase (Prasad er al. 1994)
have been reported in many plants. Since wheat
genotypes tolerant/susceptible to water and high
temperature stresses show differential H,0, accumulation,
lipid peroxidation as well as activity of various
antioxidant enzymes (Sairam et a/. 1997, 1997/98, 1998,
Sairam and Saxena 2000), an experiment was conducted
with two wheat genotypes, differentially tolerant to water
deficit, to elucidate role of H,O, in response to drought
stress. We studied effect of various H,O, concentrations
on oxidative stress and antioxidant activity in drought
tolerant and susceptible wheat.

condition, susceptible to water stress) were planted in
earthen pots (30 x 30 cm), filled with 10 kg mixture of

Abbreviations: Cat - catalase; Chl - chlorophyll; GR - glutathione reductase; MDA - malondialdehyde; NR - nitrate reductase; SOD -
superoxide dismutase; TBA - thiobarbituric acid; TCA - trichloroacetic acid.
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sandy loam soil and farm yard manure in 6:1 ratio. Each
pot was fertilized with N, P and K corresponding to 120,
60 and 60 kg ha’, respectively. Four seedlings were
maintained in each pot. Plants were watered when
required to keep them fully turgid. Samples for various
assays/estimations were taken 30 - 35 d after sowing from
first fully expanded leaves at 08:00. Samples collected in
ice bucket were washed with tap water and then with
double distilled water. Leaf stripes of uniform size (8 -
10 mm) and mass (2 g) were submerged in about 150 cm’
of various concentrations of H,O, (0, 0.05, 0.1, 0.15 and
0.2 mM) in 0.1 M potassium phosphate buffer, pH 7.5,
contained in 250 cm’ beakers and incubated for 6 h in
dark at 25 °C. Samples incubated in phosphate buffer
served as a control. After incubation the samples were
twice washed with double distilled water and soaked dry,
and processed for various observations.

Chlorophyll content was estimated by the non-
maceration method of Hiscox and Israelstam (1979). Leaf
strips (0.1 g) were incubated in 10 cm® of DMSO at 65 °C
for 4 h and absorbance was recorded at 645 and 663 nm.
Chloropyll content was calculated according to the
formula of Arnon (1949).

Membrane stability was estimated according to
Sairam et al. (1997). Leaf material (0.1 g) was taken in
10 cm® of double distilled water in two sets. One set was
subjected to 40 °C temperature for 30 min and
conductivity of medium was recorded using a
conductivity bridge (C1). Second set was kept in a boiling
water bath (100 °C) for 10 min and its conductivity was
also recorded (C2). Membrane stability index (MSI) was
calculated as below:

MSI = [1- (C1/C2)] x 100

The lipid peroxidation was measured in terms of
malondialdehyde (MDA) content following the method of
Heath and Packer (1968). A leaf sample (0.5 g) was
homogenized in 10 cm® of 0.1 % trichloroacetic acid
(TCA). The homogenate was centrifuged at 15 000 g for
10 min. To 2.0 cm’ aliquot of the supernatant 4.0 cm’ of
0.5 % thiobarbituric acid (TBA) in 20 % TCA were
added. The mixture was heated at 95 °C for 30 min and
then quickly cooled in an ice bath. After centrifugation at
10 000 g for 10 min, the absorption of the supernatant
was recorded at 532 nm. The MDA content was
expressed as nmol MDA per g dry mass.

Free proline concentration in the leaves was
determined following the method of Bates er al. (1973).
Leaf sample (0.5 g) was homogenized with 5 cm® of
sulfosalicylic acid (3 %) using mortar and pestle and filter
through Whatman No. | filter paper. The volume of
filtrate was made up to 10 cm® with sulfosalicylic acid.
Two cm’ of filtrate was incubated with 2 cm’ of glacial
acetic acid and 2 cm’ ninhydrin reagent and boiled in a
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water bath at 100 °C for 30 min. After cooling the
reaction mixture, 6 cm’ of toluene was added, the
chromophore containing toluene was separated and
absorbance read at 520 nm spectrophotometrically (UV-
visible spectrophotometer Beckman M-36).

Nitrate reductase activity was assayed in vivo
(Klepper et al. 1971). Leaf samples cut in to 8 - 10 mm
segments (0.2 g) were incubated with 2.5 cm® each of
potassium phosphate buffer (0.1 M, pH 7.5) and
potassium nitrate (0.1 M) and vacuum infiltrated using
vacuum pump for 1 - 2 min, then the tubes were incubated
at 30 °C in dark for 30 min. Keeping the tubes in boiling
water for 2 min terminated the reaction. The tubes were
then cooled and 0.1 cm’ aliquot was taken and mixed with
1 cm’ each of sulfanilamide (1 % in 1 M HCl) and
N-(1,naphthyl-ethylene) diamine dihydro-chloride (0.02 %
in water) for nitrite estimation spectrophotometrically at
540 nm.

Enzyme extract for superoxide dismutase (SOD),
glutathione reductase (GR) and catalase (Cat) was
prepared by grinding 0.5 g leaf material with 10 cm® of
chilled buffer. The extraction medium consisted of 0.1 M
potassium phosphate buffer (pH 7.5) containing 0.5 mM
EDTA. The brie was filtered through cheesecloth and the
filtrate was centrifuged in a Beckman model J2 - 2]
(Geneva, Switzerland) refrigerated centrifuge at 4 °C for
15 min at 20 000 g. Superoxide dismutase activity was
estimated according to the method of Dhindsa er al.
(1981). The 3.0 cm’ reaction mixture contained 13 mM
methionine, 25 uM NBT, 0. mM EDTA, 50 mM
phosphate buffer (pH 7.8), 50 mM sodium bicarbonate
and 0.1 cm’ enzyme. Reaction was started by adding
2 UM riboflavin and placing the tubes below two 15 W
fluorescent lamps (irradiance of 85 pmol m? s for
I5 min. Reaction was stopped by switching off the light.
A non-irradiated complete reaction mixture did not
develop colour and served as a blank. Absorbance was
recorded at 560 nm and one unit of enzyme activity was
taken as that quantity of enzyme, that reduced the
absorbance reading to 50 % in comparison with the tubes
lacking enzyme. Catalase was assayed by measuring the
disappearance of H,O, as per the method of Teranishi et
al. (1974). The 3.0 cm’ reaction mixture contained
50 mM phosphate buffer, pH 7.0, 2 mM H,0, and
0.1 cm’ diluted (10 times) enzyme. The reaction was
stopped after 5 min by the addition of 2 cm® of titanium
reagent, which also forms coloured complex with residual
H,0,. Aliquot was centrifuged at 10 000 g for 10 min and
absorbance of the supernatant was recorded at 410 nm on
a Beckman M-36 spectrophotometer. Glutathione
reductase was assayed by the method of Smith et al.
(1988). The reaction mixture contained 1 cm® of 0.2 M
potassium phosphate buffer (pH 7.5) containing 1 mM
EDTA, 0.5 cm’ of 3 mM DTNB (5,5-dithiobis-2-



nitrobenzoic acid) in 0.01 M potassium phosphate buffer
(pH 7.5), 0.1 cm® of 2 mM NADPH, 0.1 cm® enzyme
extract and distilled water to make up a final volume of
2.9 cm’. Reaction was initiated by adding 0.1 cm® of 2
mM  GSSG  (oxidized glutathione or glutathione
disulphide). The increase in absorbance at 412 nm was

Results

Hydrogen peroxide treatment resulted in decrease in total
chlorophyll content and the damaging effect increased
with increasing H,O, concentration (Fig. 14). Though cv.
Hira had higher chlorophyll (Chl) content under control
condition, hydrogen peroxide treatments, 0.lmM and
above resulted in more steep decline in Chl content then
in C 306. Chlorophyll a/b ratio did not show consistent
changes under different H,O, treatments, but it mostly
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recorded at 25 °C over a period of 5 min
spectrophotometrically. The activity is expressed as
absorbance change (AAy;) per g fresh mass per s. All
observations are means of six replicates and data were
analyzed by analysis of variance.

decreased with increasing H,O, concentrations (Fig. 1B).
Though treatment effects were significant compared to
control, genotypic variation was non-significant at all
H,0, concentrations,

Lipid peroxidation estimated as malondialdehyde
(MDA) content was minimal in untreated leaves, and
increased with increasing H,O, concentration in both the
genotypes (Fig. 1C). C 306 showed consistently lower
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Fig. 1. Effect of H,O, treatments on chlorophyll content (4), chlorophyll a/b ratio (B), lipid peroxidation (C).and membrane stability
index (D) in drought stress tolerant (C 306) and susceptible (Hira) wheat cultivars. Vertical bars indicate + SE of mean.
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Fig. 2. Effect of H,0, treatments on proline content in drought stress tolerant (C 306) and susceptible (Hira) wheat cultivars. Vertical
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MDA content at all H,O, treatments as compared to Hira.
Membrane stability index (MSI) decreased with
increasing H,O, concentrations in both the genotypes
(Fig. 1D). Hira showed lower membrane stability than
C 306 at all the levels of H,0O, concentrations.

Proline content was significantly higher in C 306 in
control and H,0, treated leaves than in Hira (Fig. 2).
Proline content in C 306 did not show much variation up
to concentration 0.15 mM H,0,, but recorded a steep
decline at 0.2 mM H,0, concentration. In case of Hira,
the proline content slightly increased at 0.05 mM H,0,
concentration, but at higher concentrations it declined as
compared to untreated control leaves.

Nitrate reductase (NR) activity in untreated leaves was
initially higher in Hira than C 306 (Fig. 34). H,0,

treatments caused linear decrease in NR activity in both
genotypes, though the magnitude of decline was higher in
Hira at all H,O, concentrations.

Superoxide dismutase (SOD) activity was higher in
C 306 than Hira and decreased gradually up to 0.15 mM
and steeply at 0.2 mM H,0, in C 306, while in case of
Hira the gradual decline was only up to 0.1 mM and more
steep decline was observed at 0.15 and 0.2 mM H,0,
concentrations (Fig. 3B).

Activities of glutathione reductase (GR) and catalase
(Cat) showed increasing trends with increasing H,0,
concentrations (Figs. 3C,D) in both C 306 and Hira.
C 306 manifested higher activity of glutathione reductase
and catalase than Hira at all concentrations of H,O,.
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Fig. 3. Effect of H,O, treatments on the activity of nitrate reductase (4). superoxide dismutase (B), glutathione reductase (C). and
catalase (D) in drought stress tolerant (C 306) and susceptible (Hira) wheat cultivars. Vertical bars indicate + SE of mean.

Discussion

Hydrogen peroxide is a potent cytotoxic compound
produced during drought, high/low temperature and
salinity stresses. With the increase in the magnitude of
stress, the content of H,O; in tissue increased along with a
concurrent increase in various antioxidant enzymes
(Mukherjee and Choudhuri 1983, Prasad er al. 1994,
Menconi et al. 1995, Sairam et al. 1998, Sairam and
Saxena 2000). Treating the leaf tissue with H,O, in vivo
induced chlorophyll degradation similar to what is usually
observed under water and salinity stresses (Kalir 1981,
Pastori and Trippi 1992, Moran et al. 1994, Sairam et al.
1997, 1997/98), suggesting that H,O, or other active
oxygen radicals might be responsible for chlorophyll
damage under environmental stresses. The decrease in
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Chl a/b ratio suggests that functional Chl a is more
sensitive to H,O, than Chl b. The decrease in Chl a/b
ratio following H,O, treatment could also mean greater
sensitivity of proteins in reaction centre (PS 2) with a
consequence of Chl a4 degradation. Increasing
concentrations of H,0, induced lipid peroxidation and
consequently decreased membrane stability in both the
wheat genotypes. Pastori and Trippi (1992) and Lin and
Kao (1998) have also reported increased lipid
peroxidation, membrane permeability and chlorophyll
damage in H,0, treated tissue as compared to control.
The deleterious effect of H,O, was more expressed in
Hira than in drought tolerant C 306. It was in agreement
with our earlier studies where we observed that drought



and high temperature stress induced H,O, accumulation
was associated with lipid peroxidation and membrane
injury (lower membrane stability) (Sairam er al. 1997,
1997/98, 1998, Sairam and Saxena 2000).

The magnitude of proline accumulation under water
stress has been reported to be associated with the ability
of the species/cultivars to withstand stress (Singh et al.
1972, Waldren and Teare 1974, Singh and Singh 1983,
Quarrie 1980, Sairam and Dube 1984a). Though tolerant
cv. C 306 showed more proline accumulation than
susceptible cv. Hira, however, there was no change in
proline content by H,O, untill concentration 0.15 mM and
a slight decrease at concentration of 0.2 mM H,O, in both
the genotypes. The results suggest that water stress
induced oxidative stress (H,O, and other active oxygen
radicals) have no relationship with proline accumulation
under similar conditions, however a higher H,0,
concentration might have some inhibitory effect on
enzymes associated with proline synthesis from glutamate
leading to lowering of proline content,

Nitrate reductase activity was affected by H,0,
treatment in a way similar to observed for water or
temperature stress (Morilla et al. 1973, Sairam and Dube
1984b, Sairam et al. 1990, Sairam 1994). Environmental
stress induced reactive oxygen intermediates are reported
to inactivate the enzymes with active HS-groups and thus
decreases their activity (Armstrong and Buchanan 1978,
Navari-lzzo et al. 1994). The inhibitory effect of
treatment was less pronounced in C 306 than in Hira.

Unlike drought and temperature stress induced
increase in superoxide dismutase activity (Upadhyaya
et al. 1990, Dhindsa 1991, Olmos et al. 1994, Menconi
et al. 1995, Sairam et al. 1998), H,0, treatment resulted
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