

BRIEF COMMUNICATION

Respiration rate and chemical composition of *Karwinskyia* roots as affected by temperature

L. LUNÁČKOVÁ*, E. MASAROVIČOVÁ and A. LUX

Department of Plant Physiology, Faculty of Natural Sciences, Comenius University,
Mlynská dolina B-2, SK-84215 Bratislava, Slovak Republic

Abstract

Two-year-old plants of *Karwinskyia humboldtiana* Zucc. and *Karwinskyia parvifolia* Rose grown from the seeds in greenhouse were transferred to the growth cabinet and cultivated for two months under different temperature regimes (35/20 °C - the summer temperature regime, SR, and 20/5 °C - the winter temperature regime, WR). These temperatures were similar to the temperature conditions in the natural areas of the species studied (Nuevo León, Mexico). The root respiration rate was higher in the plants cultivated under SR than in those under WR. Roots of *K. parvifolia* respiration faster in both temperature regimes than roots of *K. humboldtiana*. Starch content in roots was higher in the plants cultivated under SR, however, concentrations of the other investigated organic and inorganic compounds were higher in the plants cultivated under WR. In *K. humboldtiana* roots, higher concentration of reducing sugars, carbon and hydrogen were found than in *K. parvifolia*.

Additional key words: carbon, hydrogen, nitrogen, reducing sugars, starch, summer and winter temperature regime.

Species of the genus *Karwinskyia* are medicinal woody plants producing secondary metabolite peroxisomicine A₁ (anthracenone) with antineoplastic effect on the mammalian tumour cells (Waksman *et al.* 1989). All parts of the plant produce the above mentioned pharmaceutically active substance (Dreyer *et al.* 1988). However, the peroxisomicine A₁ concentration is very variable and depends both on environmental conditions (Guerrero *et al.* 1987) and on collection time (Waksman *et al.* 1991). The study of the relationship between primary and secondary metabolism of these species is important for both the determination of optimal growth conditions and optimization of the production of anthracenones. The pathway of anthracenones synthesis, which is the basis for peroxisomicine A₁ synthesis, is through the reducing sugars and shikimic acid synthesis (e.g., Tomko *et al.* 1989, Taiz and Zeiger 1991). In our previous paper (Masarovičová *et al.* 2000), the direct correlation between photosynthesis (as the source of the

reducing sugars) and peroxisomicine A₁ concentration (synthesized from the reducing sugars) was confirmed. The aim of this paper was to determine the concentration of starch, reducing sugars, carbon and hydrogen as well as respiration rate in the roots of *K. humboldtiana* and *K. parvifolia* grown under different temperature regimes.

The seeds of *Karwinskyia humboldtiana* Zucc. and *Karwinskyia parvifolia* Rose were collected from the natural areas in the states Nuevo León and Sinaloa, Mexico, respectively. Plants were grown from the seeds in the greenhouse. Two-year-old plants were transferred to the growth cabinet (*Klimabox 1300, Cita, Slaný, Czech Republic*) and cultivated for two months under different temperature regimes: day/night temperature of 35/20 °C (summer temperature regime, SR) and 20/5 °C (winter temperature regime, WR). Temperature regimes were similar to mean air temperatures in summer and winter in natural areas of the species studied (Nuevo León, Mexico). The other conditions in the growth cabinet

Received 22 February 2000, accepted 23 March 2000.

Abbreviations: KH - *Karwinskyia humboldtiana*; KP - *Karwinskyia parvifolia*; P_N - net photosynthetic rate; R_D - dark respiration rate; SR - summer temperature regime; WR - winter temperature regime.

Acknowledgements: We thank Mr. Paule for technical assistance. This work was supported by the Grant Agency VEGA, Grant No. 1/7258/20 and EU Project COST Action 837.

*Fax: (+421) 7 65429064, e-mail: lunackova@fns.uniba.sk

were identical for both the SR and WR: photoperiod 16 h, irradiance 200 $\mu\text{mol m}^{-2} \text{s}^{-1}$, day/night relative air humidity 85/50 %. Because of a lack of experimental plants of *K. humboldtiana* during WR the chemical substances were not determined.

The dark respiration rate of roots was determined as CO_2 efflux with an IRGA (*Infracyt 4*, VEB *Junkalor*, Dessau, Germany) using a closed system. A detached whole root system was placed in the thermostabilised chamber and gas exchange rate was measured in relation to the air temperature in the chamber: SR - 35 °C, WR - 20 °C. The measurement and equipment used have been described in detail by Masarovičová (1997).

Root starch concentration was determined in fresh plant material, extracted with 80 % ethylalcohol and centrifuged at 2 000 g for 10 min. The precipitate was solubilised in 3.25 cm³ 52 % HClO_4 , left to stand on ice for 15 min and centrifuged at 3 000 g for 15 min. Concentration of starch in supernatant was determined spectrophotometrically (*Specol K20*, Carl Zeiss, Jena, Germany) with anthron solution (0.1 g anthron in 50 cm³ 95 % H_2SO_4) at 630 nm. Reducing sugar concentration in the roots was determined in fresh plant material, extracted with 80 °C water for 30 min. Neutral $\text{Pb}(\text{CH}_3\text{COO})_2$ was added and solution centrifuged at 3 000 g for 20 min. For elimination of Pb, the solution of $\text{Na}_2(\text{COO})_2$ was added and centrifuged at 3 000 g for 15 min. Concentration of reducing sugars in supernatant was determined spectrophotometrically with 80 % phenol and 5 cm³ 96 % H_2SO_4 at 480 nm (Dubois *et al.* 1956). Concentrations of N, C and H in the roots were determined in dried plant material using *Carlo Erba EA 1108 CHNO* elemental analyser (Milano, Italy). Analysis of variance was conducted for all the data.

Table 1. Root respiration rate (R_D) [$\mu\text{mol CO}_2 \text{ kg}^{-1} \text{ s}^{-1}$] of the plants grown under summer (SR) and winter temperature regimes (WR). Means \pm SE, $n = 6$; S* - statistically significant difference at $P = 0.05$, S** - statistically significant difference at $P = 0.01$.

Species	Regimes	R_D
<i>K. parvifolia</i>	SR	18.49 \pm 0.64
	WR	11.31 \pm 2.02
<i>K. humboldtiana</i>	SR	8.34 \pm 1.30
	WR	3.84 \pm 0.57
	KPWR	KHSR
KPSR	S*	S**
KHWR	S*	S*

Root respiration rate, R_D , of *K. parvifolia* was higher than root R_D of *K. humboldtiana* in SR and WR. Higher R_D was found in plants grown under SR than in plants grown under WR in both *Karwinskia* species (Table 1). In previous experiments, root respiration rate of two-

year-old plants of *K. humboldtiana* grown in the growth cabinet under temperature 20/5 °C which correspond to WR was quite comparable (0.178 mg $\text{CO}_2 \text{ kg}^{-1} \text{ s}^{-1}$) and was higher than R_D of plants grown in the greenhouse with average daily temperature 8 °C (Lux *et al.* 1996). R_D of two-year-old plants of *K. humboldtiana* and *K. parvifolia* grown at two rates of nitrogen supply (Masarovičová *et al.* 2000) ranged from 0.180 to 0.361 mg(CO_2) $\text{kg}^{-1} \text{ s}^{-1}$. These findings also corresponded to presented results for plants grown under WR (Table 1).

Starch concentration in the roots of *K. parvifolia* was significantly higher in SR than in WR. Interspecific differences in this parameter were not found (Table 2). The concentration of reducing sugars was significantly higher in WR than in SR, in contrast to the starch concentration. In the roots of *K. humboldtiana*, there was observed higher concentration of reducing sugars than in *K. parvifolia* (Table 2). No differences in total N concentration between species and temperature regimes were found. The roots of *K. parvifolia* showed significantly higher C and H concentrations in WR than in SR. The roots of *K. humboldtiana* contained more C and H than the roots of *K. parvifolia* (Table 2).

Study of chemical composition (starch, reducing sugars) presented in this paper follows up recent studies of medicinal plants *Smyrnium perfoliatum* L. (Lux *et al.* 1995) and *Karwinskia* spp. (Masarovičová *et al.* 1998). The variability of the secondary metabolite peroxisomicine A₁ concentration (Guerrero *et al.* 1987, Waksman *et al.* 1989, Masarovičová *et al.* 2000) was related to the variability of the C and H concentrations found in both species. Higher concentrations of N, C and H under WR might be caused by lower consumption of substrate for R_D because of lower R_D detected in this temperature regime (Tables 1 and 2). Quantitative data of total N, C and H concentration presented in this paper are in good agreement with previous studies of the trees *Liriodendron tulipifera* and *Quercus alba* (Wullschleger *et al.* 1997). H concentration was determined in 24 species of slow- or fast-growing herbs (Poorter and Bergkotte 1992). Mean value of H concentration found for roots of slow-growing herbs was 57.0 mg g⁻¹ (d.m.) what was similar to our findings (Table 2).

It is generally accepted that reducing sugar concentration decreases (as a consequence of decrease of P_N) and starch content increases (as a reserve component) in relation to seasonal changes (from summer to winter) (e.g., in *Fagus sylvatica*, Lux *et al.* 1997). Anthraquinones or anthracenones, including peroxisomicine A₁, are synthesized by way of reducing sugars and sikkimic acid (e.g. Tomko *et al.* 1989). As the reducing sugars are produced in primary metabolism (photosynthesis) as well as by decomposition of starch, the content of reducing sugars and starch is variable (Table 2). Close relationship between primary and secondary metabolism was confirmed in our previous paper (Masarovičová *et al.* 2000). However, the above mentioned variability could

be also associated with energy cost (reducing sugars and starch as a substrate for respiration) in relation to leaf persistence during the summer and mainly the winter period. Presented interspecific differences of studied parameters can be also related to the regional differences

of both *Karwinskia* species. *K. parvifolia* occurred in the lower ranges above sea level and has limited area of extension. *K. humboldtiana* is more adaptable, it grows in various ranges above sea level and has a larger area of extension (Fernandez Nava 1988).

Table 2. The concentrations [mg g⁻¹(d.m.)] of the starch, reducing sugars, nitrogen, carbon and hydrogen in the roots of the plants grown under the summer (SR) and winter temperature regimes (WR). Means \pm SE, $n = 6$. NS - not significant difference; S* - statistically significant difference at $P = 0.05$; S** - statistically significant difference at $P = 0.01$.

Species		starch	reducing sugars	nitrogen	carbon	hydrogen
<i>K. parvifolia</i>	SR	112.28 \pm 2.79	167.18 \pm 15.13	7.72 \pm 0.59	386.68 \pm 3.99	50.02 \pm 1.50
	WR	67.20 \pm 1.12	408.43 \pm 38.60	14.21 \pm 0.64	421.11 \pm 0.71	57.68 \pm 1.35
<i>K. humboldtiana</i>	SR	115.18 \pm 2.91	543.30 \pm 37.91	8.64 \pm 0.26	409.48 \pm 1.56	58.13 \pm 1.16
KPSR - KPWR	starch	sugars	N	C	H	
KPSR - KHSR	S**	S**	S**	S**	S**	
	NS	S**	NS	S**	S**	

References

Dreyer, X.A., Arai, I., Bachman, C.D., Anderson, R.R., Smith, R.G., Daves, G.D.: Toxins causing noninflammatory paralytic neuropathy. Isolation and structure elucidation. - *J. amer. chem. Soc.* **97**: 4985-4990, 1988.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric methods for determination of sugars and related substances. - *Anal. Chem.* **28**: 350, 1956.

Fernandez Nava, R.: El género *Karwinskia* Zucc. (*Rhamnaceae*) en México. - M.S. Thesis. Ipn Escuela National de Ciencias Biológicas, Mexico 1988. [In Span.]

Guerrero, M., Pineyro Lopez, A., Waksman, T.N.: Extraction and quantification of toxins from *Karwinskia humboldtiana* (tullidora). - *Toxicon* **25**: 565 - 568, 1987.

Lux, A., Masarovičová, E., Oláh, R.: Structural and physiological characteristics of the tap root of *Smyrnium perfoliatum* L. (*Apiaceae*). - In: Baluška, F. (ed.): Structure and Function of Roots. Pp. 99-105. Kluwer Academic Publishers, Dordrecht - Boston - New York 1995.

Lux, A., Sadloňová, K., Lišková, D., Masarovičová, E., Mikuš, M., Hanáčková, Z., Ordóñez, J. R., Piñeyro López, A.: Study of *Karwinskia* roots. - In: Ördög, V., Szigeti, J., Pulz, O. (ed.): Conference on Progress in Plant Sciences from Plant Breeding to Growth Regulation. Pp. 53-57. Pannon University of Agricultural Sciences, Mosonmagyaróvár 1996.

Lux, A., Lišková, D., Piñeyro López, A., Ordóñez, J.R., Kákoniová, D.: Micropropagation of *Karwinskia parvifolia* (*Rhamnaceae*) and the transfer to greenhouse conditions. - *Biol. Plant.* **40**: 143-147, 1997/98.

Lux, D., Leonardi, S., Müller, J., Wiemken, A.: Effects of ambient ozone concentrations on contents of non-structural carbohydrates in young *Picea abies* and *Fagus sylvatica*. - *New Phytol.* **137**: 399-409, 1997.

Masarovičová, E.: Measurements of plant photosynthetic activity. - In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 769-801. Marcel Dekker, New York - Basel - Hong Kong 1997.

Masarovičová, E., Lux, A., Lišková, D., Argalášová, K., Kákoniová, D.: [Biological characteristics and possibility of commercial using of certain species of medicinal woody plants.] - In: Sliž, K. (ed.): *Ekologické Aspekty v Produkcií Liečivých Rastlín*. Pp. 51-55. Agroinstitut, Nitra 1998. [In Slovak.]

Masarovičová, E., Welschen, R., Lux, A., Lambers, H., Argalášová, K., Brandsteterová, E., Čaniová, A.: Photosynthesis, biomass partitioning and peroxisomicine A₁ production of *Karwinskia* species in response to nitrogen supply. - *Physiol. Plant.* **108**: in press, 2000.

Poorter, H., Bergkotte, M.: Chemical composition of 24 wild species differing in relative growth rate. - *Plant Cell Environ.* **15**: 221-229, 1992.

Taiz, L., Zeiger, E.: *Plant Physiology*. - The Benjamin Cummings Publishing Company, Redwood City, California 1991.

Tomko, J., Kresánek, J., Hubík, J., Suchý, V., Felklová, M., Sikyta, B., Libický, A.: *Farmakognózia*. [Pharmacognosy.] Osveta, Martin 1989. [In Slovak.]

Waksman, N.T., Martinez, L., Fernandez, R.: Chemical and toxicological screening in genus *Karwinskia* (Mexico). - *Rev. Latinoamer. Quim.* **20**: 27-29, 1989.

Waksman, N.T., Santoyo, A.R., Fernandez, N.R., Pineyro, A.L.: [Receiving of the pharmaceutically interesting product. I. Searching for the most appropriate source for the extraction.] - In: *Memorias IX. Encuentro de Investigacion Biomedica*. Pp. 151-153. Fac. de Medicina, Monterrey 1991. [In Span.]

Wullschleger, S. D., Norby, R. J., Love, J. C., Runck, C.: Energetic costs of tissue construction in yellow-poplar and white oak trees exposed to long-term CO₂ enrichment. - *Ann. Bot.* **80**: 289-297, 1997.