Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants

M. ASHRAF* and R. SULTANA

Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan

Abstract

The effect of two N-forms (NH₄⁺ and NO₃⁻) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland’s nutrient solution containing 8 mM N as NH₄⁺ or NO₃⁻, and salinized with 0, 60, or 120 mM NaCl. N-form and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH₄-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO₃-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO₃-supplied plants had significantly lower concentration of leaf P than that of NH₄-supplied plants at varying salt treatments. Salinity of the rooting medium also did not show any significant effect on Na⁺ concentrations of leaves or roots of plants subjected to two different forms of N. NH₄-treated plants generally had greater concentrations of Cl⁻ in leaves and roots and lower K⁺ content in leaves than NO₃-supplied plants. Ca²⁺ concentrations of leaves and roots and Mg²⁺ concentrations of leaves decreased in NH₄-supplied plants due to NaCl, but they remained unaffected in NO₃-treated plants.

Additional key words: ammonium, Helianthus annuus, mineral nutrients, nitrate, salt stress, sunflower.

Of the essential mineral nutrients, nitrogen is required in the greatest amounts by plants and is considered to be a major limiting factor to plant growth (Mengel and Kirby 1987, Bloom 1988, Marschner 1995). NO₃⁻ and NH₄⁺ ions are the two dominant forms of nitrogen absorbed by all types of plants (Haynes and Goh 1978, Mengel and Kirby 1987, Salsac et al. 1987, Marschner 1995).

There are many studies in which it has been found that plants differ in their abilities to acquire NH₄⁺ and NO₃⁻ from the growth medium. For example, bromegrass, maize, soybean, and sorghum differ widely in their capacity to absorb NO₃⁻ (Warncke and Barber 1974). Differences for NO₃⁻ acquisition within species have been observed in barley (Smith 1973), maize (Barber et al. 1992, Schortemeyer et al. 1993, Schortemeyer and Feil 1996) and spring wheat (Brunetti et al. 1972, Cox and Reisenauer 1973, Feil 1994). On the other hand, it has been shown (Ravindra and Pandey 1978, Peterson et al. 1988) that rice grew well with all N as NH₄⁺.

Interaction of different N-forms with other ions is evident from many earlier reports. For instance, it was found that Ca, Mg and K contents in pea and cucumber were low when NH₄⁺ was the sole N-source (Barker and Maynard 1972, Haynes and Goh 1978), whereas P and S concentrations were increased in maize plants relative to those in plants grown with only NO₃⁻-N (Blair et al. 1970). Many workers observed a strong interaction between uptake of Cl⁻ and NO₃⁻ (Smith and Fox 1977, Kafkafi et al. 1982, Glass and Siddiqi 1985).

There is considerable evidence that NO₃⁻ enhances translocation of cations (Wilcox et al. 1973, Alyemeni 1997) and NH₄⁺ inhibits cation translocation (Polizotto et al. 1975). Tomato plants fed with NH₄⁺-N were found to have reduced shoot and root contents of Ca, Mg, K, P and NO₃⁻. Similarly, a depression of leaf and stem K in tomato plants was also observed (Barker and Ready 1989) when they were fed with NH₄⁺. Other workers (Barker and Maynard 1972, Barker et al. 1966) also reported that plants grown with NH₄⁺-N were lower in Ca, Mg and K than those grown with NO₃⁻-N.

Received 22 February 2000, accepted 15 April 2000.

*Address for correspondence: Dr. M. Ashraf, 51-C Sheikh Colony, ABC Road, Behind Jallal Masjid, Faisalabad, Pakistan
E-mail: luaf@fsd.paknet.com.pk
This depression of cation accumulation was suggested to be due to a competition between NH$_4^+$ and other cations.

It is now evident that salt stress has a significant effect on N nutrition in plants. For example, Heikal (1977) found that total N content of the leaves of wheat and radish was decreased significantly by salinity, whereas that of sunflower leaves was increased. Hummadi (1977) also found a decrease in total N and NO$_3^-$ uptake with increasing soil salinity in a Mexican wheat. By contrast, some authors reported an increase in N content in plants subjected to salt stress. Lal and Singh (1973) observed depressed uptake of N, P, K and Cl but increased N and Na contents of grain and straw with increasing salinity. Similarly, Helal and Mengel (1979), working with barley, found that total N content of roots decreased with increasing salinity of the rooting medium, whereas that of the shoot increased. There is some evidence that N supplied to plants shows a considerable interaction with salinity tolerance of plants. This was ascribed to the fact that uptake and assimilation of NO$_3^-$ and NH$_4^+$ have different energy requirements and to interaction between NaCl and nitrogen uptake (Leidi et al. 1991, Hawkins and Lewis 1993).

These contrasting reports were the basis of our hypothesis of the present study that different N-forms, NH$_4^+$ and NO$_3^-$, and salt stress have an antagonistic effect on the uptake and accumulation of N and other essential nutrients in sunflower.

The seeds of sunflower (Helianthus annuus L.) cv. Hisun 33 obtained from a local seed supplier were surface sterilized in 5% sodium hypochlorite solution for 8 min. The experiment was carried out during March - May 1998 in the Botanic Garden of the Bahauddin Zakariya University, Multan (30°11'N and 71°28'E). Plants were grown in a glasshouse with natural sunlight for 11 to 13.5 h. The irradiance measured at noon ranged from 760 to 1660 µmol m$^{-2}$ s$^{-1}$. The day/night temperature was 31 ± 6 and 2 ± 4 °C, respectively. Relative humidity during the day ranged from 31.5 to 46.5%. Eight-day-old seedlings (at the first leaf stage) were transplanted into a plastic pot with aerated full strength Hoagland's nutrient solution. The experiment was arranged in a completely randomized design with four replicates, three NaCl treatments (0, 60, and 120 mM), and two nitrogen forms (8 mM NO$_3^-$ or NH$_4^+$ applied as KNO$_3$ or (NH$_4$)$_2$SO$_4$); pH of the treatment solution was maintained at 6.4. The concentrations of K, Ca, and SO$_4$ were maintained uniform in treatment solutions of both N-sources. The NaCl and N-form treatments were begun 10 d after sowing. The NaCl concentration increased stepwise in aliquots of 30 mM every day until the appropriate treatment concentration was attained. The solutions were changed every other day for following 21 d and then the plants were harvested. The plants were separated into shoots and roots, washed with distilled water and blotted dry before recording the fresh masses. All plant parts were dried at 65 °C for one week, and their dry masses were measured.

Contents of Na, K, Ca, Mg, N and P in plant tissue were determined by the methods described by Allen et al. (1986) in fully expanded youngest leaves. Ground dry leaf and root samples (100 mg) were digested in 2 cm3 of sulfuric peroxide mixture until a clear and almost colourless solution was obtained. After complete digestion, the volume of each sample was brought to 100 cm3 of distilled water. Na and K were determined with a flame photometer (FPF7, Jenway, Dunmow, UK) and Ca and Mg with an atomic absorption spectrophotometer (Analyt 100, Perkin Elmer, Beaconsfield, Bucks, UK). Total P and N contents were determined by the methods described by Allen et al. (1986). Ground dry plant material (100 mg) of each of the two different plant parts was also extracted in 10 cm3 of distilled deionized water at 80 °C for 4 h and Cl concentration in the extracts was determined by a chloride analyzer (Model 925, Corning, Halstead, UK). The data for all the measured parameters were subjected to analysis of variance using COSTAT computer package (Cohort Software, Berkeley, USA). The mean values were compared with least significance difference test following Snedecor and Cochran (1980).

NO$_3^-$-supplied non-salinized sunflower plants had significantly greater dry masses of shoots and roots than NH$_4$-supplied plants. Addition of NaCl to the growth medium caused more marked reduction in dry masses of shoots and roots in NO$_3^-$- than NH$_4$-supplied sunflower plants (Table 1). However, Na$^+$ concentrations (Table 1) in leaves and roots of both NO$_3^-$- and NH$_4$-fed plants increased similarly with increase in NaCl concentration of the growth medium. NH$_4$-supplied plants had a greater concentrations of Cl$^-$ (Table 1) in leaves than NO$_3^-$-supplied plants at 0 and 60 mM NaCl, whereas this difference was masked at the highest NaCl concentration. No consistent pattern of Cl$^-$ accumulation was observed in the roots of both NH$_4$- and NO$_3$-supplied plants.

While there was a large difference between NO$_3$- and NH$_4$-supplied control plants in root K$^+$ content, these plants did not differ significantly at NaCl treatments. Statistically significant decrease in K$^+$ content was induced 120 mM NaCl in roots of NH$_4$-supplied plants (Table 1).

Ca$^{2+}$ concentrations in the leaves and roots (Table 1) of NH$_4$-supplied plants decreased significantly with increase in external NaCl concentration, whereas those in NO$_3$-supplied plants remained unaffected. NH$_4$-supplied plants had significantly lower Ca$^{2+}$ in leaves and roots than that of NO$_3$-supplied plants at 60 and 120 mM NaCl.

Mg$^{2+}$ concentration (Table 1) in the leaves of NH$_4$-supplied plants decreased significantly with the addition of NaCl to the rooting medium, whereas that of NO$_3$-supplied plants remained unaffected. NH$_4$-supplied plants had significantly lower leaf Mg$^{2+}$ than that of NO$_3$-supplied plants at 120 mM NaCl. There was no significant effect of NaCl on root Mg$^{2+}$ of sunflower.

616
plants, but there was an overall difference between \(\text{NO}_3^- \) supplied and \(\text{NH}_4^+ \)-supplied plants in this variable.

There was no significant effect of external NaCl on the leaf N content (Table 1) of sunflower plants, and \(\text{NH}_4^+ \)-supplied and \(\text{NO}_3^- \)-supplied plants also did not differ significantly in this variable. Root N of \(\text{NH}_4^+ \)-fed plants decreased significantly with increase in NaCl concentration of the growth medium, whereas that of \(\text{NO}_3^- \)-supplied plants remained unchanged. \(\text{NO}_3^- \)-supplied and \(\text{NH}_4^+ \)-supplied plants differed significantly in root N only at the control treatment.

There was no significant effect of NaCl of the rooting medium on leaf P (Table 1). However, \(\text{NO}_3^- \)-supplied plants had significantly lower leaf P than that of \(\text{NH}_4^+ \)-supplied plants at all external NaCl concentrations. NaCl did not affect the root P content, and \(\text{NO}_3^- \) and \(\text{NH}_4^+ \)-supplied plants did not differ significantly in this variable.

Table 1. Shoot and root dry masses [g plant\(^ {-1} \)] and concentrations of different ions [g kg\(^ {-1} \)(d.m.)] in leaves and roots of sunflower plants when subjected for 21 d to 0, 60 or 120 mM NaCl in Hoagland's nutrient solution containing 8 mM N as \(\text{NH}_4^+ \) or \(\text{NO}_3^- \). Means with the same letters in each column (a-b) and each row (x-z) do not differ significantly at the 5 % level. Means without letters had LSD 5 % non-significant.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N-forms/NaCl</th>
<th>Shoot/leaf</th>
<th>Root</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>60</td>
<td>120</td>
<td>0</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Dry mass</td>
<td>(\text{NO}_3^-)</td>
<td>4.28 ± 0.59ax</td>
<td>1.68 ± 0.21ay</td>
<td>1.06 ± 0.06ay</td>
<td>1.31 ± 0.22ax</td>
<td>0.79 ± 0.06ay</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>2.16 ± 0.30bx</td>
<td>2.15 ± 0.12ax</td>
<td>1.41 ± 0.21by</td>
<td>0.36 ± 0.02bx</td>
<td>0.26 ± 0.02bx</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>(\text{NO}_3^-)</td>
<td>11.76 ± 1.88</td>
<td>17.07 ± 0.38</td>
<td>23.33 ± 1.29</td>
<td>18.35 ± 2.47</td>
<td>30.70 ± 1.54</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>15.35 ± 1.78</td>
<td>18.71 ± 0.66</td>
<td>23.11 ± 2.31</td>
<td>16.56 ± 1.44</td>
<td>20.87 ± 6.86</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>(\text{NO}_3^-)</td>
<td>16.30 ± 1.93</td>
<td>24.96 ± 0.93</td>
<td>41.14 ± 5.45</td>
<td>18.81 ± 2.91ax</td>
<td>41.15 ± 4.33ay</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>27.40 ± 3.69</td>
<td>36.11 ± 1.87</td>
<td>41.68 ± 4.83</td>
<td>27.56 ± 2.20ax</td>
<td>24.33 ± 9.52bx</td>
</tr>
<tr>
<td>K(^+)</td>
<td>(\text{NO}_3^-)</td>
<td>48.40 ± 5.95</td>
<td>52.18 ± 2.53</td>
<td>39.68 ± 0.91</td>
<td>36.93 ± 1.05ax</td>
<td>24.13 ± 3.02ay</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>48.80 ± 3.63</td>
<td>40.95 ± 2.48</td>
<td>27.76 ± 2.78</td>
<td>46.33 ± 3.94bx</td>
<td>26.24 ± 1.71ay</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>(\text{NO}_3^-)</td>
<td>70.86 ± 9.58ax</td>
<td>70.76 ± 9.41ax</td>
<td>76.24 ± 3.52ax</td>
<td>72.32 ± 7.66ax</td>
<td>82.35 ± 2.41ax</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>72.34 ± 7.01ax</td>
<td>55.81 ± 3.92by</td>
<td>38.12 ± 1.33by</td>
<td>64.19 ± 6.91ax</td>
<td>67.72 ± 4.59bx</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>(\text{NO}_3^-)</td>
<td>5.31 ± 0.26ax</td>
<td>4.83 ± 0.08ax</td>
<td>5.26 ± 0.24ax</td>
<td>4.01 ± 0.18</td>
<td>3.93 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>5.17 ± 0.33ax</td>
<td>4.47 ± 0.26ay</td>
<td>3.90 ± 0.29by</td>
<td>3.07 ± 0.16</td>
<td>4.20 ± 0.53</td>
</tr>
<tr>
<td>N</td>
<td>(\text{NO}_3^-)</td>
<td>22.90 ± 0.80</td>
<td>20.79 ± 3.20</td>
<td>24.15 ± 2.16</td>
<td>18.2 ± 3.28ax</td>
<td>15.50 ± 5.55ax</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>21.20 ± 1.01</td>
<td>24.69 ± 0.80</td>
<td>25.82 ± 4.41</td>
<td>26.2 ± 2.11bx</td>
<td>15.10 ± 4.66ay</td>
</tr>
<tr>
<td>P</td>
<td>(\text{NO}_3^-)</td>
<td>3.35 ± 0.26ax</td>
<td>2.01 ± 0.05ay</td>
<td>3.05 ± 0.33ax</td>
<td>6.80 ± 0.23</td>
<td>7.33 ± 0.71</td>
</tr>
<tr>
<td></td>
<td>(\text{NH}_4^+)</td>
<td>4.32 ± 0.33bx</td>
<td>4.51 ± 0.40bx</td>
<td>3.91 ± 0.24bx</td>
<td>5.71 ± 0.29</td>
<td>7.11 ± 0.36</td>
</tr>
</tbody>
</table>

Significant interaction between NaCl and N-forms were found for growth and contents of different ions. This can be related to the evidence that N form supplied to plants has a considerable interaction with salinity tolerance of plants (Leidi et al. 1991, Hawkins and Lewis 1993). This was ascribed to the phenomenon that uptake and assimilation of \(\text{NO}_3^- \) and \(\text{NH}_4^+ \) have different energy requirements and to interaction between NaCl and N uptake.

In this study NaCl or different N-forms had no significant effect on total N of leaves, whereas root N of \(\text{NH}_4^+ \)-supplied plants decreased significantly with increase in external NaCl concentration, and these plants had significantly higher total N in roots than \(\text{NO}_3^- \)-supplied plants under non-saline conditions. The results for leaf N cannot be explained in the light of earlier studies. For instance, Heikal (1977) found a decrease in total N of the leaves of wheat and radish due to salt stress, whereas the reverse was true in sunflower. Hummadi (1977) also found a depression in total N in the leaves of Mexican wheat due to salt stress. The higher total N in the roots of \(\text{NH}_4^+ \)-supplied plants as compared with that of \(\text{NO}_3^- \)-supplied plants under non-saline medium may have resulted due to the fact that \(\text{NH}_4^+ \) is mainly absorbed passively like other monovalent cations, whereas \(\text{NO}_3^- \) absorption is an active and energy requiring process (Swader et al. 1975, Mengel and Kirkby 1987). Ammonium, once absorbed, is rapidly assimilated into organic compounds but the assimilation of \(\text{NO}_3^- \) costs a large amount of energy (Salsac et al. 1987). In addition, Lewis and Chadwick (1983) reported that the shoot is the main organ of \(\text{NO}_3^- \) assimilation and the root is the major organ of \(\text{NH}_4^+ \) assimilation in barley plants. Similar results were found in maize (Murphy and Lewis 1987).

Despite N, other ions determined in the present study also show a considerable interaction with different N-forms of the growth medium. For instance, it is evident that K, Ca and Mg contents in leaves decreased considerably in \(\text{NH}_4^+ \)-supplied plants, whereas these contents remained almost unchanged in \(\text{NO}_3^- \)-supplied plants under NaCl treatments. By contrast, the pattern of accumulation of P in leaves was reverse from that of
K, Ca and Mg in NH₄-supplied plants. These results are in close conformity with earlier studies in which K, Ca and Mg contents in pea and cucumber plants were low when they were fed with only NH₄-N (Barker and Maynard 1972, Haynes and Goh 1978), whereas P and S contents were increased in maize relative to those in plants grown with only NO₃-N (Blair et al. 1970). However, the reduction in cation uptake in NH₄-supplied plants can be explained in view of the findings that NH₄ inhibits the translocation of cations (Polizotto et al. 1975, Mengel and Kirby 1987). Cl⁻ concentrations in the leaves or roots of NO₃-supplied plants were lower than that in NH₄-supplied plants under non-saline conditions, and the highest NaCl treatment of the growth medium caused greater accumulation of Cl⁻ in the roots of NH₄-supplied plants than in that of NO₃-supplied plants. These results can be partly explained in the light of some earlier studies in which a considerable interaction between uptake of Cl⁻ and NO₃⁻ ions was noted (Smith and Fox 1977, Kafkafi et al. 1982, Glass and Siddiqi 1985). They suggested that NO₃⁻ and Cl⁻ ions are mutually inhibitory for each other.

In conclusion, there was a considerable interaction between two N-forms and salt stress in relation to growth and accumulation of different inorganic nutrients.

References

