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Hydraulic conductance and stomatal sensitivity
to changes of leaf water status in six deciduous tree species
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Abstract

The relationship between shoot hydraulic conductance (L) and stomatal sensitivity to changes in leaf water status was
studied in the saplings of six deciduous tree species. L increased significantly in sequence: Acer platanoides < Tilia
cordata < Padus avium = Quercus robur < Salix caprea = Populus tremula. L was higher in the trees grown in soil with
a higher nitrogen content and lower in the trees grown under mild water stress or kept in darkness for several days. L was
higher in July than in September in all the species. L correlated positively with maximum photosynthesis, stomatal
conductance and stomatal sensitivity to an increase in leaf water potential, but negatively with stomatal sensitivity to a
decrease in leaf water potential. The correlations between L and any other parameter were approximated by three
different curves: data for water-stressed plants fit to the first, data for plants kept in darkness fit to the second and all the
other data fit to the third curve. The reasons of the differences of shoot hydraulic conductance in the different
experimental sets and the mechanisms which may cause the correlation between L and the other characteristics are
discussed.
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Introduction

Shoot hydraulic conductance is an essential characteristic
of the plant water regime because it influences the water
supply. The hydraulic conductance of the xylem
correlates with some of its anatomical parameters
(Zimmermann 1983, Calkin et al. 1986, Ewers et al.
1990) and it changes also during short-term variations in
water balance (Cochard 1992, Yang and Tyree 1993,
Zotz et al. 1994, Kavanagh et al. 1999). Usually the
hydraulic conductance of stems (without leaves) is
directly measured (Sellin 1993, Tognetti et al. 1999a,b).
The data of conductance in shoots with leaves are usually
obtained by calculations using transpiration rates
(Comstock and Mencuccini 1998, Bond and Kavanagh
1999). There is meagre data about hydraulic conductance
of tree shoots obtained by direct measurements of the
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liquid water flow through the shoots with leaves (Sobrado
1997/1998, Wei et al. 1999a,b) .

The path of water through the leaf to evaporation sites
in intercellular spaces has been an object of discussions
for a long time. The most widely accepted point of view
is that water flows through the xylem and then through the
parenchymal tissue before evaporation to the intercellular
spaces (Boyer 1985, Steudle 1997). The diameters of the
xylem conducting elements are relatively small in leaves
(Esau 1965), therefore the xylem hydraulic conductance
may also be low in the leaves. The hydraulic conductance
in the mesophyll may not be much lower than in the
xylem of the leaves. Studies which show that tree shoot
hydraulic conductance can be limited by the hydraulic
conductance in parenchymal cells in leaves are rare.

Abbreviations: ABA - abscisic acid; E - transpiration rate; g, - stomatal conductance; I - irradiance, L - hydraulic conductance;
p - pressure; P, - maximum photosynthetic rate; sq - stomatal sensitivity to a decrease in leaf water potential; s; - stomatal sensitivity
to an increase in leaf water potential; v4 - maximum relative rate of stomatal closure; v; - maximum relative rate of stomatal opening;
w - leaf water content per area; X - leaf relative wet mass per area.
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The hydraulic conductance in the cell walls is several
orders of magnitude higher than in the symplast (Fiscus
1986, Rudinger et al. 1994, Steudle and Meshcheryakov
1996, Steudle and Heydt 1997). However, the volume of
the cell walls in the leaf is lower than the volume of
symplasts and vacuoles (Esau 1965). Therefore, the
hydraulic conductance of these two compartments in the
mesophyll may be comparable.

The rate of water loss from the leaf is dependent on
stomatal conductance. A positive correlation exists
between hydraulic conductance and stomatal conductance
(Reich and Hinckley 1989, Jones and Sutherland 1991,
Séber 1997, Bond and Kavanagh 1999, Tognetti et al.
1999a,b). It is resonable to suppose, that the hydraulic
conductance may be also correlated with the other

Materials and methods

Plants: The species studied in this work were: Acer
platanoides L., Tilia cordata Mill,, Padus avium Mill.,
Quercus robur L., Salix caprea L. and Populus tremula
L. In the first series of experiments the trees were studied
in the course of seasonal developement. The saplings
were grown in Tartu, Estonia, (58°22° N and 26°44" E),
in a small stand, in clay loam, in full sunlight. All the
saplings were 8 - 10 years old. Their terminal branches
(about 1 m tall) were cut under the water and were
brought (the base of each branch remained submerged) to
the laboratory in the late evening of the previous day
before the experiment. The experiments were done in July
and in September 1997.

In the second series of experiments, the influence of
several growth conditions was studied. The pots with 3
year old saplings were brought to a greenhouse. The
complex fertilizer was given to all the saplings. The
relative content of the elements in the complex fertilizer
was: N 10, P 7, K 16, Fe 0.6, Cu 0.4, Mn 0.08, Mo 0.08,
Zn 0.07 and B 0.07 parts. Experiments were done in July
1998.

Data from eight experimental sets for each species
(two sets from the first and six sets from the second series
of experiments) were compared in this study. Some
greenhouse-sets of P. tremula, S. caprea and Q. robur are
absent because too many plants of these species
(characterized by relatively insensitive stomata to a
decrease in the leaf water content) did not survive
transplanting to the pots.

Apparatus: The initial version of the apparatus is
described by Sdber and Moldau (1977). The apparatus
enables the simultaneous measurement of transpiration
rate (by micropsychrometer), leaf temperature (by
infrared termometer), photosynthesis rate (by gas analyzer
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essential stomatal parameter: stomatal sensitivity to
changes of leaf water potential. Data about the correlation
between hydraulic conductance and stomatal sensitivity
are available only for the bean (Phaseolus vulgaris L.)
(Sober 1996, Sober 1997). In these studies, a positive
correlation between hydraulic conductance and stomatal
sensitivity to an increase in the leaf water potential was
found.

The main questions asked in the present work were: [)
Does there exist a correlation between shoot hydraulic
conductance, stomatal conductance and stomatal
sensitivity to changes in the leaf water status in deciduous
trees? 2) Can changes which arise in the mesophyll during
the water stress or in darkness influence the hydraulic
conductance in deciduous tree shoots?

LI- 6262, Li-Cor, Lincoln, USA) and the relative changes
of leaf water content (by f-gauge technique) of the intact
leaf in leaf chamber. The data are registered by computer.
The temperature of the leaf chamber was held at 25 °C,
the relative air humidity was 50 - 60 %, CO, pressure was
near the normal ambient (345 pmol mol™) and the
photosynthetic photon flux density was 1020 pmol m? s,
The pressure chamber was added to the system and leaf
water content was incrased by means of the pressure
chamber technique, for details see Rahi (1973).

Experiments: a) To observe an increase in the leaf water
content a short (10 - 15 cm) shoot was cut under the water
from the bigger branch and one leaf was put in the leaf
chamber. The shoot was fixed in the water-filled pressure
chamber so that the cut end of the shoot was in the water.
After the stabilization of stomatal conductance, the CO,
content of the air in the leaf chamber was quickly raised
to 1760 pmol mol' for 4 min to detect values of
maximum (independent of air CO, content) photo-
synthetic rate (Pn,). When stomatal conductance was
stabilized again at natural CO, content, the pressure in the
pressure chamber was quickly raised from 0 to 0.2 MPa.
The experiment was finished when water droplets
appeared on the abaxial surface of the leaf. If there was
no infiltration after 15 min of the pressure increase, the
pressure in chamber was quickly raised to 0.4 MPa and
then to 0.7 MPa (if needed), until a dense network of
water droplets was seen on the abaxial surface of the leaf.
For details see also Sober (1996) and Sober (1997).

b) To observe a decrease in the leaf water content the
leaf was in the leaf chamber, the end of the shoot was in a
water-vessel. After the stabilization of the stomatal
conductance, the leaf petiole was cut. The experiment was
finished when stomatal conductance reached values near
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zero.
The leaf part, which had been in the leaf chamber was
cut out and its fresh mass was determined in both
experiments. The dry mass of the leaf segment was
determined after drying it for two days at 80 °C.

Calculations: Stomatal conductance (for water vapour)
(g5) [mol m? s''] was calculated using measured values of
transpiration rate and leaf temperature, according to
Sober and Moldau (1977).

Stomatal sensitivity to a decrease in leaf water

potential (sq) [% s™'] was defined as a relative rate of

stomatal closure:
S¢= Vg x A O

where v, is the maximum relative rate of stomatal closure
[% s'] and A is a scaling coefficient which transforms vq
to a common transpiration rate;

Va = [Ags/(At x g,,)] x 100 @)

where Ag is the difference of stomatal conductances in
the region of maximum rate of stomatal closure; At is the
time interval [s], corresponding to Ag,, and g, is an
average stomatal conductance during At.

The relative rate of stomatal closure was determined,
because stomatal conductance declined after the petiole
was cut almost exponentially with time. Coefficient A was
determined as:

A=E,/E, 3)

where E, is the average transpiration rate [mol m? s™']
during At and E,, is the average of E, for all the
experiments (both the experiments of decreasing and
increasing the leaf water potential). Coefficient A was
defined by transpiration rates, because water potential
probably dropped more rapidly after the leaf detachment
in the cases of a higher transpiration rate. The maximum
relative rate of stomatal closure was in a positive
correlation with the transpiration rate (data not shown).

Stomatal sensitivity to an increase in leaf water
potential (s;) [% s'] was defined as a relative rate of
stomatal opening:

s5i=v;xB 4)

where v; is the maximum relative rate of stomatal opening
[% s™'] and B is the coefficient which transforms v; to a
common transpiration rate and the pressure increase in the
pressure chamber.

The value of v; was obtained as:

Results

Shoot hydraulic conductance (L) increased significantly
in sequence: Acer platanoides < Tilia cordata < Padus

Vi = {Ags/[At x (gsmax - gsa)]}x 100 (5)

where gona is the maximum value of stomatal
conductance after the pressure increase in the pressure
chamber. The relative rate of stomatal opening was used
because the opening of stomata after the pressure increase
was also almost exponential with time.

B was obtained as:

B= (Ea X Apra)/(Eaa X Apr) (6)

where Ap; is the pressure increase in the pressure chamber
[Pa], inducing an increase in leaf water potential; Ap,, is
the average of Ap, for all the experiments. Coefficient B
was defined by the transpiration rates and pressure
increases, because the rate of water potential increase in
the leaf is probably higher when the transpiration rate is
lower and when the applied pressure is higher. Several
aspects of the method of calculating the stomatal
sensitivities were discussed by Sober (1997) and S&ber
and Sild (1999).

The shoot hydraulic conductance (L) [g m? s Pa’]
was calculated by the formula:

L = [(AW/At) + E,)/Ap %)

where Ap is the pressure difference at the path of the
water from the pressure chamber to the intercellular
spaces of the leaf. It was assumed that the water potential
in the leaf intercellular spaces equals zero in the
infiltrating leaves, and therefore Ap was equal to the
pressure in the pressure chamber. Aw/At is the maximum
rate of increase in the leaf water content per leaf area
[g m? s™'] during leaf infiltration. Usually Aw/At > E, in
our experiments. The relative values of leaf wet mass per
area (X) were obtained as:

x = (Inl - Inly)/(Inl, - Inly) 8

where I, is irradiance in the absence of the leaf in the leaf
chamber; I and I are current value of irradiance behind
the leaf and the irradiance at the beginning of the
experiment, respectively. The leaf absolute water content
per area [g m™] was obtained as:

w= [(X X wwe)/xe] - Wy (9)

where X, is the leaf relative wet mass per area at the end
of the experiment, w,,. is leaf absolute wet mass per area
[g m?] at the end of the experiment, and wy is leaf dry
mass per area [g m?]. For other details see Mederski
(1961), Sober (1992), Moldau et al. (1993) and Sdber
(1997).

avium = Quercus robur < Salix caprea = Populus
tremula (Fig. 14). L was higher in July than in September
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for all the species. L was slightly higher in trees grown in
soil with a higher nitrogen content for most of the species
(S. caprea was an exception). L was lower in the trees
grown under mild water stress for all the species. L was
not very different between the trees which had been
grown under a mild water stress since spring and the trees
which suffered under the water stress for a only few days.

L was the lowest in the trees kept in darkness and it was
lower in the trees which were in darkness longer (6 d)
compared to the trees which had been in darkness for 4 d
(Fig. 14). The relative decrease of L after a short-term
mild water deficit or after keeping the trees in darkness
was quite similar for the different species (Fig. 2).

o A
Sw._. 03F
o
gEs
> w 0.2
b =0
CBE
O%m
23 0.1
w
o L&
o 20 B
=
L2 g
4= 2
sz M Z
Sy E 7
XH%s Zu
SP & N
= 3 AN
o = N
I N
x N
N
A
7
8
< Z7y 150
I—’St}l
o€
5273 100
Hzg
g3
[SITi]
0
o 201
B
ﬁEE%r15‘
<20 v
E’_a_!!fo\o
CaaR=10r
wEEo
"% 05}
0
E
2
JE; 1.5
2> 2w
SEEO
E30uww 10
SEdxs
Pox=
FAE
ng 0.5
2

IR RN
AORANNNINNRNNRNNRRRNRY
LS LSS LIS S

4

OX0UURUNRNTN NN

A LLSLSS OS2 o
ANNNRINTRCRNNNRNNNNARRY

iz

RN
VL7
RIURDRNRNNRNNNNNY
il s

AUIIE NN NN NN
AL S SSS AL ASS AL S 7

AN
CISSLLS /7S
AN
W 7

JSCNVWTD JSCNVWTD JSCNVWTD JSCNVWTD JSCNVWTD JSCN

A. platanoides T. cordata

P. avium

Q. robur S. caprea P. tremula

Fig. 1. Shoot hydraulic conductance (4), maximum photosynthetic rate (B), stomatal conductance (C), stomatal sensitivity to water
potential decrease (D) and stomatal sensitivity to water potential increase (E). Means (n = 3 - 7) = SE. Labelling: J - shoots from
stand, July; S - shoots from stand, September; C - shoots from greenhouse, control; N - shoots from greenhouse, nitrogen-fertilized;
V - shoots from greenhouse, water-stressed for 2 d; W - shoots from greenhouse, water-stressed since spring; T - shoots from
greenhouse, kept in darkness for 4 d; D - shoots from greenhouse, kept in darkness for 6 d.

The maximum photosynthetic rate (at saturating
concentration of carbon dioxide) (Pma), Stomatal
conductance at the beginning of the experiment (before
changing of the water potential of the leaf) (g), stomatal
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sensitivity to a decrease in leaf water potential (sq4) and
stomatal sensitivity to an increase in leaf water potential
(si) also varied between the species and between the
experimental sets within the species (Figs. 1B-E). In
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general, P, 2o and s; varied in parallel with L: they
were the lowest in A. platanoides and the highest in
P. tremula and S. caprea. They were higher in July than
in September and usually somewhat higher in trees grown
in soil with a higher nitrogen content. P,x, s and s; were
lower in the trees grown under mild water stress and still
more significantly lower in the trees kept in darkness
(Figs. 14,B,C,E).

In most cases, sy decreased (Fig. 1D) when L and the
other parameters increased (Figs. 14,B,C,E): sy was the
lowest in P. tremula and S. caprea and the highest in
A. platanoides and higher in the trees grown under mild
water stress. But sq was also lower in all the trees kept in

darkness (compared with the trees of the control set)
(Fig. 1). The absolute differences in s; between the
experimental sets inside the species were more
pronounced in the species characterized with a relatively
high sq4 in the control set (Fig. 1D).

The both sensitivities, s; and sq, were almost equal in
the well-watered trees of P. avium and Q. robur. s4 was
many times higher than s; in the species characterized
with a low L (4. platanoides and T. cordata) and s; was
several times higher than sy in the species characterized
with a high L (S. caprea and P. tremula). The differences
between sq and s; were the greatest in 4. platanoides, the
species with the lowest L (Figs. 14,D,E).
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Fig. 2. Shoot relative hydraulic conductance after mild water stress for two days or darkness for six days (compared with shoot
hydraulic conductance of control-set of the species) (means (n=4-7)+ SE). Labelling as in Fig. 1.
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Figs. 3 - 6. Relationships between shoot hydraulic conductance and maximum photosynthetic rate (Fig. 3), stomatal conductance
(Fig. 4), stomatal sensitivity to water potential decrease (Fig. 5) and stomatal sensitivity to water potential increase (Fig. 6). Means +
SE; n=13- 7). Figs. 3, 4, 6: upper curve - well-watered trees, not kept in darkness (C-, N-, J- and S-set); middle curve - water-stressed
trees (V- and W-set); lower curve - trees, kept in darkness (T- and D-set). Fig. 5: middle curve - well-watered trees; upper curve -

water-stressed trees; lower curve - trees kept in darkness.

L was positively correlated with P, (Fig. 3), &0 (Fig.
4) and s; (Fig. 6), and negatively with sq (Fig. 5). Keeping
in darkness for several days and the mild water deficit
changed the correlation curves. Keeping in darkness
lowered Puax, 850, Si, and sq significantly more than L

Discussion

As shoot hydraulic conductance was variable between
different tree species grown in the same conditions, the

(Figs. 3-6)). Mild water stress affected sq and s;
differently: sq (compared at some equal L values) was
significantly increased (Fig. 5), but s; was slightly
decreased (Fig. 6).

role of genetical factors in its determination may be
strong. One important reason for the differences in L may
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be the different structure of the xylem in the trees. It is
found that the largest conducting elements in the xylem
are considerably smaller in maple, than in aspen
(Holdheide 1951, Carlquist 1988). Also, the xylem
conducting elements are smaller in the plants grown under
water stress (Doley and Leyton 1968, Bissing 1982,
Arnold and Mauseth 1999) and wider in plants grown in
nutrient-rich soil (Shan and Mehta 1978). Hydraulic
conductance in the xylem wvessels is in a positive
correlation with the diameter of the vessels (Calkin et al.
1986). Thus, it is probable that the differences of L
between the species and experimental sets were caused
partially by the different hydraulic conductance of their
xylem.

We found that L in the tree shoots changed
significantly during only a few days of mild water stress
or starvation in darkness. Cavitation in the xylem vessels
(Sperry et al. 1994, Zwienieckin and Holbrook 1998,
Magnani et al. 2000) can be one important reason for the
decrease of L in water-stressed plants and at the end of
the growing season. But cavitation is unprobable in the
well-watered trees in darkness and there are no data about
other such rapid changes in the xylem vessels during such
a short time. It is known that several detrimental changes
take place in the other tissues of leaves during starvation
(Neumann ef al. 1989, Pell and Dann 1991). Thus, it is
possible that the decrease of L was caused by the changes
of the parenchymal tissues in leaves. Consequently, it was
probable that hydraulic conductance in leaf parenchymal
tissues affected the values of shoot hydraulic conductance
in trees in some cases.

What may be the mechanism of change of hydraulic
conductance in the mesophyll in darkness? There are no
data about such rapid changes of anatomy in the
parenchymal tissues of full-grown leaves, but several
changes can take place in physiology. Changes in
hydraulic conductance in leaves accompany variations in
apoplastic pH (Sober and Aasamaa 1998). The
polysacharide cell wall is known to be a sparse structure,
with large holes between chains of the polymers (Brett
and Waldron 1996). In light of the present knowledge of
cell wall physiology, it is unprobable that rapid changes
in water permeability of such a sparse, well water-
permeable structure take place. Variations in apoplastic
pH have a rapid influence on the structures of the
plasmalemma (Michelet and Boutry 1996). The
revolutionary discoveries of the last decade have shown
that rapid changes in hydraulic conductance in the
symplast can be induced by changing the conductance of
aquaporines - proteins, that form channels for water in
plasmalemma and tonoplast (Fray et al. 1994, Maggio
and Joly 1995, Steudle and Henzler 1995, Steudle and
Frensch 1996, Maurel 1997, Schiitz and Tyerman 1997,
Steudle 1997, Eckert ez al. 1999). The functioning of the
water channels needs energy (Johansson er al. 1998,
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Tyerman et al. 1999). Therefore, the reason for a
decrease in L may be the lack of energy to keep
aquaporins in working order in the starving plants.

Thus, it is probable that the rapid changes in shoot
hydraulic conductance were caused by changes in the
symplasts of the leaf mesophyll during light deprivation.
Therefore, the cell-to-cell pathway may be important in
the leaves of deciduous trees.

We found that the relative decrease of L during
darkness was similar in the different species. If the
hydraulic conductance of symplast was close to zero after
six days in darkness (about 50 % of control) reflects the
hydraulic conductance in the leaf apoplast. It can be
concluded that the proportion of symplastic and
apoplastic components of transpirational flow is about 1:1
in the non-stressed leaves and this proportion is not very
different in the tree species.

The positive correlation between L and the stomatal
characteristics g and s; and the negative correlation
between L and sy occurred in most cases. One reason for
the correlation between L and s; may be that the water
flows more rapidly in the shoots which have a higher L
and the leaf water potential rises also more rapidly, and
therefore the stomatal opening is more rapid. One of the
reasons for the negative correlation between L and s4 may
be similar: in the shoots which have higher L, the water
flows to the stomatal region more rapidly and the water
potential of the epidermis is lowering at a lower rate. For
this reason, the stomatal closure proceed at a lower rate.

In addition, the correlation between L and the stomatal
characteristics may be caused by some other
physiological mechanisms. The abscisic acid (ABA)
content increases in leaves when a water deficit arises in
the soil and/or the leaf water potential decreases (Simpson
1981, Mansfield and Atkinson 1990, Jarvis and Davies
1997, Wilkinson and Davies 1997, Niinemets ef al.
1999). The ABA content also increases in leaves in the
course of senescence during the growing season (Lauriére
1983, Nooden 1988, Pell and Dann 1991, Smart 1994,
Wingler et al. 1998). The decrease in stomatal
conductance is induced by the addition of ABA, even for
a well-watered leaf (Cousson 1999, Leymarie et al.
1999). ABA is responsible for changing the activity of
membrane channels (Owen 1988, Hahn 1996, Du et al.
1997, Roberts 1998, Barkla et al. 1999, Blatt 1999,
Cousson 1999, Frank ef al. 2000, Li et al. 2000). The
addition of ABA induces increase of water permeability
of roots (Cram and Pitman 1972, Tardieu and Davies
1993), it is possible, that ABA rises the water
permeability of membranes in roots (Pitman and Wellfare
1978). But many effects of ABA are contrary in leaves
and roots (Hsiao and Jing 1987, Saab et al. 1990,
Hetherington and Quatrano 1991, Jackson 1991, Spollen
et al. 1993). Therefore, we hypothesize that probably L,
20, and s; are low and sq4 is high in the shoots
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characterized with a high content of ABA.

The trees kept in darkness for several days had very
low values of all the measured parameters. The reactions
for changing and maintaining stomatal conductance in
leaves are energy-consuming (MacRobbie 1981, Hedrich
and Schroeder 1989, Armstrong and Blatt 1995).
Probably sq and s; fell in the leaves because there was not
enough energy and also the shortage of sugars as
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