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Abstract

Iron deficiency induced decrease in the rate of whole electron transport chain in chloroplasts of pea (Pisum sativum L.).
Such reduction was mainly due to the loss of photosystem (PS) 2 activity. The same result was obtained when the ratio
of variable to maximum chlorophyll fluorescence (F,/F,,) was evaluated. The loss in PS 2 activity was primarily due to a
loss of 33, 23 and 17 kDa polypeptides. In contrast, iron deficiency induced the synthesis of 28 and 29 kDa

polypeptides.
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Iron deficiency is a common abiotic stress for many
photosynthetic organisms on earth (Terry and Abadia
1986, Straus 1994) from crops in arid and semi-arid
regions (Mortvedt 1991) to phytoplankton in the sea
(Behrenfeld er al. 1996). Iron deficiency markedly
inhibited photosynthesis (Nedunchezhian et al. 1997,
Morales et al. 2000). Plants grown under iron deficiency
showed visible symptoms on their youngest leaves, which
became vyellow (chlorotic) due to a decrease in
chiorophyll (Chl) content and had lower net photo-
synthetic rate (Terry 1980, Misra and Srivastava 1994,
Abadia et al. 2000). Lack of iron reduced the formation
of thylakoid membranes in chloroplasts. The number of
granal and stromal lamellae per chloroplast was reduced,
e.g., in sugar beet (Spiller and Terry 1980, Platt-Aloia es
al. 1983), maize (Stocking 1975), and barley (Pushnik
and Miller 1982). This reduction was accompanied by a
reduction in the number of thylakoids per granum (Spiller
and Terry 1980), decrease in the photosynthetic electron
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transport rate (Alcaraz et al. 1985) and in the content of
light-harvesting pigments (Terry 1980, Morales et al.
1990).

Spiller and Terry (1980) conclude that iron defciency
in sugar beet leaves diminishes photochemical capacity
reducing the number of photosystem (PS) 2 units per unit
of leaf area, having no effect on the efficiency of
photosynthetic energy conversion (Terry 1980).
However, the efficiency of photosynthetic energy
conversion in a response to iron deficiency decreased in
other experiments with in sugar beet (Morales et al. 1990,
1998) and in cyanobacteria (Riethman and Sherman
1988). The explanation for these apparently conflicting
results is that iron deficiency affects the efficiency of
photosynthetic energy conversion only below a Chl
threshold value (Morales et al. 1998, 2000). In the
presented paper we have investigated the effect of iron
deficiency induced changes on the photosynthetic
activities and chloroplast proteins pattern in pea leaves.

Abbreviations: BQ - p-benzoquinone; Chl - chlorophyll; cyt - cytochrome; DCPIP - 2,6-dicholrophenol indophenol; DPC - diphenyl
carbazide; F, - minimal fluorescence; F, - maximum fluorescence; LHCP - light-harvesting chlorophyll protein; MV - methyl
viologen; PPFD - photosynthetic photon flux density; PQ - plastoquinone; PS - photosystem; SDS-PAGE - sodium dodecylsulphate -

polyacylamide gel electrophoresis.
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Pea (Pisum sativum L.) seeds were germinated and
grown in vermiculite for two weeks. Seedlings were
grown for 10 d in a 3/8 Hoagland nutrient solution with
or without 22.4 mM Fe. Young, rapidly expanding leaves
were harvested 10 d later. Plants were grown in a growth
chamber under irradiance of 350 umol(PAR) m? s”, 16-h
photoperiod, temperature of 25 °C, and relative humidity of
80 %.

Chloroplasts were isolated from the 2" and 3" leaves
from the top (chlorotic in the iron deficient plants) by
grinding the leaves in a medium containing 330 mM
sucrose, 10 mM MgCl,, 5 mM NaCl and 20 mM Tris-
HCI, pH 7.8. The slurry was filtered through eight-fold
muslin and centrifuged at 7 000 g for 5 min, The pellet
was washed once and resuspended in the same medium.
Whole chain electron transport and partial reactions of
photosynthetic electron transport mediated by PS 2 and
PS 1 were estimated polarographically in isolated
chloroplasts. PS 1 activity (DCPIPH, > MV) was
measured as O, consumption whereas the whole chain
(H,O 2 MV) and PS 2 (H,O > BQ) activities were
measured as O, evolution (Nedunchezhian ez al. 1997) at
27 °C using a Clark-type electrode (Hansatech, King's
Lynn, UK) fitted with a circulating water jacket. Actinic
light from a slide projector placed on the side of the
electrode chamber was filtered through 9.5 cm of water.
The irradiance was 1100 pmol(PAR) m™ s at the surface
of water bath cell. The rate of DCPIP photoreduction was
determined following the decrease in absorbance at
590 nm using a Hitachi 557 (Tokyo, Japan)
spectrophotometer (Nedunchezhian and Kulandaivelu
1991). As a exogenous electron donor for PS 2, 1 mM
DPC was added.

Chl and protein contents were estimated according to
Lichtenthaler (1987) and Lowry et al. (1951),
respectively. SDS-PAGE was performed on gel system
described by Laemmli (1970) using polyacrylamide
gradient of 8 - 16 % gel. The gel bands were quantified
by densitometry using Bio-Image apparatus (Millipore,
Michigan, USA).

After 10 d of growth, leaves of control showed F,/F,
ratio 0.830 will indicate high photochemical efficiency of
PS 2. In contrast, iron deficient leaves showed the lower
F,/F, ratio (Table 1). Similar results were also found in
iron deficient pear and peach (Nedunchezhian ef al. 1997,
Morales et al. 2000). However, when photosynthetic
electron transport was studied using isolated thylakoids
from control and iron deficient leaves, photosynthetic
electron transport from DCPIPH, to MV (PSl) was
reduced by about 27 % in iron deficient leaves. The PS 2
mediated electron transport from H,O to DCPIP and from
H,O to BQ was reduced by about 61 and 59 %,
respectively (Table 2). A similar trend was also noticed
for whole electron transport chain (H,O = MV) activity
(Table 2). PS 1 activity was less sensitive to iron
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deficiency than PS 2 activity as previously found Terry
(1980), Sharma and Sanwal (1992), Foder et al. (1995),
and Nedunchezhian et al. (1997).

Table 1. Changes in the parameters of chlorophyll fluorescence
(Fo - minimum fluorescence, F, - variable fluorescence, and
F/Fy - the ratio of variable to maximum fluorescence) in leaves
from iron sufficient and iron deficient plants. F, was measured
by switching on the modulated light 0.6 kHz; PPFD was less
than 0.1 pmol m? s at the leaf surface. F,, was measured at
20 kHz with a s pulse of 6000 umol m? s of white light.

Fe sufficient Fe deficient
Fo 2.00 £ 0.04 2.20 £ 0.05
F, 10.00 £ 0.13 2.40 +0.06
Fy/Fm 0.83 +0.032 0.52 £ 0.005

Table 2. Changes in the whole electron transport chain, PS 1
and PS 2 activities in iron sufficient and iron deficient
chloroplasts. Figures in parentheses are % of inhibition with
reference to the iron sufficient plants. Mean + SE, n= 3.

Fe sufficient  Fe deficient

H,0 &> MV 1533+ 8.1  5441+3.0(65)
[mmol(0,) kg '(Chl) s™']

H,0 > BQ 1743+ 7.8  722+62(59)
[mmol(0,) kg '(Chl) s

H,0 > DCPIP 2070+ 82  81.1+7.0(61)
[mmol(DCPIP) kg'(Chl) ']

DCPIP - DPC 2740+ 73 191.949.0 (30)
[mmol(DCPIP) kg '(Chl) s

DCPIPH, > MV 3160+ 160 2293 £9.9 (27)

[mmol(O,) kg '(Chl) s

DCPIP collects electron from PQ (Lien and Bannister
1971, Ouitrakul and [zawa 1973) but benzoquinone at the
reducing side of PQ (Lien and Bannister 1971). As the
PS 2 activity loss due to iron deficiency was similar in
the systems H,O = BQ and H,O - DCPIP, the site of
iron deficiency action must be prior to PQ in the electron
transport. Diphenyl carbazide (DPC), as an artificial
electron donor for PS 2 donates electrons close to the PS
2 reaction centre (Packham et al. 1982). Thus, the
inhibition of PS 2 activity in iron deficient plants could
be ascribed to an alteration of the water splitting
complex, since the addition of DPC restored significantly
its activity. Similar results was found by Nedunchezhian
et al. (1997) in iron deficient peach leaves. According
Sharma and Sanwal (1992) cyt f is the component that
shows a maximum decrease at iron deficiency and thus
the electron flow which through cyt 1 limits the rate of
photosynthesis.

Supporting evidence for the damage of PS 2 activity
was obtained from the chloroplasts polypeptide analysis:



a comparison of iron deficient chloroplasts with those of
the control showed specific loss of 33, 26 - 24, 23, 17 and
10 kDa polypeptides (Table 3). The three extrinsic
proteins of 33, 23 and 17 kDa associated with the lumenal
surface of the thylakoid membranes are required for
optimal functioning of the oxygen evolving machinery.

Table 3. Relative area [%)] after integration of the densitometric
scans of protein gels of pea chloroplasts isolated from iron
sufficient and iron deficient plants, Each value is the mean of
3 measurements made in different gels; * - significant changes.

Protein [kDa] Fe sufficient Fe deficient
47 30.0+0.9 304+0.6

43 20.3+04 202 +0.6

33 23.7+14 10.6 + 0.7*
29 14.0£1.0 16.7+ 1.5*
28 56+0.5 8.6 +£0.3*%
26-24 89.0+5.5 55.0 £ 4.5%
23 174£0.8 104 +1.1

17 20515 142+ 1.1*
10 30,012 12,5+ 0.6*

Loss of these polypeptides results in a simultaneous
loss of oxygen evolution (Murata er al. 1984, Millner
et al. 1987, Enami et al. 1994). Solubilization of the
proteins is associated with partial or total inactivation of
O; evolution. In particular removal of the 33 kDa protein
from PS 2 membrane preparations by treatments with
CaCl,. NaCl treatment (Enami er al. 1994) results in
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