Biodegradation of trichloroacetic acid in Norway spruce/soil system

S.T. FORCZEK, M. MATUCHA, H. UHLÍŘOVÁ, J. ALBRECHTOVÁ, K. FUKSOVÁ and H.P. SCHRÖDER

Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-14220 Prague, Czech Republic
Forestry and Game Management Research Institute, CZ-15604 Prague, Czech Republic
Faculty of Science, Charles University, CZ-12844 Prague, Czech Republic
First Faculty of Medicine, Charles University, CZ-12108 Prague, Czech Republic
Institute of Soil Ecology-GSF, D-85764 Neuherberg, Germany

Abstract

Trichloroacetic acid (TCA) belongs to secondary atmospheric pollutants affecting the forest health. Distribution of $[1,2,18]C\text{TCA}$-residues and TCA biodegradation were investigated in 4-year-old nursery-grown trees of Norway spruce ($Picea abies$ (L.) Karst.) in the whole plant/soil system. Radioactivity was monitored in needles, wood, roots and soil as well as in the air. During two weeks of exposure TCA was continuously degraded, especially in the soil. Estimates of radioactivity balance showed loss of radioactivity into the atmosphere in the form of 13CO_2, unincorporated $[1,2,18]C\text{TCA}$, chloroform, carbon monoxide and methane were not detected at all. TCA degradation to CO_2 was indicated also in the spruce needles. Moreover, it was found that soil litter contained $[1,2,18]C\text{TCA}$ unavailable to microorganisms.

Additional key words: chloroform in forest soil, 13C-labelling, dechlorination, $Picea abies$, plant/soil system, radioindicator techniques, TCA distribution in spruce.

The action of trichloroacetic acid (TCA) on plants has been studied for several decades. It has been first used as a herbicide, but later it was found as a ubiquitous pollutant (Frank 1984). The origin of TCA in the environment has been proposed to be the atmospheric photooxidation of C$_2$-chlorocarbons emitted from anthropogenic sources and the effect of TCA has been also connected with forest decline (Frank et al. 1990, 1994, Schröder and Plümacher 1998). The natural formation of TCA and short-chain halocarbons in soil has been recently reported (DeJong and Field 1997, Hoekstra et al. 1998, 1999a, 1999b, Keppler et al. 2000) thus elucidating the TCA found in nature. In addition, there has been a significant natural background level of TCA in precipitation over the past 200 years (Sydow et al. 2000). Several genera of higher fungi have a capacity for biosynthesis of organohalogens, but they also can cause their reductive dechlorination (DeJong and Field 1997). The anaerobic microbial TCA biodegradation in digester sludge has been demonstrated by Chen et al. (1999). Uchiyama et al. (1992) reported the microbial conversion of trichloroethylene to glyoxylic acid, dichloroacetic acid (DCA), TCA, CO and CO$_2$. Microbial degradation of TCA to CO was supposed also by Weightman et al. (1992). Decarboxylation of TCA leading to chloroform in soil was supposed by Frank (1988), Plümacher et al. (1993), Frank et al. (1990), Uhlířová et al. (1996), and Hasselmann et al. (2000). Short-chain chlorocarbons and chloroacetic acids are thus important minor contaminants (and because of their natural origin also products) of the environment, which undergo complex reactions and assume dynamic equilibrium within the system.

Received 17 July 2000, accepted 11 December 2000.

Acknowledgements: This work was supported by grant No. 522/99/1465 of the Grant Agency of the Czech Republic. The support by GSF - Institute of Soil Ecology, Neuherberg, Germany, is gratefully acknowledged. We thank Dr. A. Riedel (ICEM Prague) for radioactivity determinations in needles, wood and soil. Part of the work was presented as a poster at the "Seventh International Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds", 18 - 22 June, 2000, Dresden, Germany.

* Corresponding author; fax: (+420) 2 4752150, e-mail: matucha@biomed.cas.cz
Previous studies on TCA effects on the conifer/soil-system did not deal with the biodegrading effect of the soil (Sutinen et al. 1995, 1997). It is well known from the literature that TCA is biodegraded to CO₂ by soil microorganisms (Lignell et al. 1984, Słub and Eben 1977). We have previously examined the uptake, translocation and effects of TCA on Norway spruce using [1,2-¹⁴C]TCA of high specific activity (3.7 GBq mmol⁻¹ = 22 Bq ng⁻¹ TCA) enabling thus to follow TCA appearing in nature, e.g. 5 - 200 ng(TCA) g⁻¹(needles). It was found that translocation of TCA occurs from atmosphere into soil by precipitation water, followed by uptake by roots and then movement into needles via transpiration stream, where TCA at concentrations higher than 60 ng g⁻¹ destroys the photosynthetic apparatus (Uhlířová et al. 1996, Matuška et al. 2001). Since our radioactivity balance studies could not fully explain the observed losses of [1,2-¹⁴C]TCA-derived radioactivity and since the role of the soil and of the plant in the TCA metabolism of the studied plant/soil system was not fully understood (Forczek et al. 2000, Matuška et al. 2000, 2001), the present study was carried out to address these questions.

Four-year-old potted trees of Norway spruce [Picea abies (L.) Karst.] grown at the nursery of the Forestry and Game Management Research Institute were used. The soil collected from the pots, after removal of the spruce trees, larger roots and pebbles, was carefully homogenized (all microbial and fungal components remained intact). The method of Bubner et al. (1992) was used to obtain [1,2-¹⁴C]TCA with a specific activity of 3.7 GBq mmol⁻¹.

After chlorination of the [1,2-¹⁴C]acetate the radioactive mixture was purified by HPLC on a 250 × 8 mm polymer IEX column (8 μm) in H⁺ form (Waterex, Prague, Czech Republic) yielding a radiochemical purity over 98 %. The TLC method used was similar to that of Süss and Eben (1977), using cellulose F (Merck, Darmstadt, Germany) and n-butanol : NH₄OH : H₂O (85:1:14) for development. The [1,2-¹⁴C]TCA preparation was diluted to 55.5 kBq cm⁻³ and adjusted to pH 5.0.

Laboratory experiments were conducted in a growth chamber (of own provenance) at temperature of 21 ± 3 °C and 10-h photoperiod (irradiance of 80 μmol m⁻² s⁻¹; 40 W Nd Phytolamp, Osram, Budapest, Hungary). In the first radioactivity balance study consisted of a polyethylene foil fixed hermetically to a metal frame and to the tubes (42 dm³). A cylindrical laboratory vessel (12.5 dm³) was later used as experimental chamber. Radioactive determinations of the ambient air in the chamber were made by passing a continuous air flow (40 cm³ min⁻¹) through the chamber and 2 to 4 absorbers filled with 6 cm³ 1 M KOH (Stork et al. 1997). A combustion furnace (Model 325, Packard Instr., Downers Grove, USA) was inserted into the system for detecting oxidizable gaseous products like CO and methane. To detect chloroform, the first absorber was filled with chilled (-20 °C) non-radioactive chloroform. The content of the absorbers was changed and taken for measurements (after addition of 5 cm³ of LKB Optiphase ‘HiSafe’ 3 (Loughborough, England) scintillation cocktail to 1 cm³ absorption solution) daily. To distinguish soil- and spruce-derived radioactivity, the pot of the spruce was sealed with polyethylene foil.

[1,2-¹⁴C]TCA of the given specific radioactivity, radioactive concentration and radiochemical purity was applied to the surface of the soil (30 cm² to 100 g soil placed in a 500 cm³ Erlenmeyer flask). The soil was kept humid by moistening the flow-through air.

In order to determine the distribution of [1,2-¹⁴C]TCA-residues in spruce needles without distortion of the results by assimilation of the released ¹⁴CO₂, a field experiment was carried out with a spruce tree. After application of 1.86 MBq (in 30 cm²) carrier-free [1,2-¹⁴C]TCA solution into the soil, the potted spruce was regularly irrigated, and after two-week long exposure in September needle samples were taken.

A sample oxidizer Zinsser Analytic, model OX-500 (Frankfurt a. M., Germany) at the Institute of Clinical and Experimental Medicine, Prague, and a liquid scintillation spectrometer Beckman LS 6500 (Fullerton, USA) were used for radioactivity determinations.

In the experiment with a potted spruce in the large chamber, only 22.44 % of the applied radioactivity was recovered (in the soil 17.0 %, in spruce 2.0 %, and in the air as CO₂ 3.4 %) (Table 1), and therefore we were obliged to look for possible losses. At first, the possibility of TCA-degradation to carbon monoxide (Uchiyama et al. 1992, Weightman et al. 1992) or to methane was examined in the whole plant/soil system using a combustion train inserted after the CO₂ absorbers. No formation of CO or methane was observed, i.e. less than 1 % rel. as follows from radioactivity measurements (sample background 2.0 Bq). Also [¹⁴C]chloroform was not detected in the air or soil (by extraction with CHCl₃ at the end of the experiment, conducted in the small chamber), which has been assumed to be formed (Frank 1988, Frank et al. 1990).

<table>
<thead>
<tr>
<th>Mass [g]</th>
<th>Radioactivity [Bq]</th>
<th>Specific radioactivity [Bq g⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td>56737</td>
<td></td>
</tr>
<tr>
<td>soil</td>
<td>1224</td>
<td>282826</td>
</tr>
<tr>
<td>roots</td>
<td>45</td>
<td>12641</td>
</tr>
<tr>
<td>stem</td>
<td>29</td>
<td>3157</td>
</tr>
<tr>
<td>branches</td>
<td>12</td>
<td>3402</td>
</tr>
<tr>
<td>needles</td>
<td>33</td>
<td>14625</td>
</tr>
</tbody>
</table>
Plümacher et al. (1993, Uhlířová et al. 1995). This is in accordance with the finding of Hoekstra et al. (1999b) showing that TCA and chloroform come from humic acid. The investigation of Haselmann et al. (2000), however, has shown slight formation of chloroform from TCA in forest soil, which also was not confirmed in our study.

Table 2. Distribution of [1,2-14C]TCA residues in the spruce foliage in field experiment. Distribution of 11.64 kBq [1,2-14C]TCA derived radioactivity in spruce needles after two-week exposure of spruce seedling to 1.86 MBq carrier-free [1,2-14C]TCA (*relative radioactivity concentration in needles, C - current year needles, C+1 - one-year old needles, C+2 - two-year old needles).

<table>
<thead>
<tr>
<th></th>
<th>Mass [g]</th>
<th>Radioactivity [Bq]</th>
<th>Specific radioactivity [Bq g(^{-1})]</th>
<th>[%]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.64</td>
<td>4220</td>
<td>1160</td>
<td>100.0</td>
</tr>
<tr>
<td>C+1</td>
<td>7.54</td>
<td>6580</td>
<td>873</td>
<td>75.3</td>
</tr>
<tr>
<td>C+2</td>
<td>1.17</td>
<td>840</td>
<td>722</td>
<td>62.2</td>
</tr>
<tr>
<td>1(^{st}) whorl</td>
<td>1.53</td>
<td>1580</td>
<td>1033</td>
<td>100.0</td>
</tr>
<tr>
<td>2(^{nd}) whorl</td>
<td>5.25</td>
<td>5000</td>
<td>952</td>
<td>92.2</td>
</tr>
<tr>
<td>3(^{rd}) whorl</td>
<td>5.57</td>
<td>5070</td>
<td>911</td>
<td>88.2</td>
</tr>
</tbody>
</table>

The losses of [1,2-14C]TCA-derived radioactivity from the plant/soil system (Table 1) may be also explained by the soil homogenization method, from which the most radioactive pieces of bark, branches and roots (coming from litter), as well as of compost and pebbles, were excluded. This radioactivity was observed to be, in most cases, substantially higher than that of the homogenized soil. The TCA in these fragments was not available for immediate microbial degradation (and surely also was not available in the soil pores). Our preliminary experiments showed that radioactivity of 14CO\(_2\) adsorbed in soil was minimal (about 1% of total released 14CO\(_2\)). After recalculating the radioactivity balance of the whole plant/soil-system was very close to 100% even with carrier-free TCA (which was attained first in the experiment with non-homogenized soil using higher isotopic dilution).

The part of 14CO\(_2\) released by the spruce foliage was low but evident. From the distribution of TCA-derived radioactivity in various spruce tree parts (Table 2) is obvious that the highest radioactivity was clearly found in the current-year needles of the first whorl. Lower levels were detected in older needles and whorls.

The results of biodegradation experiment in soil using carrier-free TCA (the lowest curve in Fig 1) demonstrated a high rate of biodegradation. To compare it with earlier published results (Lignell et al. 1984, Stib and Eben 1977) the same amount of radioactivity was used but 3 and 21 times isotopically diluted with non-radioactive TCA. The curves obtained with these dilutions demonstrate strong microbial activity of the soil and dependence of the TCA half-life in soil on its concentration (Fig. 1).

Fig. 1. Microbial degradation of [1,2-14C]TCA in soil: a sample of 100 g humus soil substrate from forest nursery was treated with 830 kBq of carrier-free, 3 and 21 times isotopically diluted [1,2-14C]TCA. Its biodegradation rate at room temperature was followed by absorption of released 14CO\(_2\) (expressed in stoichiometric amount of TCA).

In conclusion, it is possible to say that 1) the distribution of TCA in Norway spruce follows crown gradient being the highest in current year needles and the first whorl; 2) TCA degradation to CO\(_2\) occurs in two compartments of the studied plant/soil system: in spruce needles and in the soil; 3) the rate of the microbial degradation of TCA in soil is high and concentration dependent; 4) the hypothesis of chloroform, CO or methane formation from TCA in soil was not confirmed, and 5) radioactivity balance studies should consider the heterogeneous character of the soil, especially those conducted with carrier-free preparations, e.g. older wood fragments in the soil may contain TCA unavailable to microorganisms.

References

