

An antifungal protein purified from pearl millet seeds shows sequence homology to lipid transfer proteins

R. VELAZHAHAN*, R. RADHAJEYALAKSHMI, R. THANGAVELU and S. MUTHUKRISHNAN**

Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore-641 003, India

Department of Biochemistry, Kansas State University, Manhattan, KS 66506-3702, USA**

Abstract

In the course of a search for antifungal proteins from plant seeds, we observed inhibition of mycelial growth of *Trichoderma viride* with extracts of pearl millet. We have identified several proteins with antifungal properties in the seeds of pearl millet. One of these proteins has been purified to homogeneity and characterized. The purified protein has a molecular mass of 25 kDa. The N-terminal sequence of the protein (25 residues) shows homology to non-specific lipid transfer proteins (LTPs) of cotton, wheat and barley. The purified LTP inhibited mycelial growth of *T. viride* and the rice sheath blight fungus, *Rhizoctonia solani* *in vitro*.

Additional key words: pathogenesis-related protein, *Pennisetum glaucum*, *Rhizoctonia solani*, *Trichoderma viride*.

Introduction

Many antifungal proteins have been detected in plant seeds. These proteins include chitinases (Anuratha *et al.* 1992, Swegle *et al.* 1992), β -1,3-glucanases (Leah *et al.* 1991), thionins (Carmona *et al.* 1993), permatins (Roberts and Selitrennikoff 1990, Vigers *et al.* 1991), ribosome-inactivating proteins (Roberts and Selitrennikoff 1986, Leah *et al.* 1991), defensins (Terras *et al.* 1992b) and non-specific lipid transfer proteins (Terras *et al.* 1992a, Cammue *et al.* 1995). It is suggested that these antifungal proteins may protect the seeds from the invading soil-borne plant pathogens (Cammue *et al.* 1995). The enzymes, chitinases and glucanases have the potential to hydrolyze chitin and β -1,3 glucan respectively, which are major components of fungal cell walls leading to direct inhibition of the growth of several fungi *in vitro* (Schlumbaum *et al.* 1986, Leah *et al.* 1991). Permatins, which are members of the PR-5 family of pathogenesis-related (PR) proteins have been shown to inhibit the growth of several fungi by permeabilizing fungal membranes (Vigers *et al.* 1991). Thionins show antifungal activity by permeabilizing fungal cell membranes probably by direct interaction with membrane phospholipids (Broekaert *et al.* 1997). Defensins exhibit antifungal activity

via a receptor-mediated mechanism (Thevissen *et al.* 1996). Ribosome inactivating proteins (RIPs) inhibit protein synthesis in fungi by N-glycosidase action on specific purines of 28S rRNA (Girbes *et al.* 1996). Lipid transfer proteins (LTPs) of plants are small basic proteins with eight cysteines conserved in four disulfide bridges (Desormeaux *et al.* 1992). LTPs have been shown to inhibit the growth of fungi (Cammue *et al.* 1995) and bacteria (Molina *et al.* 1993, Segura *et al.* 1993) *in vitro*. A number of possible functions have been proposed for LTPs in plants including involvement in membrane biogenesis (Arondel *et al.* 1990), plant defense (Molina *et al.* 1993) and in transport of cutin monomers required for the biosynthesis of surface wax (Sterk *et al.* 1991). In the course of a search for antifungal proteins from plant seeds, we observed inhibition of mycelial growth of *Trichoderma viride* with extracts of pearl millet (Radhajeyalakshmi *et al.* 2001). In this paper we describe the purification of an antifungal protein from pearl millet (*Pennisetum glaucum* (L.) R. Br.) seeds. The N-terminal sequence of the purified protein shows homology to non-specific lipid transfer proteins of other plants.

Received 15 May 2000, accepted 7 November 2000.

Abbreviations: LTP- lipid transfer protein, PDA- potato dextrose agar.

* Author for correspondence; fax: (+91) 422 431672, e-mail: velazhahan@hotmail.com

Materials and methods

Seeds of pearl millet [*Pennisetum glaucum* (L.) R.Br.] cv. Co-3 obtained from Millet Breeding Station, Tamil Nadu Agricultural University, Coimbatore, India were ground and the powder was suspended in 200 cm³ 5 mM sodium phosphate, 10 mM NaCl, 1 mM EDTA, pH 7.0, and then homogenized in a blender at 4 °C for 5 min. The homogenate was filtered through cheese cloth before centrifugation at 8 500 g for 15 min at 4 °C. The pellet was discarded and the supernatant was fractionated by the addition of (NH₄)₂SO₄, and the fraction that precipitated at 60 % saturation was collected by centrifugation at 8 500 g for 10 min at 4 °C. The precipitate was resuspended in 5 mM sodium phosphate buffer, pH 7.0, and dialyzed against the same buffer overnight. The sample was then applied to a CM-Sephadex C-50 (Pharmacia, Uppsala, Sweden) column previously equilibrated with 50 mM sodium citrate-phosphate buffer (pH 5.2) and proteins bound to the column were eluted with a gradient of sodium chloride (0 - 200 mM) in the same buffer. The fractions were collected in 2 cm³ volumes using a Bio-Rad Automated Econo System (Bio-Rad, USA). Amounts of protein in all samples were determined by the Bradford assay (Bradford 1976) using bovine serum albumin as standard. The peak fractions were analyzed on 12 % sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) using a Mighty Small II electrophoresis unit (Hoefer, USA) according to the method of Laemmli (1970). Gels were run at 20 mA for 2 h and stained for protein with Coomassie Brilliant Blue R-250.

N-terminal sequencing: Purified protein was subjected to 12 % SDS-PAGE and then the protein was electroblotted on

to a PVDF membrane (*Bio-Rad*) using a *Trans-Blot SD* semi-dry transfer cell (*Bio-Rad*). The protein was subjected to automated Edman degradation using an *Applied Biosystems* sequencer at the Biotechnology Microchemical Core Facility, Kansas State University, Manhattan, KS, USA.

Fungal growth inhibition assay: All manipulations were carried out under sterile conditions. The protein fractions were sterilized using 0.2 µm filters (*Millipore*, USA) and used for assay of antifungal activity. A single sclerotium of *Rhizoctonia solani* was placed in the center of Petri dishes (90 mm in diameter) containing potato dextrose agar (PDA) medium (Vidhyasekaran *et al.* 1997). To allow initial mycelial growth, the plates were incubated for 24 h at room temperature (28 ± 2 °C). At this time, sterile filter paper discs (6 mm in diameter) were laid on the agar surface one cm away from periphery of the Petri dish and 0.02 cm³ of the supernatant fractions (10 µg of protein) were applied to the each disc. The plates were further incubated at room temperature and photographed 72 h after the onset of treatment (Mauch *et al.* 1988).

For testing antifungal activity against *Trichoderma viride*, a spore suspension of *Trichoderma viride* (5 × 10³ conidia cm⁻³) was prepared and mixed with 20 cm³ of molten PDA medium and poured onto the Petri dishes (90 mm in diameter). Sterile filter paper discs (6 mm in diameter) were laid on the agar surface one cm away from periphery of the Petri dish and 0.02 cm³ of the supernatant fractions (10 µg of protein) were applied to the each disc. After the plates were incubated at room temperature for 48 h, inhibition of *T. viride* growth was observed.

Results

An antifungal protein was purified from pearl millet seeds by ammonium sulphate fractionation and cation exchange

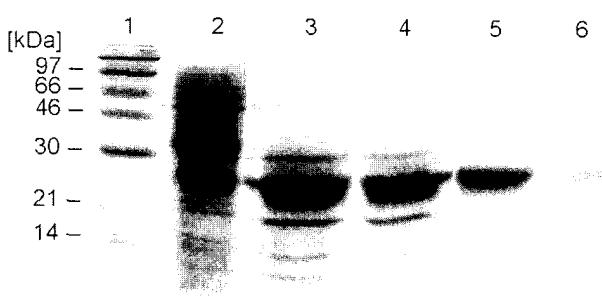


Fig. 1. Coomassie blue stained SDS-PAGE of pearl millet lipid transfer protein (LTP). Lane 1 - molecular mass marker, lane 2 - total protein from pearl millet seeds, lanes 3 to 6 - peak fractions of CM-Sephadex column chromatography.

chromatography. The cation exchange chromatography on CM-Sephadex resulted in separation of a single peak at 0.1 M NaCl. SDS-PAGE of the proteins appearing at 0.1 M NaCl showed a single band corresponding to the molecular mass of 25 kDa (Fig. 1). The N-terminal sequence of the protein (25 residues) was determined by Edman degradation. By comparing this N-terminal sequence with other sequences in the GenBank data base by Blast search, we found substantial homology (above 50 %) with non-specific lipid transfer proteins of cotton, wheat and barley (Table 1). The LTP of pearl millet has 60 % identity with a *Gossypium hirsutum* non-specific LTP, 54 % identity with a *Triticum aestivum* LTP, 57 % identity with *Hordeum vulgare* LTP, 44 % identity with a rice and sweet cherry LTPs. Antifungal action of the purified 25 kDa LTP was assessed by hyphal growth inhibition assay. The purified LTP inhibited mycelial growth of *T. viride* and *R. solani*, the rice sheath blight fungus *in vitro* at 10 µg concentration (Fig. 2).

Table 1. N-terminal amino acid sequence alignment of the lipid transfer protein (LTP) of pearl millet and other LTPs. The N-terminal amino acid sequence of pearl millet LTP was compared with the sequences of cotton LTP (GenBank accession No. O24418), wheat LTP (GenBank accession No. AAB32997), barley LTP (GenBank accession No. CAA65680), rice LTP (GenBank accession No. Q42976) and sweet cherry LTP (GenBank accession No. AAF26449).

Species	N-terminal amino acid sequence alignment																								
Pearl millet	A	V	S	T	P	E	V	D	A	N	L	L	P	C	V	G	Y	V	T	G	K	N	A	S	P
Cotton	A	I	S	Y	D	Q	V	K	S	S	L	L	P	C	V	G	Y	V	R	G	N	N	A	R	P
Wheat	A	L	S	C	G	Q	V	D	S	K	L	A	P	C	V	A	Y	V	T	G	R	A	X	S	
Barley	A	L	S	C	G	Q	V	D	S	K	L	A	P	C	V	A	Y	V	T	G	R				
Rice	A	V	S	C	G	D	V	T	S	S	I	A	P	C	L	S	Y	V	M	G	R	E	S	S	P
Sweet cherry	A	L	T	C	G	Q	V	S	S	N	L	A	P	C	I	A	Y	V	R	G	G	G	A	V	P

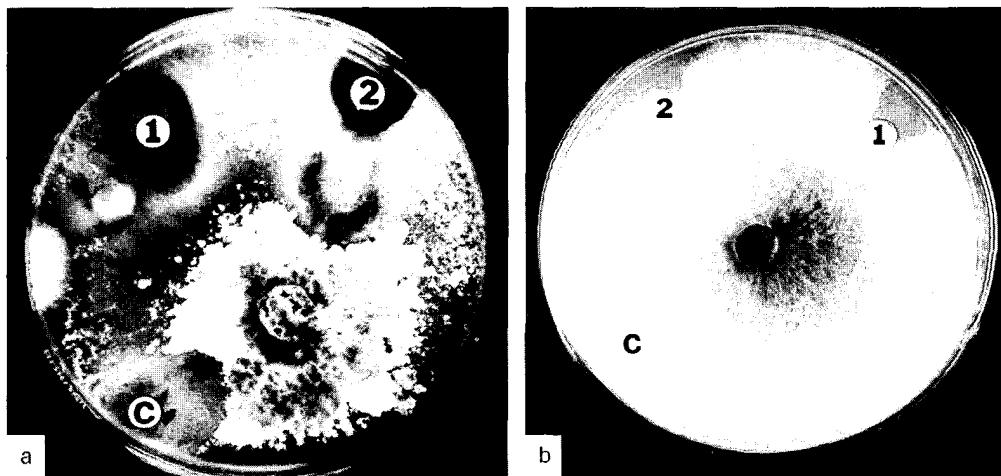


Fig. 2. Antifungal activity of the purified 25 kDa pearl millet lipid transfer protein (LTP) against *Trichoderma viride* (a) and *Rhizoctonia solani* (b). Water (C) or 10 µg of the purified pearl millet LTP (1 and 2) in 0.02 cm³ of 5 mM sodium phosphate buffer, pH 7.0, was applied to the filter paper discs.

Discussion

LTPs have been isolated or cloned from a number of monocotyledonous and dicotyledonous plants including *Arabidopsis* (Clark and Bohnert 1999), barley (Breu *et al.* 1989), bean (Choi *et al.* 1996), *Brassica* (Sohal *et al.* 1999), carrot (Sterk *et al.* 1991), cotton (Orford and Timmis 2000), maize (Tchang *et al.* 1988), onion (Cammue *et al.* 1995), pepper (Jung and Hwang 2000), rice (Vignols *et al.* 1994), Garcia-Garrido *et al.* 1998), sorghum (Pelese-Siebenbourg *et al.* 1994), spinach (Bernhard *et al.* 1991), tobacco (Fleming *et al.* 1992), tomato (Trevino and O'Connell 1998) and wheat (Neumann *et al.* 1994). It has been demonstrated that LTP genes are induced in barley leaves after challenge inoculation with both virulent and avirulent strains of *Erysiphe graminis* f. sp. *hordei* (Molina and Garcia-Olmedo 1993). Since LTPs are induced in plants in response to infection by plant pathogens, these proteins have been included as one of the family member (PR-14) of pathogenesis-related (PR) proteins (Van Loon and Van Strien 1999). LTPs are also induced by external

application of abscisic acid (Garcia-Garrido *et al.* 1998), NaCl (Garcia-Garrido *et al.* 1998) and by drought stress (Trevino and O'Connell 1998). Several LTPs have been purified from the seeds of barley (Davy *et al.* 1999), onion (Cammue *et al.* 1995), radish (Terras *et al.* 1992a) and rice (Poznanski *et al.* 1999). Terras *et al.* (1992a) purified a 9-kD LTP from radish seeds. Similarly, Davy *et al.* (1999) purified a 9.7 kDa LTP with four disulphide bridges from the barley grain. In these instances, the molecular mass of the protein ranges between 9 and 10 kDa. In the present study we purified a LTP from the pearl millet seeds to homogeneity. The purified LTP has a molecular mass of 25 kDa. The N-terminal sequence (25 amino acid residues) of the purified protein showed substantial homology (above 50 %) with LTPs of cotton, wheat and barley. To the best of our knowledge, this is the first report of purification of a LTP from pearl millet.

Not all LTPs show antifungal action against plant pathogens. For example, a LTP purified from onion seed

was highly inhibitory to a broad range of fungi, whereas a radish seed LTP was only moderately active and maize and wheat seed LTPs were inactive against most fungi tested (Cammue *et al.* 1995). In the present study the inhibitory action of pearl millet LTP on the mycelial growth of *R. solani* and *T. viride* has been demonstrated. This LTP may be potentially useful in enhancing the disease resistance of crop plants by genetic engineering. It has been demonstrated that transgenic tobacco and *Arabidopsis*

plants over-expressing LTP gene of barley (LTP2) have enhanced resistance to bacterial pathogen, *Pseudomonas syringae* pv. *tabaci* and *Pseudomonas syringae* pv. *tomato* respectively (Molina and Garcia-Olmedo 1997). Recently, it has been demonstrated that constitutive, high level expression of a gene encoding LTP (*Ace-AMP1*) from onion in transgenic geranium (*Pelargonium* sp) can enhance resistance to *Botrytis cinerea* infection (Bi *et al.* 1999).

References

Anuratha, C.S., Huang, J.K., Pingali, A., Muthukrishnan, S.: Isolation and characterization of a chitinase and its cDNA clone from rice. - *J. Plant Biochem. Biotechnol.* **1**: 5-10, 1992.

Arondel, V., Vergnolle, C., Tchang, F., Kader, J.C.: Bifunctional lipid-transfer: Fatty acid-binding proteins in plants. - *Mol. cell. Biochem.* **98**: 49-56, 1990.

Bernhard, W.R., Thoma, S., Botella, J., Somerville, C.R.: Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway. - *Plant Physiol.* **95**: 164-170, 1991.

Bi, Y.M., Cammue, B.P.A., Goodwin, P.H., Krishna Raj, S., Saxena, P.K.: Resistance to *Botrytis cinerea* in scented geranium transformed with a gene encoding the antimicrobial protein *Ace-AMP1*. - *Plant Cell Rep.* **18**: 835-840, 1999.

Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Breu, V., Guerbet, F., Kader, J.C., Kannangara, C., Svensson, B., von Wettstein-Knowles, P.: A 10 kD barley basic protein transfers phosphatidylcholine from liposomes to mitochondria. - *Carlsberg Res. Commun.* **54**: 1-84, 1989.

Broekaert, W.F., Cammue, B.P.A., De Bolle, M.F.C., Thevissen, K., De Samblanx, G.W., Osborn, R.W.: Antimicrobial peptides from plants. - *Crit. Rev. Plant Sci.* **16**: 297-323, 1997.

Cammue, B.P.A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I.J., Proost, P., Van Damme, J., Osborn, R.W., Guerbet, F., Kader, J.C., Broekaert, W.F.: A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. - *Plant Physiol.* **109**: 445-455, 1995.

Carmona, M.J., Hernandez-Lucas, C., San Martin, C., Gonzalez, P., Garcia-Olmedo, F.: Subcellular localization of type I thionins in the endosperm of wheat and barley. - *Protoplasma* **173**: 1-7, 1993.

Choi, D.W., Song, J.Y., Oh, M.H., Lee, J.S., Moon, J., Suh, S.W., Kim, S.G.: Isolation of a root-specific cDNA encoding a ns-LTP-like protein from the roots of bean (*Phaseolus vulgaris* L.) seedlings. - *Plant mol. Biol.* **30**: 1059-1066, 1996.

Clark, A.M., Bohnert, H.J.: Cell-specific expression of genes of the lipid transfer protein family from *Arabidopsis thaliana*. - *Plant Cell Physiol.* **40**: 69-76, 1999.

Davy, A., Svendsen, I., Bech, L., Simpson, D.J., Cameron-Mills, V.: LTP is not a cysteine endoprotease inhibitor in barley grains. - *J. Cereal Sci.* **30**: 237-244, 1999.

Desormeaux, A., Blochet, J.E., Pezolet, M., Marion, D.: Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the α -helix structure. - *Biochim. biophys. Acta* **112**: 137-152, 1992.

Fleming, A.J., Mandel, T., Hofman, S., Sterk, P., De Vries, S.C., Kuhlemeier, C.: Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. - *Plant J.* **2**: 855-862, 1992.

Garcia-Garrido, J.M., Menossi, M., Puigdomenech, P., Martinez-Izquierdo, J.A., Delseny, M.: Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. - *FEBS Lett.* **428**: 193-199, 1998.

Girbes, T., Ferreras, J.M., Iglesias, R., Citores, L., de Torre, C., Carabajales, M.L., Jimenez, P., de Benito, F.M., Munoz, R.: Recent advances in the uses and applications of ribosome-inactivating proteins from plants. - *Cell. mol. Biol.* **42**: 461-471, 1996.

Jung, H.W., Hwang, B.K.: Isolation, partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by *Xanthomonas campestris* pv. *vesicatoria*. - *Mol. Plant Microbe Interact.* **13**: 136-142, 2000.

Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - *Nature* **277**: 680-684, 1970.

Leah, R., Tommerup, H., Svendsen, I., Mundy, J.: Biochemical and molecular characterization of three barley seed proteins with antifungal properties. - *J. biol. Chem.* **266**: 1564-1573, 1991.

Mauch, F., Mauch-Mani, B., Boller, T.: Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β -1,3-glucanase. - *Plant Physiol.* **88**: 936-942, 1988.

Molina, A., Garcia-Olmedo, F.: Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. - *Plant J.* **4**: 983-991, 1993.

Molina, A., Garcia-Olmedo, F.: Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. - *Plant J.* **12**: 669-675, 1997.

Molina, A., Segura, A., Garcia-Olmedo, F.: Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. - *FEBS Lett.* **316**: 119-122, 1993.

Neumann, G.M., Condron, R., Thomas, I., Polya, G.M.: Purification and sequencing of a family of wheat lipid transfer protein homologues phosphorylated by plant calcium-dependent protein kinase. - *Biochim. biophys. Acta* **1209**: 183-190, 1994.

Orford, S.J., Timmis, J.N.: Expression of a lipid transfer protein gene family during cotton fibre development. - *Biochim. biophys. Acta* **1483**: 275-284, 2000.

Pelese-Siebenbourg, F., Caelles, C., Kader, J.C., Delseny, M., Puigdomenech, P.: A pair of genes coding for lipid-transfer proteins in *Sorghum vulgare*. - *Gene* **148**: 305-308, 1994.

Poznanski, J., Sodano, P., Suh, S.W., Lee, J. Y., Ptak, M., Vovelle, F.: Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins. - *Eur. J. Biochem.* **259**: 692-708, 1999.

Radhajeeyalakshmi, R., Meena, B., Thangavelu, R., Deborah, S.D., Vidhyasekaran, P., Velazhahan, R.: A 45-kDa chitinase purified from pearl millet (*Pennisetum glaucum* (L.) R. Br.) shows antifungal activity. - *J. Plant Dis. Protect.* **107**: in press, 2001.

Roberts, W.K., Selitrennikoff, C.P.: Isolation and partial characterization of two antifungal proteins from barley. - *Biochim. biophys. Acta* **880**: 161-170, 1986.

Roberts, W.K., Selitrennikoff, C.P.: Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. - *J. gen. Microbiol.* **136**: 1771-1778, 1990.

Schlumbaum, A., Mauch, F., Vogeli, U., Boller, T.: Plant chitinases are potent inhibitors of fungal growth. - *Nature* **324**: 365-367, 1986.

Segura, A., Moreno, M., Garcia-Olmedo, F.: Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of *Arabidopsis* and spinach. - *FEBS Lett.* **332**: 243-246, 1993.

Sohal, A.K., Pallas, J.A., Jenkins, G.I.: The promoter of a *Brassica napus* lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic *Arabidopsis*. - *Plant mol. Biol.* **41**: 75-87, 1999.

Sterk, P., Booij, H., Schellekens, G.A., Van Kammen, A., De Vries, S.C.: Cell-specific expression of the carrot EP2 lipid transfer protein gene. - *Plant Cell* **3**: 907-921, 1991.

Swegle, M., Kramer, K.J., Muthukrishnan, S.: Properties of barley seed chitinases and release of embryo-associated isoforms during early stages of imbibition. - *Plant Physiol.* **99**: 1009-1014, 1992.

Tchang, F., This, P., Stiefel, V., Arondel, V., Morsch, M.D., Pages, M., Puigdomenech, P., Grellet, F., Delseny, M., Bouillon, P., Huet, J.C., Guerbette, F., Beauvais-Cante, F., Duranton, H., Pernollet, J.C., Kader, J.C.: Phospholipid transfer protein: Full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins. - *J. biol. Chem.* **263**: 16849-16855, 1988.

Terras, F.R.G., Goderis, I.J., Van Leuven, F., Vanderleyden, J., Cammue, B.P.A., Broekaert, W.F.: *In vitro* antifungal activity of a radish (*Raphanus sativus* L.) seed protein homologous to nonspecific lipid transfer proteins. - *Plant Physiol.* **100**: 1055-1058, 1992a.

Terras, F.R.G., Schoofs, H., De Bolle, M.F.C., Van Leuven, F., Rees, S.B., Vanderleyden, J., Cammue, B.P.A., Broekaert, W.F.: Analysis of two novel classes of plant antifungal proteins from radish (*Raphanus sativus* L.) seeds. - *J. biol. Chem.* **267**: 15301-15309, 1992b.

Thevissen, K., Ghazi, A., De Samblanx, G.W., Brownlee, C., Osborn, R.W., Broekaert, W.F.: Fungal membrane responses induced by plant defensins and thionins. - *J. biol. Chem.* **271**: 15018-15025, 1996.

Trevino, M.B., O'Connell, M.A.: Three drought-responsive members of the nonspecific lipid-transfer protein gene family in *Lycopersicon pennellii* show different developmental patterns of expression. - *Plant Physiol.* **116**: 1461-1468, 1998.

Van Loon, L.C., Van Strien, E.A.: The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. - *Physiol. mol. Plant Pathol.* **55**: 85-97, 1999.

Vidhyasekaran, P., Ruby Ponmalar, T., Samiyappan, R., Velazhahan, R., Vimala, R., Ramanathan, A., Paranidharan, V., Muthukrishnan, S.: Host-specific toxin production by *Rhizoctonia solani*, the rice sheath blight pathogen. - *Phytopathology* **87**: 1258-1263, 1997.

Vigers, A.J., Roberts, W.K., Selitrennikoff, C.P.: A new family of plant antifungal proteins. - *Mol. Plant Microbe Interact.* **4**: 315-323, 1991.

Vignols, F., Lund, G., Pammi, S., Tremousaygue, D., Grellet, F., Kader, J.C., Puigdomenech, P., Delseny, M.: Characterization of a rice gene coding for a lipid transfer protein. - *Gene* **142**: 265-270, 1994.