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Abstract

Water transport was assessed in seedlings of the mangrove Avicennia germinans L. grown at 171 and 684 mol m™ NaCl.
Leaf specific conductivity declined by 25 % at high salinity. This was related to low specific conductivity, because
Huber values remained similar. Leaves of A. germinans featured low internal conductance to water transport. This was
lowered further under high salinity. Water transport constrains imposed by whole shoot and leaf blade at high salinity
were balanced by stomatal regulation of water loss, which possibly maintain stem water potentials above embolisms

levels.
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Mangrove species with higher water use efficiency,
derived from gas exchange analysis, seemed less efficient
in water transport at the shoot level (Sobrado 2000).
Indeed, stomatal responses to soil water availability may
be constrained by insufficient water transport (Jones and
Sutherland 1991). Despite the fact that the mangrove
A. germinans maintains a large leaf-soil water potential
gradient as soil salinity increases (Smith et al. 1989,
Suarez et al. 1998, Suarez and Sobrado 2000), stomatal
conductance decreases (Smith er al 1989, Sobrado
1999a,b). Relationship between whole shoot conductance
and leaf water loss control under salinity may have
important implications for canopy water relations
(Meinzer and Grantz 1990, Sperry et al. 1993, Saliendra
et al. 1995, Lu et al. 1996, Cochard et al. 1997). Thus, it
may be hypothesised that conservative water use
observed in 4. germinans as salinity increase could be
related to decreased plant water transport capacity.
Therefore, hydraulic and water relations properties were
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assessed in seedlings of this species grown at two
different salinities.

Seedlings of Avicennia germinans (L.) L. were
planted in pots with sand and a nutrient solution in a
glasshouse under natural sunlight and 12-h photoperiod.
Temperatures ranged from 25 to 35 °C during the day and
15 to 20 °C at night. NaCl was dissolved in 50 %
Hoagland solution to obtain 171 and 684 mol m>
concentration, and the plants were maintained under these
salinities for 6 months. At the end of experiment,
seedlings were transported to the laboratory early in the
morning kept in wet plastic bags to avoid dehydration
until all measurements were completed. Twenty terminal
shoots of similar diameters were chosen from 10 plants
for each salinity treatment. Shoots were attached to a
high-pressure flowmeter (HPFM, Dynamax Inc. Houston,
USA) to determine leaf and stem hydraulic conductances
(Tyree et al. 1993, 1995, 1999, Yang and Tyree 1994,
Cochard et al. 1997, Zotz et al. 1998, Sobrado 1998,

Abbreviations: A, - leaf area, A,, - wood cross section area, E - transpiration rates, g, - stomatal conductance, HPFM - high pressure
flowmeter, HV - Huber value, K, - leaf specific conductivity; K; - specific conductivity; Ry, - resistance of shoots bearing leaves;
R, - resistance of shoot without leaves, R, - leaf conductance, K, - whole shoot conductance, ‘¥, - leaf water potential, AY,, - water
potential drop from petiole to evaporative surface.
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2000). The HPFM is a device designed (Tyree et al.
1993) to perfuse water into the base of branches while
controlling the pressure (AP, MPa) and simultaneously
measuring flow (F, kg s™'). All hydraulic measurements
were made with distilled water filtered through a 0.1 pm
filtration membrane. Once shoots were connected to the
HPFM, leaves were infiltrated by perfusing water at a
pressure of 0.5 MPa for 30 min in order to assure zero
leaf water potential. Subsequently, F was measured at 4 s
intervals while P was changed at a constant rate of 3 to
5 kPa s”'. Measurements were made both in shoots with
leaves and after leaf removal in order to obtain the two
resistances: R., (with leaves) and R, (without leaves).
Whole shoot leaf specific hydraulic conductance (Kys)
was calculated as 1/(R,, x Ap) where A, = leaf area. The
following characteristics were also determined: shoot

length, diameter and leaf area. The leaf blade resistance
(Ry) was calculated as Ry, = R4y -~ R, and conductance
(Ky) per unit of leaf area as K,=1/(R, x Ay Specific
conductivity was computed as K, = /(R x Ay, where | =
segment length and A,, = cross section of wood, and leaf
specific conductivity entering the leaf as K; = I/(R., x Ay).
Huber values (HV) were also calculated for each sample
as cross section area of wood per unit of leaf blade area
(HV = AJ/Ay).

Predawn and midday water potentials (¥,) were
measured with a pressure chamber in the glasshouse.
Transpiration rates (E) and stomatal conductances (g;)
were measured with a portable gas exchange system
(LCA-2, ADC, Hoddesdon, England). AW,, was calculated
for each species by using the averages of E and K|
(AY,, = E/K).

Table 1. Leaf characteristics, water relations and hydraulic parameters measured in A. germinans grown at 171 and 684 mol m~ NaCl.
Values for each salinity are means + SE of 20 samples for leaf water content, stomatal conductance (g;), transpiration rates (E), Huber
value (HV), specific conductivity (Ky), leaf specific conductivity (K;), whole shoot leaf specific hydraulic conductance (K,,) and leaf
blade conductance (K,), and of 4 samples for water potential (‘¥,,) measurements. Statistical significance of differences between
different salinities are indicated by * (P £.0.05), ** (P <0.01) and *** (P <0.001).

171 mol(NaCl) m”

674 mol(NaC!) m”

Parameter

Water content per area [g m™] 274.00 £ 8.00
Water content per dry mass [gg™'] 2.73+ 0.06
Fresh to dry mass ratio [g g™'] 3.72% 0.06
Predawn ‘P, [MPa] -1.62+ 0.14
Midday ¥, [MPa] -2.85+ 0.02
g, [mmol m? s 253.00 £ 17.00
E [mmol m?2s™] 7.40+ 0.30
HV [x 10* m m?] 6.17+ 0.98
K [x 107 kg m" s' MPa™'] 14.94 + 2.89
K; [x 10° kg m' s MPa™) 859+ 139
Kus [x 10°% kg m™ s MPa'] 1526 0.20
Ky [x 10 kg m? s MPa™) 2,15+ 0.38

** 255.00%+ 3.00
* 220+ 0.02
* 320+ 0.02
*rx -3.53+ 0.07
*kx -4.67+ 0.04
*kk 148.00 + 14.00
** 5.10+ 0.30
ns 6.64+ 0.63
* 1042+ 226
* 632+ 1.03
* 1126+ 0.12
* 1.19+ 0.24

Shoots used for hydraulic measurements were
0.12 + 0.03 m long and 9.1 1.6 x 10 m? of transverse
area. In previous experiments, leaves of A. germinans
were succulent with large hypodermal and parenchyma
cells at moderate salinity, but leaf cells become smaller
and tightly packed at high salinity (Sobrado 1999b). At
171 mol m™ leaves also seemed more succulent than at
684 mol m™ NaCl. This was suggested by their
significantly higher water content per area, water content
to dry mass ratio, as well as fresh to dry mass ratio
(Table 1).

Changes in leaf water potentials (‘F,,) from predawn
to midday were similar at both salinities (Table 1).
However, midday stomatal conductance (g;) and
transpiration rate (E) were severely reduced at high
salinity. Decline in water loss as salinity increases is
related to the high water use efficiency found in
Avicennia species by measurements of gas exchange or
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carbon isotope composition (Ball and Farquhar 1984,
Clough and Sim 1989, Lin and Sternberg 1992, Medina
and Francisco 1997, Sobrado 1999 a,b).

Leaf specific conductivity (K,) declined significantly
at high salinity. This was related to lowered specific
conductivity (K), because Huber values (HV) remained
unchanged (Table 1). Thus, A./A, at high salinity is
similar to that at low salinity. However, xylem was
slightly less efficient and in consequence, water supply to
leaves is limited by both low soil W,, and by low
efficiency of the xylem. At both salinities, the parameters
were in the range reported for tropical trees (Patifio et al.
1995). Whole shoot hydraulic conductance (K,) was
26 % lower at high salinity. Leaves of A. germinans also
featured low internal conductance (Ky) to water transport.
This was lowered further under high salinity. Within the
leaf, resistance to water flow is mainly determined by
non-vascular pathway (Tyree and Cheung 1977). \¥,, drop



from petiole to evaporative surface (AW, = E/K; ) was
0.87 &+ 0.21 MPa at both salinities. Therefore, low K, and
E under salinity caused little change in AY,. Low
internal conductance to CO, has also been detected in
Avicennia marina leaves under high salinity (Sobrado and
Ball 1999, Ball and Sobrado 1999). Thus, leaf internal
conductance for water and CO, in Avicennia leaves
seems variable with salinity.

In conclusion, the ability of 4. germinans to vary
slightly in hydraulic capacity reveals the existence of
other possible adaptations to saline environments. In
mangrove forest, the selection pressure for mangroves to
be able use low amount of water in relation to carbon
gain seems high (Ball 1996). Indeed, mangrove species
show low water transport capacity and high water use
efficiency (Sobrado 2000). However, low hydraulic
capability may further limit water supply and gas
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