

Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid

H. NAYYAR and S.K. KAUSHAL*

Department of Botany, Panjab University, Chandigarh-160014, India

Department of Plant Physiology, H.P.K.V., Palampur-176062, India*

Abstract

The individual and interactive role of calcium and abscisic acid (ABA) in amelioration of water stress simulated by polyethylene glycol (PEG) 6000 was investigated in two contrasting wheat genotypes. PEG solution (osmotic potential -1.5 MPa) was applied to 10-d-old seedlings growing under controlled conditions and changes in photosynthetic rate, activities of ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase, water potential and stomatal conductance were observed in the presence of 0.1 mM ABA, 5 mM calcium chloride, 1 mM verapamil (Ca^{2+} channel blocker), and 1 mM fluridone (inhibitor of ABA biosynthesis). ABA and calcium chloride ameliorated the effects of water stress and the combination of the two was more effective. The two genotypes varied for their sensitivity to ABA and Ca^{2+} under stress. As was evident from application of their inhibitors, ABA caused more alleviation in C 306 (drought tolerant) while HD 2380 (drought susceptible) was more sensitive to Ca^{2+} .

Additional key words: fluridone, net photosynthetic rate, phosphoenolpyruvate carboxylase, ribulose-1,5-bisphosphate carboxylase, stomatal conductance, *Triticum aestivum*, verapamil.

Introduction

Plants acclimate in response to prevailing conditions by making non-heritable alterations at various levels of their organization. Water stress is frequently experienced in field grown plants and the responses to water stress have been characterized at physiological, molecular and genetic level (Bray 1997). Abscisic acid (ABA) and calcium figure as key participants in stress related mechanisms (Chandler and Robertson 1994, Sanders *et al.* 1999) and both are reported to accumulate under various kinds of stresses (Cowan *et al.* 1997). The interaction between the two has a pivotal role in mediation of stress induced stimulus-response coupling mechanisms (Cousson and Vavasseur 1998). Increase in ABA due to stress has been reported to elevate intracellular calcium, which has been suggested to act as a secondary messenger and transducer of stress signal

(Leung and Giraudat 1998). The participation of ABA and calcium in regulation of aquaporins has recently been indicated in xylem parenchyma cells (Netting 2000). Exogenous application of ABA and calcium induces stress tolerance (Singer *et al.* 1996, Ingram and Bartels 1996, Jiang and Huang 2001). The mechanism of action of calcium and ABA involve protein kinases in signal cascade (Leung and Giraudat 1998) and their functioning during stress requires to be explored. The contrasting wheat genotypes evoke different mechanisms of tolerance in response to water stress (Sairam *et al.* 1998).

Keeping in view the involvement of ABA and calcium in stress responses, an experiment was designed to investigate their role in mediation of carboxylation during water stress using two differentially sensitive wheat genotypes.

Received 3 May 2001, accepted 15 August 2001.

Abbreviations: ABA - abscisic acid; FL - fluridone; PEG - polyethylene glycol; PEPC - phosphoenolpyruvate carboxylase; RUBPC - ribulose-1,5-bisphosphate carboxylase; VP - verapamil.

Acknowledgement: We thank the Indian Council of Agricultural Research for providing financial assistance as research project.

E-mail: harshnayyar@hotmail.com

Materials and methods

Two wheat (*Triticum aestivum* L.) genotypes, C 306 (drought tolerant) and HD 2380 (drought susceptible) were used for investigation. Seeds of each genotype were surface sterilized with 0.1 % mercuric chloride for 2 min and thoroughly washed with sterilized distilled water. The seeds were germinated in autoclaved 10 cm glass Petri dishes lined with two layers of germination paper moistened with 3.5 cm³ of sterilized distilled water at alternating temperature of 23/20 °C in dark for 72 h. Thereafter light/dark cycle of 16/8h was maintained in growth chamber (SEW, New Delhi, India) having irradiance of 400 µmol m⁻² s⁻¹ near the surface of plants. After the formation of first leaf, water stress was imposed using polyethylene glycol-6000 solution of osmotic potential -1.5 MPa. In a preliminary experiment involving stress levels, -1.5 MPa was opted as it caused 50 % inhibition of seedling growth without any visible damage to the seedlings. The medium was also supplemented with calcium chloride (5 mM) or ABA (0.1 mM), either individually or in combination. Simultaneously, a calcium channel blocker, verapamil (VP, 1 mM) and ABA biosynthesis inhibitor, fluridone (FL, 1 mM) were also used separately or in combination. The concentrations selected for the present study were standardized by having a range of these and evaluated using membrane stability as indicator of stress injury to leaf tissues of seedlings growing under PEG-simulated water stress. The concentrations of ABA and CaCl₂ which minimized the membrane injury, measured as electrical conductivity and the concentrations of fluridone and verapamil which caused maximum membrane leakage under stress were chosen for the present study. Observations were taken on 2nd, 4th and 6th day. Net photosynthetic rate (P_N) and stomatal conductance (g_s) were measured in fully expanded leaves using infrared

gas analyser (CID, Washington, USA). Measurements were performed at 10:00 using an external light source to provide uniform irradiance of 1 200 µmol m⁻² s⁻¹ at ambient temperature of 26 ± 2 °C and CO₂ concentration of 350 ± 10 µmol mol⁻¹. Water potential of leaves was measured in pressure chamber apparatus (PMS, Corvallis, USA). The pressure was increased at the rate of 0.1 MPa s⁻¹.

Ribulose 1,5 bisphosphate carboxylase (RUBPC) was assayed as per Lilley and Walker (1974). The assay mixture contained 50 mM HEPES buffer (pH 7.8), 10 mM KCl, 1 mM EDTA, 15 mM MgCl₂, 5 mM ATP, 5 mM dithiothreitol, 0.2 mM NADH, 70 mM NaHCO₃, 5 mM phosphocreatine, 2 units each of glucose-6-phosphate dehydrogenase, ribulose-5-isomerase, phosphocreatine kinase, 3 PGA kinase and 0.2 cm³ of enzyme extract. Reaction was started by adding ribulose-5-phosphate and absorbance was read at 340 nm in a Shimadzu (Kyoto, Japan) UV-visible spectrophotometer. Phosphoenolpyruvate carboxylase (PEPC) was assayed according to Meyer *et al.* (1988). The sample was homogenized in 10 volumes of extraction medium containing 50 mg polyvinylpyrrolidone in 50 mM glycylglycine buffer, pH 7.4, with 10 mM of 2-mercaptoethanol. Samples were centrifuged at 65 000 g at 4 °C for 40 min. The samples were assayed in a mixture including 50 mM ACES, pH 7.0, 5 mM free Mg²⁺, 5 mM NaHCO₃, 160 µM NADH, 12 international units (IU) of malate dehydrogenase and 5.5 IU of lactate dehydrogenase. Enzyme activity was initiated after addition of 1 mM of phosphoenolpyruvate and calculated from oxidation of NADH as decrease in absorbance at 340 nm.

All the observations were replicated thrice and analysed statistically for standard error and analysis of variance using Microstat software.

Results

On 2nd day of PEG-induced stress, a reduction in P_N, RUBPC and PEPC activities, water potential (ψ_w) and stomatal conductance (g_s) was observed in both the genotypes from their pre-stress levels (Tables 1 - 5). C 306 had higher P_N, RUBPC and ψ_w than HD 2380, which showed higher PEPC and g_s. In the presence of ABA, CaCl₂, VP and FL, both the genotypes showed decline in these parameters. On 4th day, the control plants recorded decrease in these parameters that continued on 6th day too. ABA, CaCl₂ and their combination caused marked increase in P_N, RUBPC, and PEPC while ψ_w slightly decreased on 4th day and increased subsequently on 6th day. The g_s increased slightly on 4th day in treatments with ABA and CaCl₂ while a marked increase was noticed in treatment with their combination. On

6th day, P_N, enzyme activities, ψ_w, and g_s were higher in treatments with ABA and CaCl₂ as compared to control. The differences between their individual and combined application were significant on 6th day for P_N and PEPC. From the perusal of data, it appeared that the two genotypes reacted differently to the presence of ABA or calcium that was also evident from use of their inhibitors. On 6th day, the water stress amelioration was noticed to be more with ABA in C 306 while calcium was more effective in HD 2380 for all the parameters. It was further observed that HD 2380 showed higher reduction in the presence of Ca²⁺ inhibitor (VP) while C 306 was affected more with ABA inhibitor (FL). The combined application of VP and FL caused significant decrease in all the parameters as compared to ABA and CaCl₂.

Table 1. Photosynthetic rate [$\mu\text{mol (CO}_2\text{)} \text{ m}^{-2} \text{ s}^{-1}$] in tolerant (C 306) and susceptible (HD 2380) genotypes of wheat during PEG-6000 simulated water stress (-1.5 MPa) in the presence of ABA and CaCl_2 . Fluridone and verapamil were used as inhibitors of ABA and calcium, respectively (means \pm SE, $n = 3$). Pre-stress P_N : C 306 - 14.8; HD 2380 - 12.3.

Treatments	2 nd day C 306	4 th day C 306	6 th day C 306	2 nd day HD 2380	4 th day HD 2380	6 th day HD 2380
Control	8.6 \pm 0.12	6.4 \pm 0.09	6.4 \pm 0.13	5.2 \pm 0.11	5.4 \pm 0.11	3.2 \pm 0.11
ABA (0.1 mM)	6.6 \pm 0.09	5.8 \pm 0.11	9.1 \pm 0.10	7.2 \pm 0.14	11.1 \pm 0.13	8.4 \pm 0.14
CaCl_2 (1 mM)	6.1 \pm 0.08	4.1 \pm 0.14	8.2 \pm 0.12	8.5 \pm 0.16	9.4 \pm 0.11	9.2 \pm 0.14
CaCl_2 +ABA	5.2 \pm 0.11	3.6 \pm 0.11	8.9 \pm 0.12	8.8 \pm 0.12	13.8 \pm 0.12	10.4 \pm 0.16
ABA + verapamil (1 mM)	4.4 \pm 0.14	2.7 \pm 0.11	6.7 \pm 0.13	3.5 \pm 0.14	5.8 \pm 0.10	3.2 \pm 0.14
CaCl_2 + fluridone (1 mM)	3.8 \pm 0.11	2.1 \pm 0.13	4.2 \pm 0.10	4.6 \pm 0.14	4.6 \pm 0.12	5.8 \pm 0.11
Fluridone + verapamil	2.8 \pm 0.13	1.4 \pm 0.14	3.0 \pm 0.12	2.1 \pm 0.12	4.1 \pm 0.12	2.0 \pm 0.13
CD _{0.05} genotype	0.6		0.4		0.6	
CD _{0.05} treatments	0.8		0.9		0.8	

Table 2. RUBPC activity [$\text{mol kg}^{-1}(\text{Chl}) \text{ s}^{-1}$] in tolerant (C 306) and susceptible (HD 2380) genotypes of wheat during PEG-6000 simulated water stress in the presence of ABA, CaCl_2 , fluridone and verapamil (means \pm SE, $n = 3$). Pre-stress activity: C 306 - 7.1; HD 2380 - 6.5.

Treatments	2 nd day C 306	4 th day C 306	6 th day C 306	2 nd day HD 2380	4 th day HD 2380	6 th day HD 2380
Control	5.2 \pm 0.11	4.1 \pm 0.12	4.3 \pm 0.11	3.2 \pm 0.11	2.8 \pm 0.11	1.4 \pm 0.11
ABA (0.1 mM)	3.5 \pm 0.10	2.8 \pm 0.11	4.1 \pm 0.14	3.4 \pm 0.12	5.8 \pm 0.14	4.2 \pm 0.10
CaCl_2 (1 mM)	3.1 \pm 0.12	2.0 \pm 0.12	3.8 \pm 0.12	4.8 \pm 0.11	6.2 \pm 0.12	5.6 \pm 0.14
CaCl_2 +ABA	3.4 \pm 0.14	2.6 \pm 0.10	4.5 \pm 0.14	5.1 \pm 0.14	6.5 \pm 0.12	5.8 \pm 0.11
ABA + verapamil (1 mM)	2.6 \pm 0.14	1.4 \pm 0.12	3.1 \pm 0.10	1.8 \pm 0.12	2.5 \pm 0.14	1.4 \pm 0.12
CaCl_2 + fluridone (1 mM)	2.1 \pm 0.12	1.9 \pm 0.11	2.2 \pm 0.12	2.8 \pm 0.11	2.0 \pm 0.12	2.1 \pm 0.16
Fluridone + verapamil	1.3 \pm 0.13	0.8 \pm 0.12	1.6 \pm 0.14	1.2 \pm 0.14	1.1 \pm 0.11	0.9 \pm 0.12
CD _{0.05} genotype	0.5		0.4		0.6	
CD _{0.05} treatments	0.7		0.9		0.7	

Table 3. PEPC activity [$\text{mol kg}^{-1}(\text{Chl}) \text{ s}^{-1}$] in tolerant (C 306) and susceptible (HD2380) genotypes of wheat during PEG-6000 simulated water stress in the presence of ABA, CaCl_2 , fluridone and verapamil (means \pm SE, $n = 3$). Pre-stress activity: C306 - 9.1; HD 2380 - 11.2.

Treatments	2 nd day C 306	4 th day C 306	6 th day C 306	2 nd day HD 2380	4 th day HD 2380	6 th day HD 2380
Control	6.6 \pm 0.13	7.2 \pm 0.11	4.6 \pm 0.11	5.2 \pm 0.12	3.1 \pm 0.14	4.2 \pm 0.11
ABA (0.1 mM)	5.1 \pm 0.14	5.8 \pm 0.14	6.2 \pm 0.13	6.8 \pm 0.12	7.1 \pm 0.11	7.9 \pm 0.12
CaCl_2 (1 mM)	4.5 \pm 0.11	6.5 \pm 0.12	5.9 \pm 0.10	7.1 \pm 0.10	6.5 \pm 0.12	9.4 \pm 0.14
CaCl_2 +ABA	6.2 \pm 0.12	7.1 \pm 0.11	7.1 \pm 0.11	7.8 \pm 0.12	8.2 \pm 0.14	8.9 \pm 0.11
ABA + verapamil (1 mM)	3.4 \pm 0.11	2.6 \pm 0.10	5.2 \pm 0.12	3.1 \pm 0.14	5.4 \pm 0.11	3.4 \pm 0.12
CaCl_2 + fluridone (1 mM)	2.9 \pm 0.14	1.9 \pm 0.12	4.1 \pm 0.14	4.2 \pm 0.12	4.4 \pm 0.10	5.6 \pm 0.14
Fluridone + verapamil	1.2 \pm 0.12	0.9 \pm 0.14	1.8 \pm 0.11	1.5 \pm 0.11	1.4 \pm 0.12	1.1 \pm 0.12
CD _{0.05} genotype						
CD _{0.05} treatments						

Table 4. Water potential [-MPa] in tolerant (C 306) and susceptible (HD2380) genotypes of wheat during PEG-6000 simulated water stress in the presence of ABA, CaCl_2 , fluridone and verapamil (means \pm SE, $n = 3$). Pre-stress level: C 306 - 0.5; HD 2380 - 0.6.

Treatments	2 nd day		4 th day		6 th day	
	C 306	HD 2380	C 306	HD 2380	C 306	HD 2380
Control	0.5 \pm 0.02	0.7 \pm 0.02	0.7 \pm 0.02	0.8 \pm 0.02	0.9 \pm 0.02	1.5 \pm 0.02
ABA (0.1 mM)	0.6 \pm 0.03	0.8 \pm 0.03	0.6 \pm 0.03	0.7 \pm 0.02	0.6 \pm 0.02	0.6 \pm 0.03
CaCl_2 (1 mM)	0.5 \pm 0.02	0.8 \pm 0.02	0.6 \pm 0.02	0.7 \pm 0.03	0.6 \pm 0.03	0.4 \pm 0.02
CaCl_2 +ABA	0.5 \pm 0.02	0.7 \pm 0.03	0.6 \pm 0.02	0.7 \pm 0.02	0.5 \pm 0.03	0.4 \pm 0.03
ABA + verapamil (1 mM)	0.6 \pm 0.03	0.8 \pm 0.04	0.8 \pm 0.04	0.9 \pm 0.03	0.5 \pm 0.02	1.0 \pm 0.03
CaCl_2 + fluridone (1 mM)	0.6 \pm 0.05	0.8 \pm 0.02	0.7 \pm 0.04	0.9 \pm 0.04	1.0 \pm 0.03	0.9 \pm 0.02
Fluridone + verapamil	0.6 \pm 0.02	0.8 \pm 0.03	0.9 \pm 0.03	1.0 \pm 0.02	1.0 \pm 0.02	1.2 \pm 0.02
CD _{0.05} genotype	0.023		0.041		0.045	
CD _{0.05} treatments	0.048		0.046		0.058	

Table 5. Stomatal conductance [$\text{mmol m}^{-2} \text{ s}^{-1}$] in tolerant (C 306) and susceptible (HD 2380) genotypes of wheat during PEG-6000 simulated water stress in the presence of ABA, CaCl_2 , fluridone and verapamil (means \pm SE, $n = 3$). Pre-stress level: C 306 - 512; HD 2380 - 560.

Treatments	2 nd day		4 th day		6 th day	
	C 306	HD 2380	C 306	HD 2380	C 306	HD 2380
Control	420 \pm 10.2	504 \pm 9.6	124 \pm 7.4	168 \pm 8.2	104 \pm 6.5	132 \pm 8.2
ABA (0.1 mM)	140 \pm 8.5	184 \pm 10.1	164 \pm 8.6	196 \pm 7.4	200 \pm 8.9	232 \pm 7.6
CaCl_2 (1 mM)	204 \pm 9.2	180 \pm 7.5	228 \pm 7.2	204 \pm 6.8	220 \pm 7.6	192 \pm 7.3
CaCl_2 +ABA	124 \pm 9.1	156 \pm 8.1	248 \pm 9.2	288 \pm 7.6	260 \pm 9.1	300 \pm 6.8
ABA + verapamil (1 mM)	276 \pm 10.5	364 \pm 9.5	268 \pm 7.3	312 \pm 6.9	212 \pm 8.5	312 \pm 7.1
CaCl_2 + fluridone (1 mM)	348 \pm 8.3	232 \pm 7.1	380 \pm 8.2	224 \pm 6.8	380 \pm 8.2	272 \pm 9.2
Fluridone + verapamil	156 \pm 7.6	124 \pm 6.5	152 \pm 6.2	136 \pm 7.6	128 \pm 6.5	116 \pm 4.8
CD _{0.05} genotype	11.5		11.1		9.4	
CD _{0.05} treatments	12.8		8.8		12.4	

Discussion

Water stress caused immediate reduction in P_N , RUBPC and PEPC activities, and g_s though water potential showed a slow decline in both the genotypes. The photosynthetic gas exchange and water use efficiency have been reported to be reduced during water stress in wheat (Shangguan *et al.* 2000). The initial decrease in P_N and activity of carboxylases on 2nd day seem to be associated with stomatal limitation as indicated by reduction in g_s rather than reduced availability of water as ψ_w did not show significant change. Hafid *et al.* (1997) also attributed decrease in P_N in wheat soon after drought stress was imposed to reduced stomatal conductance. Although stomatal closure seems to be the main cause of photosynthesis decrease (Kaiser 1987), a reduction in utilization of assimilates due to stress may also cause feedback inhibition of carboxylation (Stitt 1991). In potato plants exposed to PEG-induced water deficit stress, Buiss *et al.* (1998) noticed that while water use

efficiency remain unchanged, the reduction in carboxylation efficiency and the P_N was observed to be non-stomatically limited. Our observations on immediate reduction in g_s and slow decline of water potential under stress correspond with those of Socias *et al.* (1997) in *Trifolium subterraneum* L., where a 50 % reduction in stomatal conductance was observed under stress before any substantial change in water potential was detected.

The tolerant genotype, C306 showed higher P_N , RUBPC activity, and ψ_w than the susceptible genotype HD2380, which had higher PEPC activity and g_s than C 306 under stress. PEPC activity was noticed to be higher than RUBPC activity under water stress in both the genotypes and it increased in the presence of ABA and calcium. PEPC was recorded to increase in response to osmotic stress (Tang *et al.* 1997) and with exogenous application of ABA and calcium ionophores (Taybi and Cushman 1999). High PEPC activity under stress may

contribute to generation of malate, an osmoregulant and calcium has been reported to increase malate content under osmotic stress (Ortiz *et al.* 1994). The higher ψ_w in HD 2380 with calcium application as observed on 6th day of stress may be ascribed to increased malate generation through elevated content of PEPC.

The effect of water stress in both the genotypes was ameliorated in the presence of exogenous ABA and calcium, though the response was not immediate. The initial decline in P_N and RUBPC activity as observed on 2nd day in presence of ABA and calcium is probably due to their high internal contents and redistribution which has been reported to occur quickly under water stress (Daeter and Hartung 1995, Sorooshzadeh *et al.* 1999). However, as the stress progressed the treated plants showed improvement. Stress tolerance in plants has been reported to be induced by application of ABA or calcium due to their effect on pressure potential (Singer *et al.* 1996, Netting 2000), membrane integrity (Abdel-Basset 1998), stomatal regulation (Cousson and Vavasseur 1998), oxidative metabolism (Jiang and Huang 2001), and up- or down-regulation of gene(s) encoding specific proteins (Swami and Smith 1999, Taybi and Cushman 1999). Soybean seedlings treated with calcium and subjected to water stress showed a higher P_N than non-sprayed ones (GenPing *et al.* 1995). Our results pointed

towards the interdependence of ABA and Ca^{2+} during stress, which was apparent from inhibitor studies. Blocking the response to one affected the sensitivity of the plants to the presence of other. Suppression of both ABA and Ca^{2+} using their inhibitors in the growth medium was observed to be extremely inhibitory. The interactive functioning of the two has been reported and calcium has been indicated as signal transducer in ABA mediated stress response (Frandsen *et al.* 1996, Leung and Giraudat 1998). In sunflower, Quintero *et al.* (1999) observed increase in hydraulic conductivity and exudation rate in roots treated with ABA and calcium.

Presence of calcium and ABA alleviated the stress injury but the response of two genotypes varied as was apparent from use of inhibitors. While C 306 was found to be more sensitive to ABA, HD 2380 appeared to show more dependence on calcium for responses to water stress. The differential sensitivity of contrasting genotypes to water stress may exist at endogenous regulation of ABA and calcium content and redistribution. An insight into their internal status may lead to identification of some finer controls of stress sensitivity. The maize genotypes varying in drought susceptibility were observed to differ with respect to ABA transport mechanisms (Jovanović *et al.* 2000).

References

Abdel-Basset, R.: Calcium channels and membrane disorders induced by drought stress in *Vicia faba* plants supplemented with calcium. - *Acta Physiol. Plant.* **20**: 149-153, 1998.

Bray, E.A.: Plant responses to water deficit. - *Trends Plant Sci.* **2**: 48-54, 1997.

Buiss, D., Kauder, F., Heineke, D.: Acclimation of potato plants to polyethylene glycol-induced water deficit I. Photosynthesis and metabolism. - *J. exp. Bot.* **49**: 1349-1360, 1998.

Chandler, P.M., Robertson, M.: Gene expression regulated by abscisic acid and its relation to stress tolerance. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **45**: 113-141, 1994.

Cousson, A., Vavasseur, A.: Two potential Ca^{2+} -dependent transduction pathways in stomata closing in response to abscisic acid. - *Plant Physiol. Biochem.* **36**: 257-262, 1998.

Cowan, A.K., Richardson, G.R., Maurel, J.C.G.: Stress-induced abscisic acid transients and stimulus-response coupling. - *Physiol. Plant* **100**: 491-499, 1997.

Daeter, W., Hartung, W.: Stress dependent redistribution of abscisic acid (ABA) in *Hordeum vulgare* L. leaves: the role of epidermal ABA metabolism, tonoplast transport and the cuticle. - *Plant cell Environ.* **18**: 1367-1376, 1995.

Frandsen, G., Muller, U.F., Nilsen, M., Mundy, J., Skriver, K.: Novel plant Ca^{2+} binding protein expressed in response to abscisic acid and osmotic stress. - *J. biol. Chem.* **271**: 343-348, 1996.

GenPing, Y., XiangYang, G., Liang, J., Yang, G.P., Gao, X.Y., Ling, J.H.: Calcium can improve photosynthesis of soybean leaves under water stress. - *Acta agron. sin.* **21**: 711-716, 1995.

Hafid, R.E.L., Smith, D.H., Karrou, M., Samir, K.: Physiological responses of spring durum wheat cultivars to early season drought in a mediterranean environment. - *Ann. Bot.* **81**: 363-370, 1997.

Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **47**: 377-403, 1996.

Jiang, Y., Huang, B.: Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool season grasses. - *J. exp. Bot.* **52**: 341-348, 2001.

Jovanović, Lj., Stikić, R., Hartung, W.: Effect of osmotic stress on abscisic acid efflux and compartmentation in the roots of two maize lines differing in drought susceptibility. - *Biol. Plant.* **43**: 407-411, 2000.

Kaiser, W.M.: Effect of water deficit on photosynthetic capacity. - *Physiol. Plant.* **71**: 142-149, 1987.

Leung, J., Giraudat, J.: Abscisic acid signal transduction. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **49**: 199-222, 1998.

Lilley, M.C.R., Walker, D.A.: An improved spectrophotometric assay for ribulose bisphosphate carboxylase. - *Biochem. biophys. Acta* **358**: 226-229, 1974.

Meyer, C.R., Rustin, P., Wedding, R.T.: A simple and accurate spectrophotometric assay for phosphoenolpyruvate carboxylase activity. - *Plant Physiol.* **86**: 325-328, 1988.

Netting, A.G.: pH, abscisic acid and the integration of metabolism in plants under stressed and nonstressed conditions: cellular responses to stress and their implication for plant water relations. - *J. exp. Bot.* **51**: 147-158, 2000.

Ortiz, A., Martinez, V., Cerda, A.: Effects of osmotic shock and calcium on growth and solute composition of *Phaseolus vulgaris* plants. - *Physiol. Plant.* **91**: 468-476, 1994.

Quintero, J., Fournier, J., Benlloch, M.: Water transport in sunflower root systems: effects of ABA, Ca^{2+} status and HgCl_2 . - *J. exp. Bot.* **50**: 1607-1612, 1999.

Sairam, R.K., Shukla, D.S., Saxena, D.C.: Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. - *Biol. Plant.* **40**: 357-364, 1998.

Sanders, D., Brownlee, C., Harper, J.F.: Communicating with calcium. - *Plant Cell* **11**: 691-706, 1999.

Shangguan, Z.P., Shao, M.A., Dyckmans, J.: Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. - *Environ. exp. Bot.* **44**: 141-149, 2000.

Singer, S.M., El-Tohamy, W.A., Hadid, A.F.A., Markhart, A.H., Li, P.H.: Chilling and water stress injury in bean (*Phaseolus vulgaris* L.) seedlings reduced by pretreatment with CaCl_2 , mefludide, KCl and MgCl_2 . - *Egypt. J. Hort.* **23**: 77-87, 1996.

Socias, X., Correia, M., Chaves, M., Medrano, H.: The role of abscisic acid and water relations in drought responses of subterranean clover. - *J. exp. Bot.* **48**: 1281-1288, 1997.

Soorooshzadeh, A., Barthathakur, N.N., Isobe, S., Sase, S.: Water stress and photoperiod during seed filling affect redistribution in soybean. - *Environ. Cont. Biol.* **37**: 49-56, 1999.

Stitt, M.: Rising CO_2 levels and their potential significance for carbon flow in photosynthetic cells. - *Plant Cell Environ.* **14**: 741-762, 1991.

Swami, P.M., Smith, B.N.: Role of abscisic acid in plant stress tolerance. - *Curr. Sci.* **76**: 1220-1227, 1999.

Tang, L., Shi, J.: The effects of salt stress on leaf ABA content and the diurnal regulation property of phosphoenolpyruvate carboxylase in *Mesembryanthemum cordifolium*. - *Acta phytophysiol. sin.* **23**: 304-308, 1997.

Taybi, T., Cushman, J.C.: Signaling events leading to crassulacean acid metabolism induction in the common ice plant. - *Plant Physiol.* **12**: 545-555, 1999.