

## Responses of *Quercus ilex* from different provenances to experimentally imposed water stress

P. PESOLI<sup>1</sup>, L. GRATANI<sup>\*</sup> and W. LARCHER<sup>\*\*</sup>

*Dipartimento di Biologia Vegetale, Università "La Sapienza", P. le A. Moro, 5, I-00185 Roma, Italy*<sup>\*</sup>

*Institut für Botanik, Sternwartestrasse 15, A-6020 Innsbruck, Austria*<sup>\*\*</sup>

### Abstract

Responses of *Quercus ilex* L. seedlings from three different localities in Italy to experimentally imposed drought stress were analysed. Predawn ( $\Psi_{pd}$ ) and midday ( $\Psi_m$ ) leaf water potential of stressed seedlings decreased on an average until -4.0 and -4.2 MPa, respectively, in the severe water stress. At the end of the severe water stress the relative water content (RWC) was 72.5 - 83.6 % and the photosynthetic rates ( $P_N$ ) near zero. The critical threshold value of  $\Psi_{pd}$  for complete stomatal closure was from -4.0 to -4.5 MPa. The leaf damage after the severe water stress was significantly greater in seedlings originated from the acorns of climax area (45 % total leaf injured area and 40 % fallen leaves) than in the other seedlings (on an average 20.5 % total leaf injured area and 21 % fallen leaves).

*Additional key words:* drought stress, leaf conductance, leaf injury, net photosynthetic rate, relative water content, water potential, water use efficiency.

### Introduction

Holm oak (*Quercus ilex*) is a deep-rooted evergreen sclerophyllous species widely distributed in the Mediterranean Basin (Barbero *et al.* 1992). It is able to maintain relatively high leaf water potential during drought showing early stomatal closure before serious alteration of the water status (Fotelli *et al.* 2000), and a high degree of co-ordination is apparent between stomatal behaviour and photosynthetic rates (Faria *et al.* 1998, Gratani 2000). During the year, the cumulative carbon assimilation of *Quercus ilex* is drastically reduced when  $\text{CO}_2$  uptake is below 50 % of its optimal rates for long periods of time (Gratani *et al.* 2000); the critical temperature of the thermal inactivation of thylakoid functions in leaves of *Quercus ilex* has been estimated 45 - 55 °C (Méthy *et al.* 1997, Loreto *et al.* 1998). Drought stress is one of the most important limiting factor of carbon gain, as it induces stomatal closure reducing gas diffusion between the mesophyll and the surrounding atmosphere (García-Plazaola and Becerril

2000), particularly when water deficit is associated to high air temperatures and high irradiance (Peñuelas *et al.* 1998, Gratani and Bombelli 2000). Davis (1989) suggests that it is particularly important to study differences in adaptability to water stress at the seedling stage because of the highest mortality rate observed in seedling establishment of woody Mediterranean species. Physiological knowledge concerning individuals of *Quercus ilex* from different climates are important to forecast the species potential productivity to increasing drought stress.

The objective of this study was to analyse water relations and gas exchange of *Quercus ilex* seedlings from different localities in Italy in response to experimentally imposed water stress. Leaf injury after the stress period was also quantified. The hypothesis tested in this study was that *Quercus ilex* seedlings from the southern origin (drier areas) could have a higher intrinsic resistance to drought stress.

Received 13 May 2002, accepted 18 July 2002.

**Abbreviations:** C - control plants; E - transpiration rate;  $E_A$  - Nago provenance;  $E_B$  - Castelporziano provenance;  $E_C$  - Frassanito provenance;  $g_{leaf}$  - leaf conductance to water vapour diffusion;  $P_N$  - net photosynthetic rate; RWC - relative water content; S - stressed plants; WUE - water use efficiency;  $\Psi_{pd}$  - predawn leaf water potential;  $\Psi_m$  - midday leaf water potential;  $\Delta\Psi$  - daily difference of leaf water potential.

**Acknowledgements:** We wish to thank Professor F. Macchia of the University of Bari (Italy) who supplied us with acorns from Frassanito, and Dr. I. Bresciani for the acorns from Nago. This paper was supported by the grant CNR 00.00398.ST74.

<sup>1</sup>Corresponding author; phone and fax: (+390) 6 49912358, e-mail: paola.pesoli@uniroma1.it

## Materials and methods

**Experimental design:** Experiments were conducted in a semi-controlled greenhouse of the Plant Biology Department of the University of Rome "La Sapienza" under natural irradiance up to 1500  $\mu\text{mol m}^{-2}\text{s}^{-1}$  during the morning. Seedlings of *Quercus ilex* L. were grown in 32 cm diameter and 29 cm depth pots containing peat and soil (1:3); the soil comprised silt (5 - 8 %), clay (16 - 39 %) and sand (56 - 75 %) and pH was 7.2 - 7.5. The seedlings under study were germinated from seeds of parent plants from three different localities in Italy: Nago (E<sub>A</sub>), 45°55'N, 10°53'E, 260 m a.s.l., in the Garda Lake region at the northern limit of holm oak distribution area in Italy; Castelporziano (E<sub>B</sub>), 41°45'N, 12°26'E near Rome, at sea level, at the centre of the distribution area; Frassanito (E<sub>C</sub>), 40°13'N, 18°26'E near Lecce, at sea level, in a drier area of the south of Italy.

The desiccation experiments were conducted in the period May - July 2001 on seedlings from the three provenances. Water was withheld from 10 plants per provenance (E<sub>A</sub>S, E<sub>B</sub>S, and E<sub>C</sub>S) to generate water stress, according to Filella *et al.* (1998). The well-watered control plants (10 seedlings per provenance, E<sub>A</sub>C, E<sub>B</sub>C, and E<sub>C</sub>C) were watered regularly to field capacity. During the first experiment (it was referred to as mild drought stress) diurnal air temperature was 24 - 29 °C, and air humidity 70 % in the early morning and 40 % at midday; during the second experiment (it was referred to as severe drought stress) diurnal air temperature was 28 - 37 °C, and air humidity 50 % in the early morning and 25 % at midday.

**Plant water relations:** Predawn and midday leaf water potentials ( $\Psi_{pd}$ ,  $\Psi_m$ ) corresponding to the maximum and minimum diurnal values were measured at the beginning and at the end of each experiment on ten fully expanded leaves per provenance for control and stressed plants with

a pressure chamber (*SKPM 1400, Sky Instruments*, Powys, UK). The daily difference of leaf water potential ( $\Delta\Psi$ ) was calculated as the difference between  $\Psi_m$  and  $\Psi_{pd}$  (Damesin and Rambal 1995). Relative water content at predawn (RWC) was calculated at the same time as  $(\text{FM-DM})/(\text{TM-DM}) \times 100$  (Lo Gullo and Salleo 1988) where FM was the fresh mass, DM the dry mass and TM the mass of fully hydrated samples. Leaf samples were hydrated until saturation for 48 h at 5 °C in the darkness and then dried in an oven at 90 °C until constant mass.

**Leaf gas exchange:** Net photosynthetic rate ( $P_N$ ), transpiration  $\text{H}_2\text{O}$  rate (E), and leaf conductance to water vapour diffusion ( $g_{leaf}$ ) were monitored during the experiments on ten fully expanded leaves of ten plants per provenance by an infrared  $\text{CO}_2$  gas analyser (*ADC-LCA4, Hoddesdon, UK*) equipped with a leaf chamber *PLC4*. The instantaneous water use efficiency (WUE) was calculated as the ratio between photosynthetic and transpiration rates.

**Leaf damage:** At the end of the second experiment (severe water stress) the percentage of the injured leaf area was estimated by the presence of dark necrotic areas, according to Kyriakopoulos and Richter (1991). The surface of injured leaf area was determined by an *Image Analysis System (Delta-T Devices, Cambridge, UK)*. Moreover, the number of the leaves fallen per plant was recorded.

**Statistical analysis:** All statistical tests were performed using a statistical software package (*Statistica, Statsoft, Tulsa, USA*). Differences in the considered traits were determined by analysis of variance (*ANOVA*). Regression analysis was used to explore relationships among the considered traits.

## Results

**Plant water relations:** Leaf water potential of stressed plants decreased with increasing water stress:  $\Psi_{pd}$  and  $\Psi_m$  were -2.6 MPa and -3.4 MPa, respectively (mean of E<sub>A</sub>S, E<sub>B</sub>S and E<sub>C</sub>S) at the end of the first experiment (Table 1). A major reduction of  $\Psi_m$  was observed at the end of the second experiment (-4.1 MPa in E<sub>C</sub>S and -4.3 MPa in E<sub>A</sub>S and E<sub>B</sub>S).

Stressed seedlings showed a progressive reduction of  $\Delta\Psi$  to the decrease of leaf water potential. In particular, at the end of the second experiment  $\Delta\Psi$  was close to zero (0.1, 0.5 and 0.2 MPa in E<sub>A</sub>S, E<sub>B</sub>S and E<sub>C</sub>S, respectively).  $\Delta\Psi$  significantly correlated ( $r = 0.97$ ,  $P < 0.005$ ) with  $\Psi_{pd}$ .

RWC in stressed plants (Table. 1) tended to remain

relatively stable under mild stress conditions: 91.3 and 87.8 % were the mean values of E<sub>A</sub>S, E<sub>B</sub>S and E<sub>C</sub>S at the beginning and at the end of the experiment, respectively. A higher reduction of RWC during severe desiccation (second experiment) was observed: 85.9 - 88.1 % were the mean values of E<sub>A</sub>S, E<sub>B</sub>S and E<sub>C</sub>S at the beginning, and 72.5 - 83.6 % at the end of the experiment.

**Leaf gas exchange:** In mild stress condition,  $P_N$  of stressed plants decreased of 98.5 % (mean of E<sub>A</sub>S, E<sub>B</sub>S and E<sub>C</sub>S) at the fourth day respect to the first day (Fig. 1A); at the third day in severe stress condition  $P_N$  was zero in E<sub>C</sub>S while in E<sub>A</sub>S and E<sub>B</sub>S plants released  $\text{CO}_2$  (apparent respiration). Differences among E<sub>B</sub>S and

$E_{CS}$  were significant ( $P < 0.01$ ). Leaf conductance decreased gradually, during the two experiments, from 150 to nearly 5  $\text{mmol}(\text{H}_2\text{O}) \text{m}^{-2} \text{s}^{-1}$  (Fig. 1B); this  $g_{leaf}$  was typical for stomatal closure in sclerophylls (Larcher 2002). The relationship of  $g_{leaf}$  with  $\Psi_{pd}$  of control and stressed plants was an exponential (Fig. 2); the critical threshold values of  $\Psi_{pd}$  for complete stomatal closure were on an average from -4.0 to -4.5 MPa under the severe water stress.

The instantaneous water use efficiency (WUE; Fig. 3)

showed a reduction from the beginning to the end of the two experiments and  $E_{CS}$  always showed higher values than the others. Stressed plants had significantly lower WUE values than the controls.

**Leaf damage:** The leaf damage after the imposed severe water stress was significantly greater in  $E_{BS}$  (45 % total leaf injured area, 40 % leaves fallen) than in  $E_{AS}$  (35 % total leaf injured area, 36 % fallen leaves) and especially  $E_{CS}$  (6 % total leaf injured area, 6 % fallen leaves).

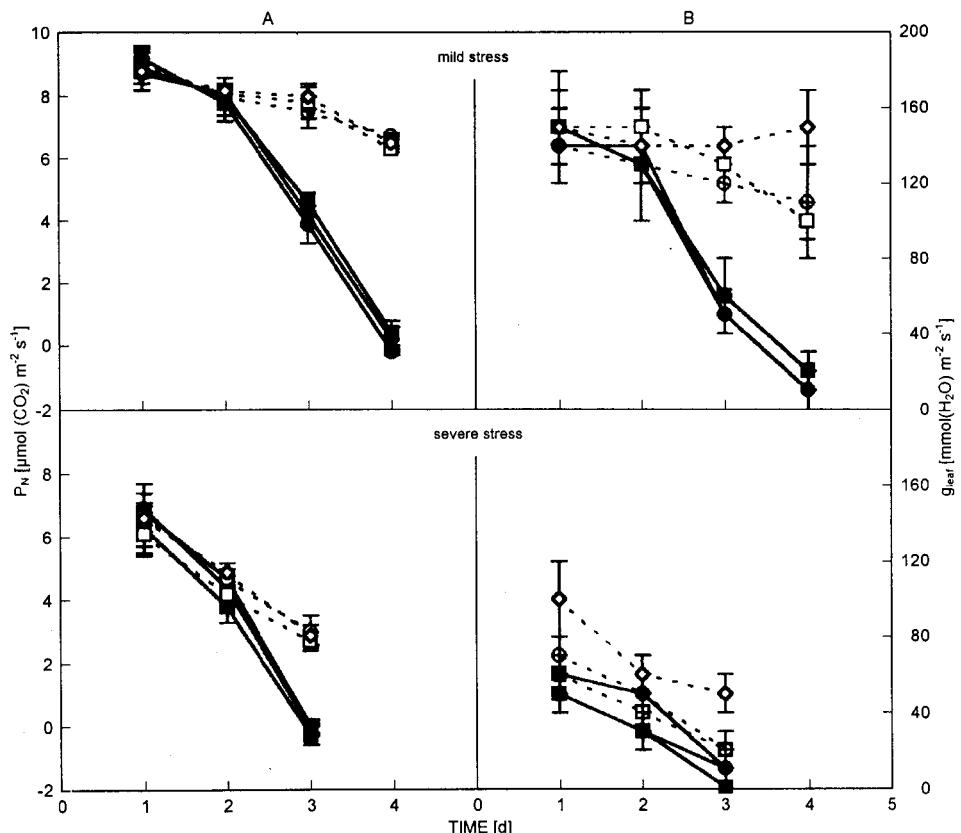



Fig. 1. Changes in net photosynthetic rates,  $P_N$  (A), and leaf conductance,  $g_{leaf}$  (B) of control (open symbols) and stressed (closed symbols) plants from different localities (seedlings from Nago - circles, seedlings from Castelporziano - squares, and seedlings from Frassanito - rhombs) during the experiments. Vertical bars indicate standard deviation.

## Discussion

In our experiments, even when water stress was at the maximum,  $\Delta\Psi$  decreased with  $\Psi_{pd}$ , but  $\Psi_m$  remained higher than -4.3 MPa characterising *Quercus ilex* as a "regulator" species, according to Rambal (1992). *Quercus ilex* avoided irreversible cell damage by approaching  $\Psi_{pd}$  to  $\Psi_m$  in drought conditions. The closure of stomata protected the seedlings from exposure to severe water deficit; the critical threshold of  $\Psi_{pd}$  for stomatal closure of *Quercus ilex* seedlings in the severe water stress experiment averaged between -4 and -4.5 MPa, and the early decrease of stomatal conductance prevented

irreversible cell dehydration contributing to the tolerance strategy, according to Larcher (1960) and Damesin and Rambal (1995). Moreover, drought-induced leaf fall was a mechanism for coping with extreme drought conditions (Kramer 1980).

Low photosynthetic rates did not ensure survival during prolonged stress periods (Peñuelas *et al.* 1998). The results of decreased  $P_N$  during short periods of water stress showed a different sensitivity of  $P_N$  of *Quercus ilex* seedlings of Nago, Castelporziano and Frassanito to imposed water stress. Interaction of high air temperatures

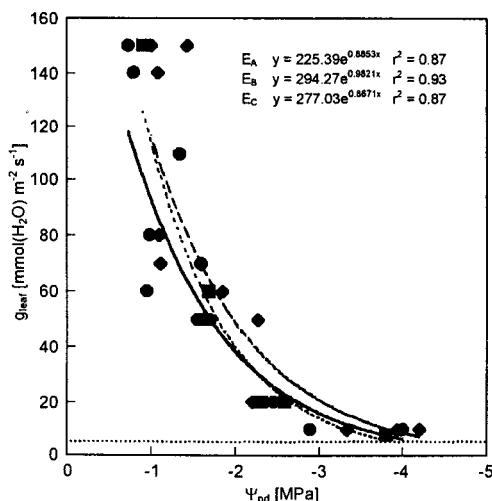



Fig. 2. Relationship between leaf conductance ( $g_{leaf}$ ) and predawn leaf water potential ( $\Psi_{pd}$ ) of control and stressed plants from different localities:  $E_A$  (seedlings from Nago - circles),  $E_B$  (seedlings from Castelporziano - squares), and  $E_C$  (seedlings from Frassanito - rhombs). Dotted line - threshold stomatal closure of sclerophylls.

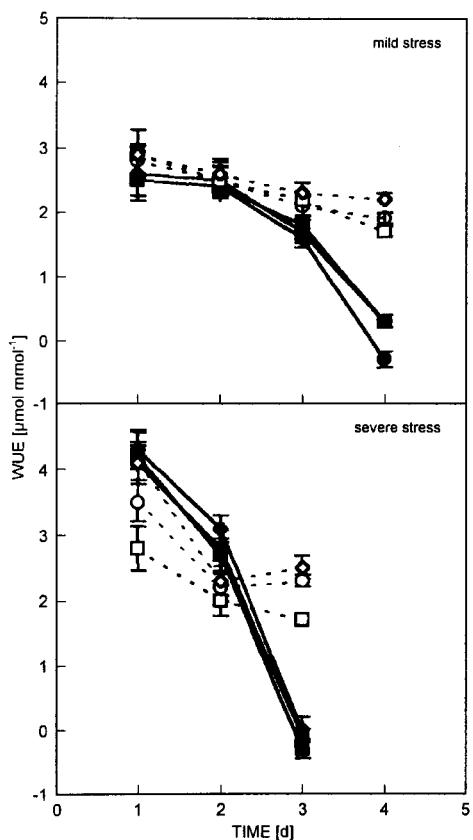



Fig. 3. Changes in water use efficiency (WUE) of control (open symbols) and stressed (closed symbols) plants from different localities (seedlings from Nago - circles, seedlings from Castelporziano - squares, and seedlings from Frassanito - rhombuses) during the experiments. Vertical bars indicate standard deviation.

Table 1. Predawn ( $\Psi_{pd}$ ) and midday ( $\Psi_m$ ) leaf water potential, daily difference of leaf water potential  $\Delta\Psi$ , and RWC measured at the beginning (b) and at the end (e) of each experiment of control (C) and stressed (S) plants of *Quercus ilex* from Nago ( $E_A$ ), Castelporziano ( $E_B$ ) and Frassanito ( $E_C$ ). Means  $\pm$  SD,  $n = 10$ .

| Stress |         | $\Psi_{pd}$<br>[MPa] | $\Psi_m$<br>[MPa] | $\Delta\Psi$<br>[MPa] | RWC<br>[%] |
|--------|---------|----------------------|-------------------|-----------------------|------------|
| Mild   | $E_A C$ | b $-0.8 \pm 0.05$    | $-3.1 \pm 0.27$   | 2.3                   | 92.0       |
|        | e       | $-1.3 \pm 0.32$      | $-3.2 \pm 0.25$   | 1.9                   | 91.4       |
|        | $E_B C$ | b $-0.9 \pm 0.11$    | $-2.2 \pm 0.17$   | 1.3                   | 90.5       |
|        | e       | $-1.4 \pm 0.40$      | $-2.6 \pm 0.21$   | 1.2                   | 89.8       |
|        | $E_C C$ | b $-0.7 \pm 0.06$    | $-2.6 \pm 0.19$   | 1.9                   | 91.0       |
|        | e       | $-1.4 \pm 0.30$      | $-3.2 \pm 0.21$   | 1.8                   | 90.5       |
|        | $E_A S$ | b $-0.7 \pm 0.07$    | $-3.2 \pm 0.29$   | 2.5                   | 92.3       |
|        | e       | $-2.9 \pm 0.48$      | $-3.3 \pm 0.50$   | 0.4                   | 89.4       |
|        | $E_B S$ | b $-0.7 \pm 0.07$    | $-2.7 \pm 0.22$   | 2.0                   | 90.9       |
|        | e       | $-2.6 \pm 0.37$      | $-3.5 \pm 0.35$   | 0.9                   | 85.2       |
| Severe | $E_C S$ | b $-0.6 \pm 0.05$    | $-2.9 \pm 0.21$   | 2.3                   | 90.7       |
|        | e       | $-2.2 \pm 0.35$      | $-3.3 \pm 0.40$   | 1.1                   | 88.8       |
|        | $E_A C$ | b $-1.6 \pm 0.10$    | $-3.3 \pm 0.24$   | 1.7                   | 88.2       |
|        | e       | $-2.4 \pm 0.09$      | $-3.5 \pm 0.17$   | 1.1                   | 86.6       |
|        | $E_B C$ | b $-1.7 \pm 0.12$    | $-3.3 \pm 0.28$   | 1.6                   | 85.7       |
|        | e       | $-2.3 \pm 0.16$      | $-3.4 \pm 0.21$   | 1.1                   | 83.8       |
|        | $E_C C$ | b $-1.4 \pm 0.09$    | $-2.9 \pm 0.22$   | 1.5                   | 87.6       |
|        | e       | $-2.3 \pm 0.25$      | $-3.3 \pm 0.30$   | 1.0                   | 86.4       |
|        | $E_A S$ | b $-1.6 \pm 0.09$    | $-3.8 \pm 0.29$   | 2.2                   | 88.1       |
|        | e       | $-4.2 \pm 0.28$      | $-4.3 \pm 0.31$   | 0.1                   | 81.9       |
| E_B S  | b       | $-1.6 \pm 0.08$      | $-3.5 \pm 0.38$   | 1.9                   | 85.9       |
|        | e       | $-3.8 \pm 0.20$      | $-4.3 \pm 0.35$   | 0.5                   | 72.5       |
|        | $E_C S$ | b $-1.3 \pm 0.09$    | $-3.5 \pm 0.23$   | 2.2                   | 87.1       |
|        | e       | $-3.9 \pm 0.51$      | $-4.1 \pm 0.49$   | 0.2                   | 83.6       |

(up to 36 °C) with water deficit could be the reason of release of CO<sub>2</sub> at the end of the second experiment; Gratani *et al.* (2000) showed that the cumulative carbon assimilation available for plant growth was drastically reduced when leaf temperature was above 36 °C.

*Quercus ilex* seedlings from Castelporziano which had evolved under a climate with no winter stress and a superficial water-bearing stratum explored all year by roots showed a higher sensitivity to severe water stress than Frassanito seedlings evolved under naturally prolonged drought stress. These ones seemed to be the most tolerant seedlings to experimentally imposed water stress showing the highest RWC, P<sub>N</sub>, WUE, and the lowest leaf injury. Nago seedlings from a climate with winter stress (air temperatures frequently below zero) and a mild summer stress seemed to be in the middle of a sensitivity scale of drought stress. Seedlings from Frassanito seemed to be more tolerant to desiccation experiments and they might provide a substantial advantage on drier sites and in response to the climatic change effects on Mediterranean ecosystems. Leaf water

relations data provide a useful indication of the capacity of woody species to maintain growth, gas exchange and

water use during drought (Nardini *et al.* 1996, Nilsen and Orcutt 1996, Rico *et al.* 1996, White *et al.* 2000).

## References

Barbero, M., Loisel, R., Quézel, P.: Biogeography, ecology and history of Mediterranean *Quercus ilex* ecosystems. - *Vegetatio* **99-100**: 19-34, 1992.

Damesin, C., Rambal, S.: Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (*Quercus pubescens*) during a severe summer drought. - *New Phytol.* **131**: 159-167, 1995.

Davis, S.D.: Patterns in mixed chaparral stands: Differential water status and seedling survival during summer drought. - In: Keeley, S.C. (ed.): The California Chaparral: Paradigms Reexamined. Pp. 97-105. Natural History Museum, Los Angeles 1989.

Faria, T., Silverio, D., Breia, E., Cabral, R., Abadia, A., Abadia, J., Pereira, J.S., Chaves, M.M.: Differences in the response of carbon assimilation to summer stress (water deficit, high light and temperature) in four Mediterranean tree species. - *Physiol. Plant.* **102**: 419-428, 1998.

Filella, I., Llusià, J., Piñol, J., Peñuelas, J.: Leaf exchange and fluorescence of *Phillyrea latifolia*, *Pistacia lentiscus* and *Quercus ilex* saplings in severe drought and high temperature conditions. - *Environ. exp. Bot.* **39**: 213-220, 1998.

Fotelli, M.N., Radoglou, K.M., Constantinidou, H.-I.A.: Water stress responses of seedlings of four Mediterranean oak species. - *Tree Physiol.* **20**: 1065-1075, 2000.

García-Plazaola, J.I., Becerril, J.M.: Effects of drought on photoprotective mechanisms in European beech (*Fagus sylvatica* L.) seedlings from different provenances. - *Trees* **14**: 485-490, 2000.

Gratani, L.: Leaf temperature effects on gas exchange in *Quercus ilex* L. growing under field conditions. - *Plant Biosyst.* **134**: 19-24, 2000.

Gratani, L., Bombelli, A.: Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: *Quercus ilex*, *Phillyrea latifolia* and *Cistus incanus*. - *Environ. exp. Bot.* **43**: 141-153, 2000.

Gratani, L., Pesoli, P., Crescente, M.F., Aichner, K., Larcher, W.: Photosynthesis as a temperature indicator in *Quercus ilex* L. - *Global Planet. Change* **24**: 153-163, 2000.

Kramer, P.J.: Drought stress and the origin of adaptions. - In: Turner, N.C., Kramer, P.J. (ed.): Adaptations of Plants to Water and High Temperature Stress. Pp. 7-20. John Wiley and Sons, New York 1980.

Kyriakopoulos, E., Richter, H.: Desiccation tolerance and osmotic parameters in detached leaves of *Quercus ilex* L. - *Acta oecol.* **12**: 357-367, 1991.

Larcher, W.: Transpiration and photosynthesis of detached leaves and shoots of *Quercus pubescens* and *Q. ilex* during desiccation under standard conditions. - *Bull. Res. Counc. Israel* **8D**: 213-224, 1960.

Larcher, W.: *Physiological Plant Ecology*. 4<sup>th</sup> Ed. - Springer-Verlag, Berlin 2002.

Lo Gullo, M.A., Salleo, S.: Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. - *New Phytol.* **108**: 267-276, 1988.

Loreto, F., Forster, A., Durr, M., Csiky, O., Seufert, G.: On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of *Quercus ilex* L. fumigated with selected monoterpenes. - *Plant Cell Environ.* **21**: 101-107, 1998.

Méthy, M., Gillon, D., Houssard, C.: Temperature-induced changes of photosystem II activity in *Quercus ilex* L. and *Pinus halepensis*. - *Can. J. Forest Res.* **27**: 31-38, 1997.

Nardini, A., Lo Gullo, M.A., Tracanelli, S.: Water relations of six sclerophylls growing near Trieste (Northeastern Italy): has sclerophyll a univocal functional significance? - *G. bot. Ital.* **130**: 811-828, 1996.

Nilsen, E.T., Orcutt, D.M. (ed.): *The Physiology of Plants Under Stress*. - John Wiley & Son, New York 1996.

Peñuelas, J., Filella, I., Llusià, J., Siscart, D., Piñol, J.: Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees *Quercus ilex* and *Phillyrea latifolia*. - *J. exp. Bot.* **49**: 229-238, 1998.

Rambal, S.: *Quercus ilex* facing water stress: a functional equilibrium hypothesis. - *Vegetatio* **99-100**: 147-153, 1992.

Rico, M., Gallego, H.A., Moreno, G., Santa Regina, I.: Stomatal response of *Quercus pyrenaica* Willd. to environmental factors in two sites differing in their annual rainfall (Sierra de Gata, Spain). - *Ann. Sci. forest.* **53**: 221-234, 1996.

White, D.A., Turner, N.C., Galbraith, J.H.: Leaf water relations and stomatal behaviour of four allopatric *Eucalyptus* species planted in Mediterranean southwestern Australia. - *Tree Physiol.* **20**: 1157-1165, 2000.