

BRIEF COMMUNICATION

Molecular cloning of a phosphoenolpyruvate carboxylase cDNA from tropical epiphytic CAM orchid

C.R. LI, X.B. ZHANG* and C.S. HEW

Department of Biological Sciences, National University of Singapore,
10 Kent Ridge Crescent, Singapore 119260

Abstract

A full-length cDNA encoding phosphoenolpyruvate carboxylase (PEPC) was isolated from tropical epiphytic CAM orchid *Mokara Yellow*. The cDNA designated as *Mpepc1* is 3 450 bp in length with an open reading frame of 2 862 bp encoding 954 amino acids. The deduced amino acid sequence of *Mpepc1* shows 83 % identity with *pepc2* of sorghum, 82 % with *pepc1* and *pepc2* of maize and 81 % with *pepc* of *Arabidopsis thaliana*. RT-PCR analysis showed that *Mpepc1* was expressed in mature leaves, immature leaves, and aerial roots of *M. Yellow*. No expression was detected in the flower.

Additional key words: amino acid sequence, *Mokara Yellow*, RACE.

Phosphoenolpyruvate carboxylase (PEPC) catalyses the carboxylation of phosphoenolpyruvate to oxaloacetate and Pi, the first step in the photosynthetic assimilation of CO₂ in CAM and C₄ plants. It has been proposed that plant PEPCs are encoded by a small multigene family and each member within a gene family encodes a distinct isoform which is associated with specific physiological functions (Lepiniec *et al.* 1994). In maize and sorghum, three PEPC isoforms were identified (Yanagisawa *et al.* 1988, Cretin *et al.* 1991, Kawamura *et al.* 1992, Lepiniec *et al.* 1993). So far most of the molecular studies on PEPC had been carried out on C₃ or C₄ plants. Here we report the cloning of a full-length cDNA encoding PEPC from a tropical epiphytic CAM orchid hybrid *Mokara Yellow* (*Arachnis hookeriana* × *Ascocenda* Madame Kenny).

Plants of *M. Yellow* were obtained from a local nursery. They were planted in pots of sand in growth chambers with 150 - 200 μmol m⁻² s⁻¹ of photosynthetically active radiation at leaf height (*Thorlux* lamp, 400 W, 240 V, 50 Hz; Redditch, UK), 70 - 80 % relative humidity, 30/25°C day/night temperature and 12-h photoperiod. Plants were watered daily with half strength Hoagland's solution B.

Total RNA was isolated from different tissues at different developmental stages using NucleoSpin RNA plant kit (Macherey-Nagel, Düren, Germany). Based on the available published sequences, the following primers were synthesized: sense primer P1: 5'-TCT TGG ATG GGT GGT GAT CGT GAT GG-3' and antisense primer P2: 5'-AAA GAT CCA AGG GAT TGC ACG GAG TGA-3'. RT-PCR was performed with one-step RT-PCR kit (BD Biosciences, Palo Alto, CA, USA) according to the manufacturer's instructions. The amplified 1 475 bp fragment was cloned into the pTZ57R vector with InstAclone PCR Cloning Kit (Fermentas, Vilnius, Lithuania). The identity of the amplified product was confirmed by sequencing.

The following gene specific primers were designed from the sequence of the 1 475 bp fragment to perform 5' and 3' RACE using the SMART RACE cDNA kit (BD Biosciences). GSP1: 5'-GGT GGA ACC TGT TGG AAG AGG AGG CGG TCC-3' and GSP2: 5'-GCA CGC CAT TCT GGC TTA GGA GAG ATT GGG-3'. The 5' RACE and 3' RACE products were cloned into the pTZ57R vector and sequenced. To generate full-length cDNA, primers were designed from the 5' end of the 5' RACE product sequence and the 3' end of the

Received 14 February 2003, accepted 15 September 2003.

Abbreviations: PEPC - phosphoenolpyruvate carboxylase; RACE - rapid amplification of cDNA ends; RT-PCR - reverse transcriptase polymerase chain reaction.

* Author for correspondence; fax: (+65) 7792486, e-mail: zhang_xiaobo@hotmail.com

3' RACE product sequence. The template for this final PCR reaction was from the original first-strand RT-PCR step.

Results showed that the full-length cDNA encoding PEPC from *M. Yellow* is 3 450 bp in length with an open reading frame of 2 862 bp encoding 954 amino acids. The deduced amino acid sequence of *Mpepc1* shared 83 % identity with that of *pepc2* from sorghum, 82 % identity with those of *pepc1* and *pepc2* from maize, *pepc1* from sorghum, *pepc* from rice and sugarcane, 81 % with those of *pepc* from *Arabidopsis thaliana* and wheat (Table 1).

Table 1. Amino acid sequence identity of *Mpepc1* (accession number AF530570) with PEPC from other plant species calculated by *Align X* program of sequence analysis software *Vector NTI (InforMax)*, Bethesda, Maryland, USA.

Gene name	Accession number	Identity [%]
Sorghum- <i>pepc2</i>	X59925	83
Sorghum- <i>pepc1</i>	X55664	82
Maize- <i>pepc1</i>	AB012228	82
Maize- <i>pepc2</i>	X61489	82
Rice- <i>pepc</i>	AF271995	82
Sugarcane- <i>pepc</i>	M86661	82
Vanilla- <i>pepc</i>	X87148	82
<i>Arabidopsis thaliana-pepc</i>	AY074346	81
Wheat- <i>pepc</i>	AJ007705	81

RT-PCR cannot be used to quantify the level of gene expression. However, in this study, equal amounts of RNA were used for each RT-PCR reaction using the same RT-PCR kit and equal amounts of RT-PCR product

were loaded on agarose gels. The relative amounts of RT-PCR product (as shown by the intensity of signal on agarose gel) might be a good indicator for the relative levels of mRNA expression in different tissues of plants. The highest level of *Mpepc1* expression was found in mature leaves, although it was detectable in immature leaves and aerial roots of *M. Yellow* (Fig. 1). No expression was detected in the flowers. There is evidence that in all plants a constitutively expressed PEPC isoform (C₃ isoform, which catalyses mainly anaplerotic reactions) exists (Lepiniec *et al.* 1991) and in CAM plants a CAM-specific PEPC isoform is expressed which is responsible for primary CO₂ fixation of this photosynthetic pathway (Cushman *et al.* 1989). The strong expression of *Mpepc1* in the leaves (CAM-performing organ) suggests that *Mpepc1* might be the CAM-specific PEPC isoform in the constitutive CAM plant *M. Yellow*. Further study is needed on other PEPC isoforms in this plant.

Fig. 1. RT-PCR analysis of *Mpepc1* expression in different tissues of *M. Yellow*. ML - mature leaves, YL - young leaves, RT - aerial root tips, AR - aerial roots without root tips, FL - flower. About 0.2 µg of total RNA was used for each reaction. 0.01 cm³ RT-PCR product was loaded on each lane of 1 % agarose gel. The following primers were used for the RT-PCR reaction: RT1: 5'-GAG GCA GCC CCT GCA GCT GTG G-3' and RT2: 5'-TCA TAC AGA GCA GCG ATT CCT GAG TTG CCT-3'.

References

Cretin, C., Santi, S., Keryer, E., Lepiniec, L., Tagu, D., Vidal, J., Gadal, P.: The phosphoenolpyruvate carboxylase gene family in *Sorghum*: promoter structure, amino acid sequences and expression of genes. - *Gene* **99**: 87-94, 1991.

Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J.: Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. - *Plant Cell* **1**: 715-725, 1989.

Kawamura, T., Shigesada, K., Toh, H., Okumura, S., Yanagisawa, S., Izui, K.: Molecular evolution of phosphoenolpyruvate carboxylase for C₄ photosynthesis in maize: comparison of its cDNA sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function. - *J. Biochem.* **112**: 147-154, 1992.

Lepiniec, L., Keryer, E., Philippe, H., Gadal, P., Cretin, C.: *Sorghum* phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution. - *Plant mol. Biol.* **21**: 487-502, 1993.

Lepiniec, L., Santi, S., Keryer, E., Amiet, V., Vidal, J., Gadal, P., Cretin, C.: Complete nucleotide sequence of one member of the sorghum phosphoenolpyruvate carboxylase gene family. - *Plant mol. Biol.* **17**: 1077-1079, 1991.

Lepiniec, L., Vidal, J., Chollet, R., Gadal, P., Cretin, C.: Phosphoenolpyruvate carboxylase: structure, regulation and evolution. - *Plant Sci.* **99**: 111-124, 1994.

Yanagisawa, S., Izui, K., Yamaguchi, Y., Shigesada, K., Katsuki, H.: Further analysis of cDNA clones for maize phosphoenolpyruvate carboxylase involved in C₄ photosynthesis. - *FEBS Lett.* **229**: 107-110, 1988.