

Iron chlorosis in grafted sweet orange (*Citrus sinensis* L.) plants: physiological and biochemical responses

V. CHOULIARAS*, I. THERIOS*¹, A. MOLASSIOTIS* and G. DIAMANTIDIS**

Department of Agriculture, Laboratory of Pomology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece*

Department of Agriculture, Laboratory of Agricultural Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece**

Abstract

Fe deficiency was imposed in *Citrus sinensis* L. cultivars Valencia and New Hall grafted on *C. aurantium* and *Swingle citrumelo* rootstocks by the absence of Fe (-Fe) or by the presence of bicarbonate in the Hoagland nutrient solution. In Fe-deprived leaves total and active Fe concentration, and peroxidase and catalase activities were decreased while the ratios carotenoids/chlorophylls, P/Fe, and K/Ca were increased. Fe(III) chelate reductase activity was induced in (-Fe)-treated roots whereas it was depressed in bicarbonate-treated roots.

Additional key words: carotenoids, catalase, chlorophylls, Fe(III) chelate reductase, peroxidase.

Bicarbonate is one of the most important factors causing Fe chlorosis in plants grown on calcareous soils (Mengel *et al.* 1984). Enhanced Fe(III) reduction under Fe deficiency by the root Fe(III) chelate reductase (FCR) is the most typical feature of dicotyledonous and monocotyledonous species, with the exception of the graminaceous plants (Romera *et al.* 1991). Thus, determination of the FCR activity has been widely used as a screening technique for selecting Fe chlorosis tolerant genotypes. Fe-chlorotic leaves often have high Fe contents (Fe chlorosis paradox) (Morales *et al.* 1998) and thus the total leaf Fe contents appear to be not potentially useful in Fe nutritional studies. The activities of the Fe-containing metalloenzymes, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (PRX, EC 1.11.1.7), and catalase (CAT, EC 1.11.1.6) have been proposed as an indicator of environmental stress, including Fe deficiency (Nenova and Stoyanov 2000, Almansa *et al.* 2002). Furthermore, Fe deficiency may induce changes in regulation of cation uptake (Welch *et al.* 1993). Since Fe chlorosis is a widespread problem in citrus, the aim of this work was to find out how Fe deficiency is linked

with physiological and biochemical factors in grafted plants of citrus.

One-year-old sweet orange (*Citrus sinensis* L.) cvs. Valencia (V) and New Hall (NH) plants grafted on two-year-old *C. aurantium* (A) and *Swingle citrumelo* (*C. paradisi* × *P. trifoliata*; C) rootstocks were planted in plastic bags containing 3000 cm³ of sand/perlite mixture (1/1) and grown in a heated greenhouse (20 - 24 °C) from September to March in the Aristotle University farm of Thessaloniki, Greece. The experimental plants were irrigated every two days with 300 cm³ of Hoagland's nutrient solution (Hoagland and Arnon 1950). Six plants (replications) were included in each one of the six nutrient solutions treatments, as follows: 1) 20 µM Fe-EDDHA (pH 6.0) (+Fe) as control, 2) 0 µM Fe-EDDHA (pH 6.0) (-Fe), 3) 10 µM Fe-EDDHA + 0.5 g dm⁻³ CaCO₃ + 5 mM NaHCO₃ (pH 7.2) (bic₁), 4) 10 µM Fe-EDDHA + 0.5 g dm⁻³ CaCO₃ + 10 mM NaHCO₃, (pH 7.5) (bic₂), 5) 10 µM Fe-EDDHA + 0.5 g dm⁻³ CaCO₃ + 20 mM NaHCO₃ (pH 7.8) (bic₃), and 6) 10 µM Fe-EDDHA + 0.5 g dm⁻³ CaCO₃ + 40 mM NaHCO₃ (pH 8.2) (bic₄). NaHCO₃ and CaCO₃ were

Received 14 July 2003, accepted 15 October 2003.

Abbreviations: Car - carotenoids, CAT - catalase; Chl - chlorophyll; EDDHA - ethylenediamine-di-(o-hydroxyphenyl)-acetic acid; FCR - Fe(III) chelate reductase; PRX - peroxidase; SOD - superoxide dismutase.

¹ Corresponding author; fax: (+3) 2310 402705, e-mail: amolasio@agro.auth.gr

added to accelerate the Fe deficiency process. The experimental layout was a $2 \times 2 \times 6$ factorial with two cultivars, two rootstocks, and six nutrient solutions treatments. The degree of Fe chlorosis in young leaves was estimated according to Alcantara *et al.* (1988). Chlorophyll (Chl) content was estimated at the end of the experiment by extraction from leaf disks (0.77 cm^2) with 96 % ethanol in a water bath at 78°C , until complete discoloration of the disks. After Chl extraction the absorbance at 649 and 665 nm was measured, and Chl *a* and *b* contents were estimated according to the equations of Wintermans and Mots (1965). Carotenoids (Car) were extracted from six leaf disks by pestle and mortar, using cold ethanol, in a dark room. The absorbance of the extracts was measured at 425 and 437 nm. The content of Car was estimated according to the equations of Britton (1991).

For enzyme determination, a 200-mg sample of young leaves was homogenised in a cold mortar in a sixth-fold volume of 10 mM Na-phosphate buffer (pH 6.5) containing 2.5 % (m/v) insoluble polyvinylpolypyrro-

lidone (PVPP) and 1 M NaCl. After homogenization the mixture was centrifuged (15 000 g, 30 min, 4°C) and the supernatant was used as crude enzyme extract for peroxidase (PRX) and catalase (CAT) activities. PRX activity was assayed according to Ngo and Lenhoff (1980) in a *UV-1601 Shimadzu* (Japan) spectrophotometer at 590 nm. One unit of POD activity (U) was defined as the increase of one unit of absorbance per minute, under the assay conditions. CAT activity was measured according to the floating disc method (Wang 1995). One unit of CAT activity (U) was defined as the decomposition of $1 \mu\text{mol H}_2\text{O}_2 \text{ min}^{-1}$ at pH 7.0 and 25°C . The root Fe (III) chelate reductase activity was estimated according to Welch *et al.* (1993) and Albano and Miller (1996). Root tips of 5 - 8 mm length and 20 mg fresh mass were washed for 5 min with 0.2 mM $\text{CaSO}_4 \cdot 2 \text{ H}_2\text{O}$ and were placed in tubes containing 15 cm^3 of aerated solution consisted of 0.2 mM $\text{CaSO}_4 \cdot 2 \text{ H}_2\text{O}$, 0.1 mM Fe(III)-EDTA (ferric ethylene diamine-tetraacetate), and 0.3 mM $\text{Na}_2\text{-bathophenanthrolinedisulfonic acid}$ (BPDS). The solution was buffered at pH 5.5 with 5 mM

Table 1. The effect of Fe treatments (for explanation of treatments see the text) on total and active Fe, PRX, and CAT activities in citrus leaves, and root FCR activity of various scion and rootstock combinations (V \times A, V \times C, NH \times A, NH \times C). Means followed by the same letter in the same column are not significantly different (Duncan's multiple range test, $P \leq 0.05$).

Parameters	Treatment	V \times A	V \times C	NH \times A	NH \times C
Total Fe [mg kg^{-1} (d.m.)]	+Fe (control)	93e	81c	102e	88d
	-Fe	69c	67b	88d	52d
	bic ₁	81d	69b	75c	71c
	bic ₂	67c	66b	53b	42a
	bic ₃	52b	43a	45ab	49ab
	bic ₄	43a	40a	37a	40a
Active Fe [mg kg^{-1} (d.m.)]	+Fe (control)	58d	56d	60e	58e
	-Fe	40b	38bc	40c	39c
	bic ₁	49c	43c	52d	48d
	bic ₂	39b	41c	39c	41c
	bic ₃	34ab	32b	26ab	29b
	bic ₄	29a	24a	20a	17a
PRX [U g^{-1} (f.m.)]	+Fe (control)	5.8d	5.6c	6.2d	5.9e
	-Fe	4.2c	4.1b	4.3bc	3.9bc
	bic ₁	3.9bc	4.3b	4.5c	4.5d
	bic ₂	3.6b	4.0b	3.9ab	4.0c
	bic ₃	3.5ab	3.4a	3.7a	3.5ab
	bic ₄	2.9a	3.2a	3.5a	3.1a
CAT [U g^{-1} (f.m.)]	+Fe (control)	17.0e	15.6e	16.2d	15.9d
	-Fe	14.0c	13.8c	14.3c	14.0c
	bic ₁	14.5d	14.4d	14.5c	14.3c
	bic ₂	14.0c	13.6bc	14.2c	13.3b
	bic ₃	13.4b	13.2b	12.9b	13.0b
	bic ₄	12.9a	12.4a	11.8a	12.2a
FCR [$\mu\text{mol Fe}^{+2} \text{ g}^{-1}$ (f.m.) h^{-1}]	+Fe (control)	0.82e	0.79e	0.84e	0.74b
	-Fe	0.98f	0.82e	1.02f	0.81e
	bic ₁	0.74d	0.69d	0.71d	0.65c
	bic ₂	0.58c	0.52c	0.60c	0.52b
	bic ₃	0.46b	0.38b	0.44b	0.36a
	bic ₄	0.34a	0.28a	0.32a	0.32a

2-N-morpholino ethanesulfonic acid (MES). The tubes were incubated, in the dark, in a water bath at 23 °C, for 120 min. Root Fe (III) chelate reductase was estimated at 535 nm, using a molecular coefficient of absorbance 22.14 mmol⁻¹ cm⁻¹ (Welch *et al.* 1993). The control consisted of complete solution without roots.

For determination of inorganic elements, young leaves dried at 68 °C for 3 d were ground in a mill to pass a thirty mesh screen and 0.5 g of the ground tissue was dry ashed at 540 °C for 5 h. The ash was diluted to 3 cm³ of 6 M HCl and the filtrate was analysed for K, Ca, and Fe by atomic absorption spectroscopy (*Perkin Elmer 2340*, USA). The active Fe concentration was measured according to Guzman *et al.* (1986). P concentrations were estimated spectrophotometrically by the phospho-vanado-molybdate method. The statistical analysis was performed by the program *SPSS-10* (SPSS, Chigaco, USA).

At the end of the experiment (6.5 months after the initiation) typical symptoms of Fe chlorosis were noticed in the NaHCO₃-treated leaves, while slight Fe chlorosis symptoms were observed in the -Fe treatment in both the grafted cultivars (data not shown). The contents of total and active Fe in Fe-deprived leaves were decreased (Table 1). By contrast to total Fe, the active Fe was always negatively correlated to the degree of Fe chlorosis ($r = -0.922^{**}$, -0.934^{**} , -0.896^* , and -0.866^* for the scion and rootstock combinations V × A, V × C, NH × A and NH × C, respectively). Furthermore, in Fe-deprived leaves, PRX and CAT activities were depressed. The degree of Fe chlorosis was correlated with the activity of PRX ($r = -0.822^*$, -0.922^{**} , -0.913^{**} , and -0.811^* for

the combinations V × A, V × C, NH × A, and NH × C, respectively) and CAT ($r = -0.932^{**}$, -0.903^{**} , -0.925^{**} and -0.943^{**}). Hence, the enzyme activities proved to be a reliable indicator of Fe chlorosis for both orange cultivars grafted on two rootstocks. In (-Fe)-treated roots FCR activity was increased while it was decreased in bicarbonate-treated roots (Table 1). The addition of bicarbonate in the Hoagland nutrient solution increases the pH of the solution due to its pH buffering capacity. Therefore, it may trigger a decrease in FCR activity since its optimal pH is around 5.0 (Moog and Bruggemann 1994). Under Fe deprivation, an increase of the Car/Chl ratio was noticed (Table 2). A similar trend in the changes of Car and Chl contents was observed in the Fe-deprived sunflower leaves (Ranieri *et al.* 2001). According to Fernandez-Lopez *et al.* (1993) the Car/Chl ratio was increased in Fe chlorotic lemon leaves and Fe application had greater influence on Chl rather than on Car. Furthermore, in the Fe-deprivation treatments the P/Fe ratio was increased (Table 2). However, in the 40 mM NaHCO₃-treated leaves, although the degree of Fe chlorosis was higher than in the rest NaHCO₃ treatments, the P/Fe ratio was not high enough due to the reduction in P concentration in this treatment (data not shown). Contrary to Fernandez-Lopez *et al.* (1991), Fe chlorotic leaves showed an increase in K/Ca ratio (Table 2).

In conclusion, PRX, CAT, and FCR activities, active Fe concentrations, and the ratios Car/Chl, P/Fe, and K/Ca could be efficiently used in screening techniques and for early evaluation of Fe-nutritional status of citrus plants.

Table 2. The effect of Fe treatments (for explanation of treatments see the text) on Car/Chl, K/Ca, and P/Fe ratios in young citrus leaves of various scion and rootstock combinations (V × A, V × C, NH × A, NH × C). Means followed by the same letter in the same column are not significantly different (Duncan's multiple range test, $P \leq 0.05$).

	Car/Chl				K/Ca				P/Fe			
	V × A	V × C	NH × A	NH × C	V × A	V × C	NH × A	NH × C	V × A	V × C	NH × A	NH × C
+Fe	0.08a	0.09a	0.08a	0.09a	0.35a	0.36a	0.35a	0.32a	31.5a	35.8a	31.6a	32.1a
-Fe	0.09b	0.11b	0.09b	0.13c	0.52b	0.57e	0.44c	0.48cd	47.5d	48.7d	47.1c	42.1bc
bic ₁	0.10b	0.11b	0.09ab	0.11b	0.51b	0.47c	0.40b	0.39b	40.0b	44.8c	41.7b	41.5b
bic ₂	0.12c	0.12b	0.09ab	0.14c	0.50b	0.43b	0.42bc	0.43bc	49.3b	45.6cd	51.2d	44.9c
bic ₃	0.13c	0.17c	0.12c	0.16d	0.97d	0.45bc	0.50d	0.46c	67.3e	71.8e	55.6e	65.7d
bic ₄	0.15d	0.19d	0.15d	0.18e	0.64c	0.51d	0.55de	0.50cd	44.2c	41.0b	40.5b	42.9bc

References

Albano, J.P., Miller, W.B.: Iron deficiency stress influences physiology of iron acquisition in marigold (*Tagetes erecta* L.). - *J. amer. Soc. hort. Sci.* **121**: 438-441, 1996.

Alcantara, E., Romero, F.J., De la Guardia, M.M.: Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. I. Effect of bicarbonate and phosphate. - *Plant Soil* **130**: 115-119, 1988.

Almansa, M.S., Hernandez, J.A., Jimenez, A., Botella, M.A., Sevilla, F.: Effects of salt stress on superoxide dismutase activity in leaves of *Citrus limonum* in different rootstock-scion combinations. - *Biol. Plant.* **45**: 545-549, 2002.

Britton, G.: Carotenoids. - In: Charlwood, B.V., Banthorpe, D.V. (ed.): *Methods in Plant Biochemistry*. Pp. 493-515.

Academic Press, London 1991.

Fernandez-Lopez, J.A., Almela, L., Lopez-Roca, J.M., Alcaraz, C.: Iron deficiency in *Citrus limon*: effects on protochlorophyllase synthetic pigments and chlorophyllase activity. - *J. Plant Nutr.* **14**: 1133-1144, 1991.

Fernandez-Lopez, J.A., Lopez-Roca, J.M., Almela, L.: Mineral composition of iron chlorotic *Citrus limon* L. leaves. - *J. Plant Nutr.* **16**: 1395-1407, 1993.

Guzman, M., Urrestazaru, M., Romero, L.: Active and total iron in *Castanea sativa* and their relation to other nutrients. - *J. Plant Nutr.* **9**: 909-921, 1986.

Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. - *Calif. agr. Exp. Sta. Circular* **347**: 1-32, 1950.

Mengel, K., Breininger, T., Bulb, W.: Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soils. - *Plant Soil* **81**: 333-344, 1984.

Moog, P.R., Bruggemann, W.: Iron reductase systems on the plasma membrane - *Plant Soil* **165**: 241-260, 1994.

Morales, F., Grasa, R., Abadia, A., Abadia, J.: Iron chlorosis paradox in fruit trees. - *J. Plant Nutr.* **21**: 815-825, 1998.

Nenova, V.R., Stoyanov, I.G.: Effects of some growth regulators on young iron deficient maize plants. - *Biol. Plant.* **43**: 35-39, 2000.

Ngo, T., Lenhoff, H.: A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. - *Anal. Biochem.* **105**: 389-397, 1980.

Ranieri, A., Castagna, A., Baldan, B., Soldatini, G.F.: Iron deficiency differently affects peroxidase isoforms in sunflower. - *J. exp. Bot.* **52**: 25-35, 2001.

Romera, F.J., Alcantara, E., De La Guardia, M.D.: Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. II. Iron-stress mechanisms. - *Plant Soil* **130**: 121-125, 1991.

Wang, C.Y.: Effect of temperature preconditioning on catalase, peroxidase and superoxide dismutase in chilled zucchini squash. - *Postharvest Biol. Technol.* **5**: 67-76, 1995.

Welch, R.M., Norvell, W.A., Schaefer, S.C., Shaff, J.E., Kochian, L.V.: Induction of iron(III) and copper(II) reduction in pea (*Pisum sativum* L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? - *Planta* **190**: 555-561, 1993.

Wintermans, J.F., Mots, A.: Spectrophotometric characteristics of chlorophylls *a* and *b* and their pheophytins in ethanol. - *Biochim. biophys. Acta* **109**: 448-453, 1965.