

Combined effects of CO₂ and O₃ on antioxidative and photoprotective defense systems in needles of ponderosa pine

M. TAUSZ*, ***, D.M. OLSZYK**, S. MONSCHEIN*** and D.T. TINGEY**

*School of Forest and Ecosystem Science, University of Melbourne,
Water Street, Creswick, Victoria 3363, Australia**

*US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory,
Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA***

*Institut für Pflanzenwissenschaften, Karl-Franzens-Universität Graz,
Schubertstraße 51, A-8010 Graz, Austria****

Abstract

Ponderosa pine (*Pinus ponderosa* Dougl. ex Laws.) seedlings were exposed to near ambient or elevated CO₂ (average concentrations during the last growing season 446 versus 699 $\mu\text{mol mol}^{-1}$), combined with low or elevated O₃ for three seasons. Ozone exposure during the last growing season (accumulated dose above threshold 0.06 $\mu\text{mol mol}^{-1}$) was 0.05 versus 26.13 $\mu\text{mol mol}^{-1}$ h. Needles of the youngest age class were harvested after the dormancy period. Ozone exposure decreased needle contents of chlorophyll *a*, chlorophyll *b*, and ascorbate, and resulted in a more oxidized total ascorbate and a more de-epoxidized xanthophyll cycle pool irrespective of the CO₂ level. Trees under elevated CO₂ had a more oxidized glutathione pool and lower chlorophyll *a* content. Contents of glutathione, tocopherol, and carotenoids were not affected by the CO₂ or O₃ treatments. There were no interactive effects between elevated CO₂ and elevated O₃ on any of the parameters measured. The results suggest that elevated atmospheric CO₂ concentration does not compensate for ozone stress by increasing antioxidative capacity in ponderosa pine.

Additional key words: air pollution, ascorbate, glutathione, oxidative stress, pigments, *Pinus ponderosa*, xanthophyll.

Introduction

Responses of antioxidative defense systems are widely accepted and investigated biochemical markers of plant stress (Tausz *et al.* 2003). As a result, measurements of defense system components may provide a method for assessment of pollution effects (Heath 1999). In particular, antioxidative responses induced by O₃ have been extensively studied and reviewed (Polle 1998, see also *e.g.* Wieser *et al.* 2001, Bernardi *et al.* 2004).

An increased CO₂/O₂ ratio in the photosynthetic apparatus by elevated CO₂ may reduce the rate of active oxygen formation. On the other hand, down-regulation of protective pathways such as photorespiration or, in the long term, lower antioxidant concentrations, may make

plants more susceptible to oxidative stress (Karnosky 2003). Both CO₂-induced activation (Schwanz *et al.* 1996) and down-regulation (Polle *et al.* 1993) of antioxidant systems have been reported. Whereas in some studies chlorophyll (Tausz *et al.* 1996) and foliar N (Karnosky 2003) concentrations were lower with elevated CO₂, chlorophyll and carotenoid concentrations were higher in oak species exposed to long-term elevated CO₂ near natural CO₂-springs, than in similar trees growing further away from these springs (Schwanz and Polle 1998). Contradictory effects on foliar N concentrations of different Mediterranean species growing near such springs were also reported (Tognetti and Peñuelas 2003).

Received 23 February 2004, accepted 26 August 2004.

Abbreviations: A - antheraxanthin; DEPS - de-epoxidation state; V - violaxanthin; Z - zeaxanthin.

Acknowledgements: M. Tausz gratefully acknowledges a scholarship by the Austrian-American Education Commission (Fulbright Commission). The information in this document has been funded in part by the U.S. Environmental Protection Agency (EPA). It has been subject to the agency's peer and administrative review. It has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

* Author for correspondence; fax (+61) 3 5321 4166, e-mail: michael.tausz@uni-graz.at

Elevated CO₂ near the springs also increased ascorbic acid concentrations and reduced the redox state compared with control trees (Marabottini *et al.* 2001), while in another year and season of the year, lower ascorbate and higher glutathione concentrations were reported with elevated CO₂ for the same sites (Schwanz and Polle 1998).

Investigations on the interactive effects of combinations of O₃ and elevated CO₂ on plant antioxidative defense systems have been conducted since the early 1990s (Polle *et al.* 1993); but the picture emerging from these studies is still highly contradictory. While some authors concluded a protective effect of elevated CO₂ against ozone impact (Schwanz *et al.* 1996, McKee *et al.* 1997, Gaucher *et al.* 2003), others did not (Polle *et al.* 1993). When a protective effect was postulated, it might have been due to CO₂-induced activation of antioxidant systems, or to decreased stomatal conductance leading to decreased pollutant uptake (McKee *et al.* 1997). If elevated CO₂ leads to down-regulated defense systems, it will exacerbate ozone

effects (Karnosky 2003). Published results show the difficulties in comparing effects among different experimental conditions, across woody and herbaceous plants, and across evergreen or deciduous species. An understanding of interactive effects of CO₂ and O₃ on antioxidative defense capacity of plants is still a major knowledge gap (Karnosky 2003).

In the present work we determine the effects of elevated CO₂ and O₃ on antioxidative defense capacities in seedlings of ponderosa pine (*Pinus ponderosa* Dougl. ex Laws.). Several European conifers investigated in this respect earlier, such as Norway spruce [*Picea abies* (L.) Karst], European larch (*Larix decidua* L.), or stone pine (*Pinus cembra* L.) seem to be relatively resistant to ozone (Wieser and Havranek 2001), which leads to vague evaluations of ozone effects in European forests (Matyssek and Sandermann 2003). Ponderosa pine, in contrast, is among the most susceptible forest species to ozone, based on foliar injury (Miller 1983), growth reductions (Temple and Miller 1994), decreased photosynthetic capacities (Grulke 1999), or needle loss.

Materials and methods

The experiment was conducted in sun-lit chambers that track and control air and soil factors while maintaining natural environmental variability (Olszyk *et al.* 2001). Each chamber was 2 m wide, 1 m front-to-back, 1.3 to 1.5 m tall, on a 0.2 m high wooden base. The chamber surface area was 2 m² and enclosed volume was 3.2 m³. The mineral soil was an ashy, glassy Xeric Vitricry, probably of the Steiger series from the east side of the Oregon Cascade Mountains. Chamber air temperature and vapor pressure deficit levels were set at current ambient levels. More details on the chambers in Olszyk *et al.* (2001). There were 12 chambers, three for each CO₂ by O₃ combination treatment.

During the year prior to plant harvest and sampling of needles for this study (4 April 2000 - 3 April 2001) the average hourly CO₂ concentration in "ambient" CO₂ chambers was 446 ± 3 (mean ± SD) μmol mol⁻¹, and in elevated CO₂ chambers was 699 ± 6 μmol mol⁻¹. These averages were for 5 ambient and 6 elevated CO₂ chambers across all daily average values. They were essentially the same as the average concentrations of 443 and 717 μmol mol⁻¹ CO₂ for the ambient and elevated CO₂ chambers across the entire three years of the experiment (Olszyk *et al.* 2002). The CO₂ in ambient chambers was slightly (by about 20 μmol mol⁻¹) higher than in outside air to facilitate concentration control (Olszyk *et al.* 2001). Ozone was added to the chambers from mid-May through early-October when the trees were actively growing. Ozone concentrations in ambient air were low (Olszyk *et al.* 2001, 2002). Target O₃ levels were based on hourly O₃ data from the Midwestern

United States, with O₃ added continuously (24 h d⁻¹ and 7 d week⁻¹) following a pattern of varying high and low concentrations. Growing-season-long O₃ exposure was expressed as a single value, SUM06, which was the accumulation over the growing season of all hourly average values > 0.06 μmol mol⁻¹ (Lee *et al.* 1988). During the 2000 growing season (18 May - 7 October), prior to needle sampling, the SUM06 for elevated O₃ chambers was 26.13 ± 0.39 μmol mol⁻¹·h across six replicate chambers, and for low O₃ chambers was 0.05 ± 0.05 μmol mol⁻¹·h across five replicate chambers. From mid-October through mid-Spring, chamber O₃ concentrations simulated the low natural O₃ conditions. Because no O₃ was added and some ambient O₃ was removed from the air by chamber surfaces, this resulted in the same, low O₃ concentrations (nearly always < 0.06 μmol mol⁻¹ on an hourly basis) in all chambers.

One-year-old half-sib ponderosa pine (*Pinus ponderosa* Dougl. ex Laws.) seedlings were obtained from the US Forest Service nursery near Bend, Oregon, USA. The seed source was a tree exposed to low ambient O₃ on the east side of the Cascade Mountains. Seedlings were planted in the chambers (11 trees per chamber) on 8 April 1998 (full details in Olszyk *et al.* 2001). Watering was controlled throughout the year to provide a typical seasonal soil moisture cycle (wet winter and dry summer) as found in Pacific Northwest ponderosa pine forests. No fertilizer was added to the soil during this experiment, thus the seedlings relied on soil processes for nutrients. No chemical pesticides were used in the chambers.

Needles were harvested for analysis at the end of the

study on 4 April 2001, after three growing and three dormant seasons (Olszyk *et al.* 2002). We harvested needles after the dormant season to evaluate cumulative long-term effects of O₃ over the previous growing season, and to exclude potential transitory short-term effects of O₃ during the growing season itself. Needles were taken from the current age class, which developed during the summer of 2000. For each chamber, one fascicle (three needles) was taken from nearly every tree and all needles pooled to obtain one sample per chambers. The fascicles were in full sun, on the south-facing sides of the trees midway up the terminal shoot of the seedling.

Needle preparation and biochemical analyses were conducted as described in detail in Tausz *et al.* (2003). In brief, upon removal from the trees, needles were immediately frozen in liquid nitrogen, then freeze-dried and sealed in plastic bags with silica gel. Needle tissue was ground in a dismembrator (*Braun*, Melsungen, Germany), and stored frozen in humidity-proof plastic vials prior to analysis. The chlorophylls, carotenoids and xanthophylls were determined on acetone extracts of the needle dry powder with a HPLC gradient method. The violaxanthin, antheraxanthin, and zeaxanthin concentrations were summed and represented as V+A+Z. Tocopherol was measured on the same acetone extracts with an isocratic HPLC method using fluorometric detection. Determination of ascorbate and dehydroascorbate was done by an isocratic HPLC method with an ion-pairing reagent and photometric detection, and glutathione in its oxidized and reduced state was

measured after derivatization with the thiol specific fluorescent dye monobromobimane with a gradient HPLC method. The HPLC system consisted of automatic injector (*Midas 830, Spark Holland*, Emmen, The Netherlands), 2 analytical pumps (*SunFlow 100, SunChrom*, Friedrichsdorf, Germany) or 1 pump with gradient former (*GF 46, SunChrom*) and degasser (*K5002, Knauer*, Berlin, Germany), UV-vis (*SpectraFlow 550, SunChrom*) and fluorescence detector (*F1300, Hitachi*, Tokyo, Japan), and integration software (*CromStar, SCPA*, Stuhr, Germany). All separations were carried out on *Spherisorb S5 ODS2 250 × 4.6 mm* columns with precolumns *S5 ODS2 50 × 4.6 mm*; details on solvents, gradients, and detection settings are given in Tausz *et al.* (2003).

There were four treatments: ambient or elevated CO₂ with low or elevated O₃. Since needles from within individual chambers were pooled to one sample, replicate chambers were the experimental units for each treatment. Because of the small replication number [3 chambers, except for 2 for ambient CO₂ and low O₃ treatment due to loss of one chamber (Olszyk *et al.* 2001)] statistical evaluation of O₃, CO₂, and interactive O₃ × CO₂ effects was done by an enhanced Kruskal-Wallis test using data alignments [non-parametric analogon to a two-way ANOVA, according to the Hildebrandt method reported in Bortz *et al.* (1990)]. For the same reason data are presented as medians and median deviations, which are best suited for small replication numbers (Sachs 1992).

Results and discussion

Both chlorophyll *a* and *b* concentrations were depressed significantly by O₃ exposure (Table 1). Chlorophyll *a* concentration also was significantly decreased upon elevated CO₂, whereas all interaction effects O₃ × CO₂ were not significant. Concentrations of carotenoids and α-tocopherol were not affected by the treatments (Table 1). Neither elevated CO₂ nor elevated O₃ altered the concentration of xanthophylls. However, the de-epoxidation status [DEPS = (Z + 0.5 A)/(V + A + Z)] of the xanthophylls was significantly reduced for trees in elevated O₃.

Elevated O₃ caused a significant reduction in the total ascorbate concentration and increased the concentration of its oxidized form (Table 1). Glutathione concentrations were not changed by the CO₂ or O₃ treatments. However, glutathione was more oxidized in needles from CO₂-treated trees but not in the O₃-treated trees (Table 1).

Our seedlings responded similarly to mature field-grown ponderosa pine trees; concentrations of pigments, lipophilic and hydrophilic antioxidants were in the range of data from ponderosa pine needles collected in forests (Tausz *et al.* 1999a,b,c, 2001, 2002).

In previous studies, long-term O₃ exposures increased antioxidant pools and activities of antioxidant enzymes (Polle *et al.* 1993, Elvira *et al.* 1998, Alonso *et al.* 2001). In those studies, samples were taken directly after exposure, which does not distinguish between acute and possible long-term effects. The lack of an ozone effect on glutathione, tocopherol, or carotenoid pools in our study is not surprising as the ozone exposures were stopped about 6 months before the tissue was harvested for analysis, which allowed sufficient time for homeostatic re-adjustment processes to occur. However, the persistent ozone effects on ascorbate and dehydroascorbate concentrations in our study were unexpected and likely are examples of ozone carry-over effects (Andersen *et al.* 1997, Langebartels *et al.* 1998, Oksanen and Saleem 1999). Langebartels *et al.* (1998) proposed that ozone carry-over effects are caused by soluble and/or wall-bound compounds such as catechin, stilbenes and tyramine. These ozone-induced compounds contribute to endogenous stress leading to ozone symptoms.

In contrast to other antioxidative compounds studied in this paper (glutathione, tocopherol, carotenoids,

Table 1. Effects of CO_2 and O_3 on pigments and antioxidants in *Pinus ponderosa* needles. ACLO - ambient CO_2 + low O_3 ; ACEO - ambient CO_2 + elevated O_3 ; ECLO - elevated CO_2 + low O_3 ; ECEO - elevated CO_2 + elevated O_3 ; d.m. needle dry mass; V + A + Z - the sum of the violaxanthin, antheraxanthin and zeaxanthin pigments; DEPS (de-epoxidation state) is calculated as $(Z+0.5A)/(V+A+Z) \times 100$; DHA - dehydroascorbate; total GSH - total glutathione (reduced + oxidized); GSSG - oxidized glutathione. Medians \pm median deviations for 3 replicate chambers per treatment except for 2 replicate chambers for ACLO.

Parameter	Treatment				P-values of effects		
	ACLO	ACEO	ECLO	ECEO	CO_2	O_3	$\text{CO}_2 \times \text{O}_3$
Chlorophyll <i>a</i> [$\mu\text{mol g}^{-1}$ (d.m.)]	2.42 \pm 0.51	1.24 \pm 0.28	1.53 \pm 0.11	0.76 \pm 0.13	0.018	0.006	0.935
Chlorophyll <i>b</i> [$\mu\text{mol g}^{-1}$ (d.m.)]	0.75 \pm 0.09	0.49 \pm 0.08	0.66 \pm 0.02	0.51 \pm 0.04	0.584	0.006	0.923
Lutein [nmol g^{-1} (d.m.)]	360 \pm 81	296 \pm 29	340 \pm 2	358 \pm 38	0.201	0.361	0.909
Neoxanthin [nmol g^{-1} (d.m.)]	90 \pm 46	80 \pm 11	89 \pm 23	92 \pm 12	0.855	0.465	0.948
V+A+Z [nmol g^{-1} (d.m.)]	86 \pm 10	90 \pm 33	93 \pm 15	96 \pm 3	0.855	0.715	0.971
DEPS [%]	10 \pm 1	2 \pm 2	11 \pm 2	7 \pm 3	0.272	0.018	0.808
α -Carotene [nmol g^{-1} (d.m.)]	18 \pm 5	13 \pm 6	19 \pm 2	15 \pm 1	0.855	0.361	0.995
β -Carotene [nmol g^{-1} (d.m.)]	204 \pm 32	189 \pm 20	179 \pm 14	194 \pm 6	0.855	0.584	0.892
α -Tocopherol [nmol g^{-1} (d.m.)]	588 \pm 85	592 \pm 1	584 \pm 29	614 \pm 61	0.855	0.715	0.981
Total ascorbate [$\mu\text{mol g}^{-1}$ (d.m.)]	28 \pm 1	13 \pm 2	20 \pm 1	13 \pm 3	0.068	0.006	0.066
DHA [% of total]	16 \pm 2	33 \pm 1	23 \pm 1	35 \pm 5	0.201	0.006	0.394
Total GSH [nmol g^{-1} (d.m.)]	311 \pm 52	225 \pm 14	222 \pm 3	236 \pm 74	0.201	0.361	0.624
GSSG [% of total]	10 \pm 2	9 \pm 2	14 \pm 1	17 \pm 2	0.018	0.736	0.273

xanthophylls), ascorbate is present in the apoplast of leaf tissues, constituting a “first line of defense” detoxifying ozone in the cell walls; its apoplastic levels change in response to ozone exposure (Polle 1998, Smirnoff 2000, Bichele *et al.* 2000, Burkey *et al.* 2003). Ozone exposure leads to an increased oxidation of the ascorbate pool indicating that ascorbate regeneration can not keep up with ascorbate oxidation. Oxidation without subsequent regeneration to the reduced form will lead to degradation and loss of ascorbate. Previous studies found O_3 -related changes in the glutathione system, which is the main regeneration pathway for ascorbate (reviewed in DeKok and Tausz 2001). There are more possible explanations for the persistent ozone effects on ascorbate and dehydroascorbate concentrations; 1) the ozone treatment caused the formation of chemicals that are continuing to oxidize ascorbate or 2) the ozone treatment has altered membrane transport limiting the movement of ascorbate into the apoplast and the movement of dehydroascorbate to its site of reduction, or 3) ozone induced premature senescence resulted in the observed changes. However, leaf senescence is marked by increased tocopherol concentrations (Polle and Rennenberg 1994), which were not observed in the present study.

Furthermore, chlorophyll contents were clearly depressed upon O_3 exposure (Table 1) which is commonly regarded a biochemical damage symptom in connection with O_3 . An O_3 -induced reduction in chlorophyll has been seen in a number of other studies (*e.g.*, Polle *et al.* 1993, Elvira *et al.* 1998), but not for current year needles as we observed. In our study there were no visible needle symptoms of O_3 injury.

As in previous studies (Ormrod *et al.* 1999), CO_2 alone also depressed chlorophyll concentrations in ponderosa pine needles. This effect may be regarded an adaptation to higher internal leaf CO_2 concentrations (c_i) which decrease the need for more effective photosynthesis. Decreased chlorophyll concentrations may also be related to decreased foliar N contents commonly observed under elevated CO_2 (Karnosky 2003).

As summarized in the introduction, reports as to whether or whether not elevated CO_2 increases antioxidative defense capacity, are contradictory. In our experiment there were no hints towards of an increased antioxidative defense under elevated CO_2 . In contrast, the glutathione pool tended to be more oxidized, indicating a less effective regeneration of glutathione as observed under various stress conditions (Tausz 2001).

Consistent with the effects of the single CO_2 and O_3 stresses, the combination of CO_2 and O_3 did not reveal a mediation of O_3 effects, since no significant interactive effects of $\text{O}_3 \times \text{CO}_2$ on the antioxidant systems were observed. The O_3 effects that were observed (depressed ascorbate levels) occurred irrespective of CO_2 treatment. Since there was no effect on stomatal conductance from elevated CO_2 during the 2000 growing season when the leaves evaluated were exposed to O_3 (Olszyk *et al.* 2002), the antioxidant defense system results in this study reflected differences in leaf metabolism and not differences in internal O_3 exposure with different CO_2 treatments. Thus, based on the results of our study, a protective effect of elevated CO_2 towards O_3 due to an increased antioxidative defense capacity is unlikely in this sensitive forest species.

References

Alonso, R., Elvira, S., Castillo, F.J., Gimeno, B.S.: Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in *Pinus halepensis*. - *Plant Cell Environ.* **24**: 905-916, 2001.

Andersen, C.P., Wilson, R., Plocker, M., Hogsett, W.E.: Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings. - *Tree Physiol.* **17**: 805-811, 1997.

Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., Durante, M.: Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after ozone exposure. - *Biol. Plant.* **48**: 41-48, 2004.

Bichele, I., Moldau, H., Padu, E.: Estimation of plasmalemma conductivity to ascorbic acid in intact leaves exposed to ozone. - *Physiol. Plant.* **108**: 405-412, 2000.

Bortz, J., Lienert, G.A., Boehnke, K.: *Verteilungsfreie Methoden in der Biostatistik*. - Springer Verlag, Berlin 1990.

Burkey, K.O., Eason, G., Fiscus, E.L.: Factors that affect leaf extracellular ascorbic acid content and redox status. - *Physiol. Plant.* **117**: 51-57, 2003.

De Kok, L.J., Tausz, M.: The role of glutathione in plant reaction and adaptation to air pollutants. - In: Grill, D., Tausz, M., De Kok, L.J. (ed.): *Significance of Glutathione in Plant Adaptation to the Environment*. Pp. 185-208. Kluwer Academic Publishers, Dordrecht 2001.

Elvira, S., Alonso, R., Castillo, F.J., Gimeno, B.S.: On the response of pigments and antioxidants of *Pinus halepensis* seedlings to Mediterranean climatic factors and long term ozone exposure. - *New Phytol.* **138**: 419-432, 1998.

Gaucher, C., Costanzoc, N., Afifb, D., Mauffettea, Y., Chevriera, N., Dizengremel, P.: The impact of elevated ozone and carbon dioxide on young *Acer saccharum* seedlings. - *Physiol. Plant.* **117**: 392-402, 2003.

Grulke, N.E.: Physiological responses of ponderosa pine to gradients of environmental stress. - In: Miller, P.R., McBride, J.R. (ed.): *Oxidant Air Pollution Impacts in Montane Forests of Southern California*. Pp. 126-163, Springer-Verlag, New York 1999.

Heath, R.L.: Biochemical processes in an ecosystem: How should they be measured? - *Water Air Soil Pollut.* **116**: 279-298, 1999.

Karnosky, D.F.: Impacts of elevated atmospheric CO₂ on forest trees and forest ecosystems: knowledge gaps. - *Environ. Int.* **29**: 161-169, 2003.

Langebartels, C., Heller, W., Fuhrer, G., Lippert, M., Simons, S., Sandermann, H.: Memory effects in the action of ozone on conifers. - *Ecotoxicol. Environ. Safety* **41**: 62-72, 1998.

Lee, E.H., Tingey, D.T., Hogsett, W.E.: Evaluation of ozone exposure indices in exposure-response modeling. - *Environ. Pollut.* **53**: 43-62, 1988.

Marabottini, R., Schraml, C., Paolacci, A.R., Sorgona, A., Raschi, A., Rennenberg, H., Badiani, M.: Foliar antioxidant status of adult Mediterranean oak species (*Quercus ilex* L. and *Q. pubescens* Willd.) exposed to permanent CO₂-enrichment and to seasonal water stress. - *Environ. Pollut.* **113**: 413-423, 2001.

Matyssek, R., Sandermann, H.: Impact of ozone on trees: an ecophysiological perspective. - *Progress Bot.* **64**: 349-404, 2003.

McKee, I.F., Eiblmeier, M., Polle, A.: Enhanced ozone-tolerance in wheat grown at an elevated CO₂ concentration: ozone exclusion and detoxification. - *New Phytol.* **137**: 275-284, 1997.

Miller, P.R.: Ozone effects in the San Bernardino National Forest. - In: Davis, D.D., Millin, A.A., Dochinger, L. (ed.): *Air Pollution and the Productivity of the Forest*. Pp. 161-197, Izaak Walton League and Penn State, Old Main 1983.

Oksanen, E., Saleem, A.: Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (*Betula pendula* Roth). - *Plant Cell Environ.* **22**: 1401-1411, 1999.

Olszyk, D.M., Johnson, M.G., Phillips, D.R., Seidler, R.J., Tingey, D.T., Watrud, L.S.: Interactive effects of CO₂ and O₃ on a ponderosa pine plant/litter/soil mesocosm. - *Environ. Pollut.* **115**: 447-462, 2001.

Olszyk, D.M., Tingey, D.T., Wise, C., Davis, E.: CO₂ and O₃ alter photosynthesis and water vapor exchange for *Pinus ponderosa* needles. - *Phyton* **42**: 121-134, 2002.

Ormrod, D.P., Lesser, V.M., Olszyk, D.M., Tingey, D.T.: Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in douglas-fir seedlings. - *Int. J. Plant Sci.* **160**: 529-534, 1999.

Polle, A.: Photochemical oxidants: uptake and detoxification mechanisms. - In: De Kok, L.J., Stulen, I. (ed.): *Responses of Plant Metabolism to Air Pollution and Global Change*. Pp. 95-116, Backhuys Publishers, Leiden 1998.

Polle, A., Pfirrmann, T., Chakrabarti, S., Rennenberg, H.: The effects of enhanced ozone and enhanced carbon-dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (*Picea abies* L.). - *Plant Cell Environ.* **16**: 311-316, 1993.

Polle, A., Rennenberg, H.: Photooxidative stress in trees. - In: Foyer, C., Mullineaux, W.M. (ed.): *Causes of Photo-oxidative Stress and Amelioration of Defence Systems in Plants*. Pp. 199-218, CRC Press, Boca Raton 1994.

Sachs, L.: *Angewandte Statistik*. - Springer-Verlag, Berlin 1992.

Schwanz, P., Häberle, K.-H., Polle, A.: Interactive effects of elevated CO₂, ozone and drought stress on the activities of antioxidative enzymes in needles of Norway spruce trees (*Picea abies*, [L.] Karsten) grown with luxurious N-supply. - *J. Plant Physiol.* **148**: 351-355, 1996.

Schwanz, P., Polle, A.: Antioxidative systems, pigment and protein contents in leaves of adult mediterranean oak species (*Quercus pubescens* and *Q. ilex*) with lifetime exposure to elevated CO₂. - *New Phytol.* **140**: 411-423, 1998.

Smirnoff, N.: Ascorbic acid: metabolism and functions of a multi-faceted molecule. - *Curr. Opin. Plant Biol.* **3**: 229-235, 2000.

Tausz, M.: The role of glutathione in plant reaction and adaptation to natural stresses. - In: Grill, D., Tausz, M., De Kok, L.J. (ed.): *Significance of Glutathione in Plant Adaptation to the Environment*. Pp. 101-122, Kluwer Academic Publishers, Dordrecht 2001.

Tausz, M., Bytnarowicz, A., Arbaugh, M.J., Weidner, W., Grill, D.: Antioxidants and protective pigments of *Pinus ponderosa* needles at gradients of natural stresses and ozone in the San Bernardino Mountains in California. - *Free Radical Res.* **31**: S113-120, 1999a.

Tausz, M., Bytnarowicz, A., Arbaugh, M.J., Wonisch, A., Grill, D.: Biochemical response patterns in *Pinus ponderosa* trees

at field plots in the San Bernardino Mountains (Southern California). - *Tree Physiol.* **21**: 329-336, 2001.

Tausz, M., Bytnerowicz, A., Weidner, W., Arbaugh, M.J., Padgett, P.E., Grill, D.: Changes in free radical scavengers describe the susceptibility of *Pinus ponderosa* to ozone in Southern Californian forests. - *Water Air Soil Pollut.* **116**: 249-254, 1999b.

Tausz, M., Bytnerowicz, A., Weidner, W., Arbaugh, M.J., Padgett, P.E., Grill, D.: Pigments and photoprotection in needles of *Pinus ponderosa* trees with and without symptoms of injury. - *Phyton* **39**: 219-224, 1999c.

Tausz, M., De Kok, L.J., Stulen, I., Grill, D.: Physiological responses of Norway spruce trees to elevated CO₂ and SO₂. - *J. Plant Physiol.* **148**: 362-367, 1996.

Tausz, M., Padgett, P.E., Monschein, S., Bytnerowicz, A.: The effects of nitric acid on antioxidants and protective pigments in *Pinus ponderosa* needles. - *Phyton* **42**: 209-214, 2002.

Tausz, M., Wonisch, A., Grill, D., Morales, D., Jiménez, M.S.: Measuring antioxidants in tree species in the natural environment. From sampling to data evaluation. - *J. exp. Bot.* **54**: 1505-1510, 2003.

Temple, P.J., Miller, P.R.: Foliar ozone injury and radial growth of ponderosa pine. - *Can. J. Forest Res.* **24**: 1877-1882, 1994.

Tognetti, R., Peñuelas, J.: Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO₂ spring. - *Biol. Plant.* **46**: 411-418, 2003.

Wieser, G., Havranek, W.M.: Effects of ozone on conifers in the timberline ecotone. - *Trends Eur. Forest Tree Physiol. Res.* **2**: 115-125, 2001.

Wieser, G., Tausz, M., Wonisch, A., Havranek, W.M.: Free radical scavengers and photosynthetic pigments in *Pinus cembra* L. needles as affected by ozone exposure. - *Biol. Plant.* **44**: 225-232, 2001.