

Cadmium toxicity: the effect on macro- and micro-nutrient contents in soybean seedlings

G. DRAŽIĆ^{*1}, N. MIHAJLOVIĆ* and Z. STOJANOVIĆ**

*Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Zemun, Serbia and Montenegro**
*Institute of Veterinary Medicine of Serbia, 11080 Zemun, Serbia and Montenegro***

Abstract

The effect of Cd (10, 100, and 200 µM) on tissue contents of macronutrients (N, P, K, Ca, Mg) and micronutrients (Fe, Zn, Cu, Mn) was investigated in hydroponically grown soybean (*Glycine max*) seedlings. Concentration changes of analysed elements observed against increasing Cd accumulation indicated that acute Cd-phytotoxic effect monitored through chlorophyll content was not a consequence of nutrient deficiency.

Additional key words: *Glycine max*, growth parameters, leaves, roots.

General symptoms of Cd toxicity are leaf chlorosis, leaf and root necrosis and decrease of growth. One of the causes of Cd toxicity in plants is its interaction with essential elements (Sandhal *et al.* 2001, Mazen 2004). Available experimental reports address long-term effect of low Cd concentrations which induce a chronic stress, different from the one induced by short-term exposure to high concentrations of the pollutant (Larbi *et al.* 2002). The aim of the present study was to evaluate if the response to high Cd concentrations monitored through growth parameters and chlorophyll (Chl) content of soybean seedlings was directly correlated with a change in uptake and distribution of macro- and micro-nutrients.

Soybean plants (*Glycine maxima* L. cv. Nena) were germinated on wet filter paper in the dark (22 °C, 97 % relative humidity) after surface disinfection (5 min in 3 % H₂O₂). From day 4 the seedlings were cultivated hydroponically in nutrition solution of Römhild and Marschner (1981) under greenhouse conditions (average temperature 22 °C, day length of 14 h, average irradiance of 90 µmol m⁻² s⁻¹). After the plants reached the stage of fully developed leaves of the second node they were transferred into a fresh nutrition medium in which Cd was added at concentrations of 10, 100, and 200 µM. Control plants were grown in the same conditions without Cd. After 48 h the seedlings were harvested and fresh and dry masses were measured. Chl content was measured

according to Moran (1982). Dry plant material was ground and wet mineralized in the presence of H₂SO₄ and H₂O₂ for N determination, and in the presence of HNO₃ and H₂O₂ for determination of other elements. Concentration of P was determined by a spectrophotometric method (Chen *et al.* 1956). Nitrogen content was determined by micro-Kjeldahl method. Determination of K, Ca, Mg, Fe, Zn, Cu, Mn, and Cd contents was performed by atomic absorption spectrophotometry (Pye Unicam 192, Cambridge, UK) using *Certipur* (Merck, Darmstadt, Germany) standards.

Impact of high Cd concentrations used was primarily reflected in a significant Chl content decrease, in the first leaf starting with 10 µM Cd, and in the second leaf starting with 100 µM Cd. Besides, impairment of leaf water balance occurred that led to a significant decrease of leaf fresh mass (Table 1). At long-term exposure to lower concentrations of this heavy metal root and shoot growth rates declined in correlation with external Cd concentration, duration of the treatment, plant species or genotype, and in extreme cases root necrosis appeared. The impaired water balance was a consequence of decreased water uptake as well as increased transpiration (Poschenrieder *et al.* 1989). Potassium content decreased in roots and increased in leaves (Table 2), was probably a consequence of disturbed water balance.

Received 11 November 2003, accepted 24 May 2004.

Acknowledgements: This work has been supported by the Ministry of Science and Technology of the Republic of Serbia. Authors are grateful to Dr. Mirjana Srebić (Maize Research Institute, Zemun-Polje) for soybean cultivar seeds.

[†] Corresponding autor, fax: (+381) 11 618724, e-mail: gdrazic@inep.co.yu

Table 1. Fresh (FM) and dry (DM) mass of roots and leaves and chlorophyll *a+b* (Chl) content of soybean seedlings treated for 48 h with different Cd concentrations. Means of 5 samples \pm SD, *t*-test: significant difference at * - 0.5 %, ** - 0.1 % and *** - 0.05 % level.

Cd [μ M]	Root FM [mg plant $^{-1}$]	Root DM [mg plant $^{-1}$]	Leaf FM [mg plant $^{-1}$]	Leaf DM [mg plant $^{-1}$]	Chl, 1 st leaf [g kg $^{-1}$ (DM)]	Chl, 2 nd leaf [g kg $^{-1}$ (DM)]
0	19.62 \pm 1.42	10.06 \pm 0.64	138.74 \pm 10.80	19.82 \pm 1.44	45.23 \pm 3.22	42.23 \pm 3.88
10	20.94 \pm 1.67	10.17 \pm 0.84	124.16 \pm 6.92	18.54 \pm 1.38	21.43 \pm 1.76**	44.36 \pm 4.02
100	18.44 \pm 2.74	8.69 \pm 0.71	121.40 \pm 8.37*	18.46 \pm 1.82	14.05 \pm 1.87***	13.29 \pm 1.65***
200	17.64 \pm 3.54	7.69 \pm 1.98	102.72 \pm 7.66**	18.20 \pm 2.02	8.22 \pm 1.34***	9.87 \pm 1.12***

Table 2. Element contents in root and leaves of soybean seedlings Cd-treated for 48 h. Means of 3 biological and 3 chemical repetitions \pm SD, *t*-test: significant difference at * - 0.5 %, ** - 0.1 % and *** - 0.05 % level. ND - not detected, detection limit was 1 mg(Cd) kg $^{-1}$ (DM).

Element		Control	10 μ M Cd	100 μ M Cd	200 μ M Cd
N [% DM]	root	4.12 \pm 0.13	4.12 \pm 0.27	4.13 \pm 0.24	3.13 \pm 0.51
	leaf	5.60 \pm 0.24	5.63 \pm 0.41	5.92 \pm 0.36	6.22 \pm 0.55
P [% DM]	root	0.40 \pm 0.07	0.41 \pm 0.06	0.43 \pm 0.04	0.21 \pm 0.07**
	leaf	0.41 \pm 0.03	0.45 \pm 0.04	0.43 \pm 0.06	0.59 \pm 0.07*
K [% DM]	root	2.21 \pm 0.08	2.36 \pm 0.06	1.41 \pm 0.14**	1.45 \pm 0.21**
	leaf	2.80 \pm 0.09	2.30 \pm 0.11	3.06 \pm 0.36	3.95 \pm 0.45***
Ca [g kg $^{-1}$ (DM)]	root	3.60 \pm 0.14	3.41 \pm 0.17	3.15 \pm 0.23	2.26 \pm 0.27**
	leaf	3.78 \pm 0.11	3.35 \pm 0.17	3.27 \pm 0.22	3.39 \pm 0.28
Mg [g kg $^{-1}$ (DM)]	root	1.40 \pm 0.08	1.48 \pm 0.14	3.39 \pm 0.14***	3.06 \pm 0.37***
	leaf	5.47 \pm 0.67	4.72 \pm 0.55	5.04 \pm 0.74	5.13 \pm 0.89
Fe [g kg $^{-1}$ (DM)]	root	2.69 \pm 0.47	2.56 \pm 0.44	2.50 \pm 0.46	1.06 \pm 0.52***
	leaf	0.22 \pm 0.02	0.23 \pm 0.02	0.21 \pm 0.03	0.23 \pm 0.05
Zn [mg kg $^{-1}$ (DM)]	root	65.69 \pm 2.63	59.50 \pm 3.22	44.04 \pm 2.82**	38.50 \pm 3.45**
	leaf	71.49 \pm 7.24	57.68 \pm 5.78	68.00 \pm 6.88	63.59 \pm 7.24
Cu [mg kg $^{-1}$ (DM)]	root	242.18 \pm 13.76	185.43 \pm 23.26	104.24 \pm 15.64**	75.56 \pm 10.18***
	leaf	29.56 \pm 3.82	23.45 \pm 4.15	36.76 \pm 3.72	62.68 \pm 4.08***
Mn [mg kg $^{-1}$ (DM)]	root	12.81 \pm 0.67	8.24 \pm 0.92*	9.22 \pm 0.56*	6.60 \pm 0.34***
	leaf	31.82 \pm 2.26	23.07 \pm 1.78	23.72 \pm 2.68	28.34 \pm 3.42
Cd [mg kg $^{-1}$ (DM)]	root	ND	184.62 \pm 26.44	785.14 \pm 58.88	1445.26 \pm 89.74
	leaf	ND	2.14 \pm 0.78	113.16 \pm 15.62	212.36 \pm 18.78

Nitrogen and P contents decrease usually observed at long-term exposure to low Cd concentrations was not found after the short-term exposure to high concentrations of this toxic metal (Table 2). Contents of Ca and Fe in root were decreased under 200 μ M Cd, but were still within the range optimal for plant growth (Marschner 1995), and in the leaf they remained unchanged. This is in contradiction to the reports on leaf chlorosis that was attributed to a Cd-induced Fe deficiency (Wallace *et al.* 1992). Also, there was no Mg content decrease in leaf, which would naturally be associated with Chl degradation. Magnesium content was

increased in root in the presence of Cd which indicates that Mg participates in tolerance processes.

Contents of Cu, Zn, and Mn were decreased only in root (Table 2) which might be due to impaired uptake of these ions from the solution, their leaking from cells as a consequence of impaired membrane structure and function (Hernandez and Cooke 1997) or their redistribution within the plant because these elements are constituents of Cu,Zn superoxide dismutases that participate in protection against oxidative stress in leaf (Sandhalo *et al.* 2001).

References

Chen, T.S., Toribara, T.Y., Warner, U.: Microdetermination of phosphorus. - *Anal. Chem.* **28**: 1756-1758, 1956.

Hernandez, L.E., Cooke, D.T.: Modifications of the root plasma membrane lipid composition of cadmium-treated *Pisum sativum*. - *J. exp. Bot.* **48**: 1375-1381, 1997.

Larbi, A., Morales, F., Abadia, A., Gogorcena, Y., Lucena, J., Abadia, J.: Effects of Cd and Pb in sugar beet plants grown in nutrition solution: induced Fe deficiency and growth inhibition. - *Funct. Plant Biol.* **29**: 1453-1464, 2002.

Marschner, H.: *Mineral Nutrition of Higher Plants*. - Academic Press, London 1995.

Mazen, A.M.A.: Accumulation of four metals in tissues of *Cochrorus olitorius* and possible mechanisms of their tolerance. - *Biol. Plant.* **48**: 267-272, 2004.

Moran, R.: Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. - *Plant Physiol.* **69**: 1376-1381, 1982.

Poschenrieder, J.C., Gensé, B., Barceló, J.: Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. - *Plant Physiol.* **90**: 1365-1371, 1989.

Römhild, B., Marschner, H.: Effect of Fe stress on utilization of Fe chelates by efficient and inefficient plant stress. - *J. Plant Nutr.* **3**: 555-560, 1981.

Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants. - *J. exp. Bot.* **52**: 2115-2126, 2001.

Wallace, A., Wallace, G.A., Cha, J.W.: Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents. The special case of iron. - *J. Plant Nutr.* **15**: 1589-1598, 1992.