

Protein analysis of dwarfed transgenic rice plants overexpressing GA2-oxidase gene

M. HAJDUCH***, H. TANAKA*, Y. MORINAKA*, Y. OTAKE*, H. NAKAMURA*, T. KAYANO* and Y. KOGA-BAN*

*Plant Biotechnology Department, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602, Japan**

*Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O.Box 39A, SK-95007 Nitra, Slovak Republic***

Abstract

Using 2-D electrophoresis, we analyzed proteins from transgenic rice overexpressing gibberellin acid (GA) catabolic enzyme, GA2-oxidase. These results indicate eight specific proteins differentially expressed in the transformed rice stems of T₁ generation, but not in case of T₂ generation. Proteins isolated from different stages of leaves of T₁ generation showed no significant differences, except one-month-old leaf, where five differentially expressed proteins are visible.

Additional key words: dwarf plants, gene silencing, *Oryza sativa*, protein analysis, 2-D electrophoresis.

Gibberellins (GA) promotes various growth and developmental processes in higher plants. In recent years, cDNA clones encoding GA biosynthetic enzymes have been isolated from various plant species (Chiang *et al.* 1995, Lester *et al.* 1999, Martin *et al.* 1999). A number of GA-responsive mutants have also been isolated from maize, pea, tomato, *Arabidopsis* and rice (Hedden *et al.* 1997). Phenotypes caused by the reduced GA production in spontaneous mutants of *Arabidopsis* imply a role of GAs in stem elongation and flowering. The rice dwarf mutants in which GA is deficient have considerable agricultural significance (Sasaki *et al.* 2002). The overexpression of GA degradation enzyme genes, such as GA2-oxidase (EC1.14.11.13) could regulate the active GA content.

The aim of this work is to analyze proteins of transgenic rice expressing GA2-oxidase gene in comparison to those of non-transgenic rice. For this purpose, high-resolution two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) was applied, which is very useful for separating complex protein mixtures (O'Farrell 1979).

Previously we have isolated and characterized a cDNA, designated *Oryza sativa* GA2-oxidase 1 (*OsGA2ox1*) from rice (*Oryza sativa* L. cv. Nipponbare) that encodes a GA2-oxidase. Ectopic expression of the *OsGA2ox1* cDNA in transgenic rice inhibited stem elongation and the development of reproductive organs. These transgenic plants were deficient in endogenous GA1 (Sakamoto *et al.* 2001). From T₀ generation three transgenic plants (2-β 6,

Received 8 January 2004, accepted 30 November 2004.

Abbreviations: GA - gibberellin; IEF - isoelectric focusing; PAGE - polyacrylamide gel electrophoresis.

Acknowledgements: We thank Dr. Seibi Oka for helpful discussion and comments on the manuscript. This work was supported in part by a research project of an Identification and Analysis of Proteins for Gene Discovery and Elucidation of Functions of Useful Genes in Rice Genome from Ministry of Agriculture, Forestry and Fisheries, and also supported by a part of grant from the Program of Basic Research Activities for Innovative Biosciences. Martin Hajduch was supported by European Commission's specific research and technological development program "Confirming the International Role of Community Research" 1998-2002 (EU Fellowship to Japan). The authors are solely responsible for the content of this paper and it does not represent the opinion of the Community, and the Community is not responsible for any of use that might be made of date appearing herein.

** Corresponding author; e-mail: hajduch@savba.sk

2- β 7 and 2- β 8) showing medium dwarf phenotype were selected and their seeds were sown in a greenhouse.

For protein extraction, 200 mg of leaf segments were homogenized in 0.5 cm³ of lysis buffer containing 9.5 M urea, 2 % NP-40, 2 % ampholine (pH 3.5 - 10 and pH 5 - 8; equal amounts), 5 % mercaptoethanol, and 0.05 % polyvinylpyrrolidone (PVP-40), using a chilled glass mortar and pestle. The homogenates were transferred to a 1.5 cm³ microtube, and centrifuged at 18 500 g once for 5 min. The supernatant was transferred and then centrifuged for 10 min, and the resulting supernatant was used as the crude protein extract. All the above steps were carried out at 4 °C. Fifty mm³ of the supernatant was subjected to 2-D polyacrylamide gel electrophoresis (PAGE).

For the 2-D PAGE, isoelectric focusing (IEF) in the first dimension was carried out in a capillary glass tube of 13 cm length and 3 mm diameter. Briefly, the gel solution consisted of 10 % NP-40, 30 % (m/v) acrylamide, 9.5 M urea and an equal mixture of 2 % carrier ampholytes (pH 3.5 - 10 and 5 - 8). The sample overlay buffer consisted of 20 cm³ of half strength lysis buffer. Electrophoresis was carried out at 200 V for 30 min, followed by 400 V for 16 h and 600 V for 1 h. SDS-PAGE in the second dimension was performed using 15 % polyacrylamide gel and 5 % stacking gel at a constant current of 35 mA. The gels were stained with Coomassie Brilliant Blue. The 2D-PAGE experiments were repeated several times to confirm reproducibility, an important factor in this study.

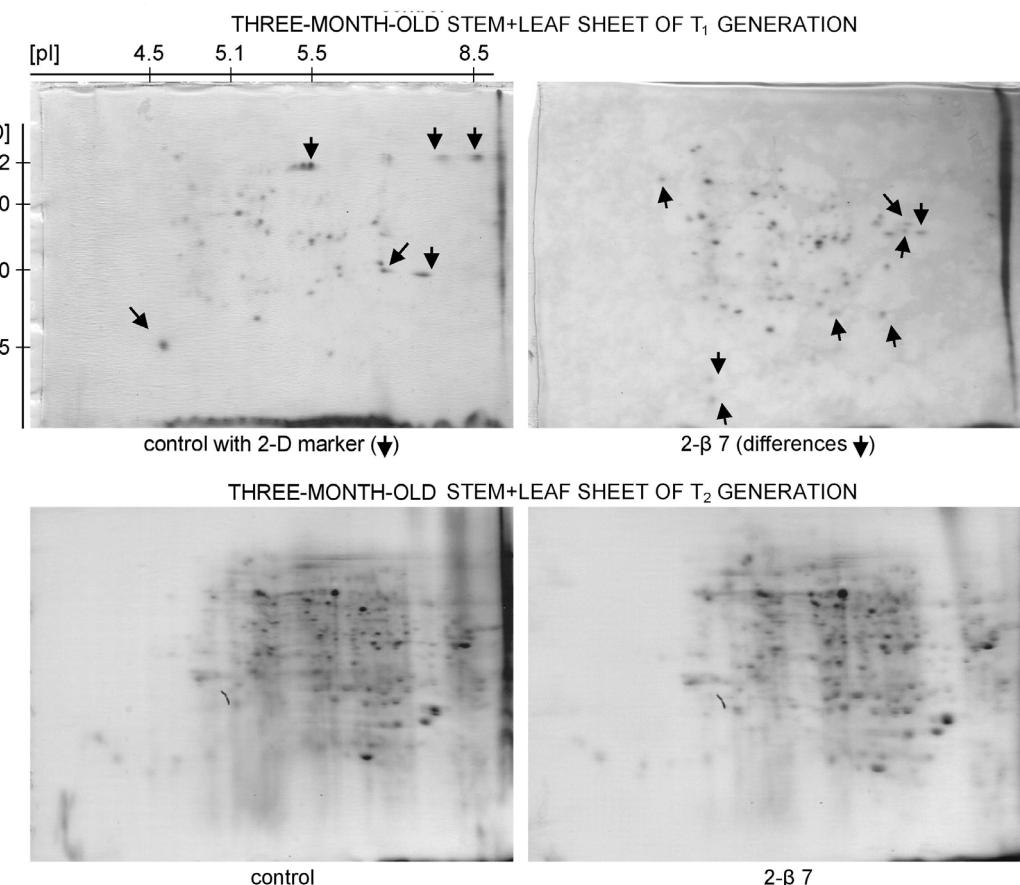


Fig. 1. Coomassie blue stained protein profiles of 2-DE. On upper two profiles, stem proteins of T₁ generation three-month-old control and 2- β 7 plants were loaded. On lower two profiles, stem and leaf sheath proteins of T₂ generation three-month-old control and 2- β 7 plants were loaded.

In case of T₁ generation plants, the stem proteins isolated from three-month-old 2- β 7 and control (cv. Nipponbare) plants were used for 2-D PAGE (Fig. 1). The control 2-D PAGE was performed with 2-D PAGE marker. These results indicate eight specific proteins differentially expressed in the transformed rice stems. We analyzed the T₂ generation plants also. The T₂ generation

seeds of 2- β 7 plants were sown to obtain the plant material. As the growth of the T₂ generation plants were not so good, it was hard to obtain enough amount of stem tissues for 2-D PAGE analysis. Therefore, we used the leaf sheath together with the stems to obtain enough amounts of proteins for analysis. The stems plus leaf sheaths were isolated from three-month-old plants of T₂ generation

2- β 7 and from control plants. Even though the results obtained on T₁ generation indicated differentially expressed proteins in transgenic plants, the results shown in Fig. 1 did not indicate significant differences between control and 2- β 7 plants in T₂ generation.

Proteins isolated from different stages of leaf blades of control and transformed dwarf plants (2- β 7) of T₁ generation at three different developmental stages (one-month-old, two-month-old and three-month-old) showed no significant differences, except one-month-old

leaf, where five differentially expressed proteins are visible (Fig. 2).

This work was carried out to analyze differences in protein expression between transformed rice plants and control. The stems and leaf sheaths isolated from three-month-old transformed plants were selected as main tissues for analysis, because most differences were predicted to appear in stems and probably in leaf sheaths as well. The overexpression of GA2-oxidase gene reduces GA content inducing dwarf phenotype of transformed

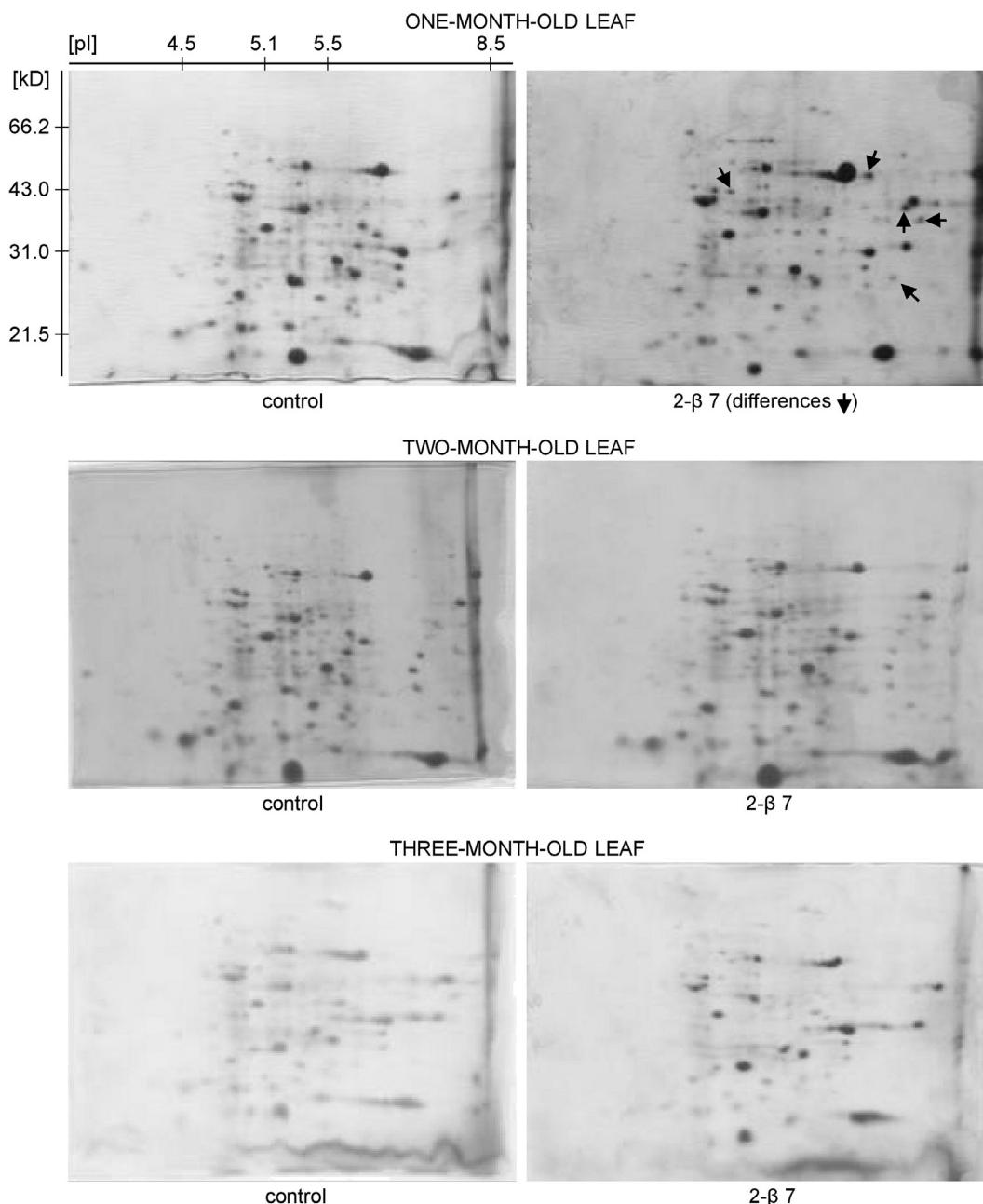


Fig. 2. Coomassie blue stained protein profiles of 2-DE. Leaf blade proteins of three different developmental stage (one-month-old, two-month-old and three-month-old) plants were loaded. Left side is control and right side is 2- β 7 plants of T₁ generation.

plants (Sakamoto *et al.* 2001). The leaves of one-month-, two-month-, three-month- and three-week-old plants were analyzed in this study as well. In total, three independent plant lines were selected from T_0 generation of transformed rice plants with GA2-oxidase gene.

The analysis of T_1 generation of 2- β 7 plants indicated some differentially expressed proteins in three-month-old stem and one-month-old leaf when compared to control. However, further analysis of T_2 generation of 2- β 7 (Fig. 1), did not reveal any visible changes in protein expression when 2-D PAGE was stained with CBB.

The transgenic plants in this paper are harboring the GA2-oxidase (molecular mass 40.6 kDa and pI 6.68) and hygromycin phosphotransferase genes (molecular mass 30 kDa and pI 4.77). The presence of inserted genes in the genome of analyzed plants was verified by PCR analysis

using specific primers for the hygromycin resistance gene (data not shown). However, we were not able to detect the introduced two proteins on our 2-D PAGE profile. It means, they were not present in such amounts that allow detection by CBB staining. The introduced foreign gene did not express at such level that is possible to detect by CBB staining, even in case when the transgenic plant had dwarf phenotype.

Based on this study it is possible to conclude, that in our case, the transformation of rice plant did not cause conspicuous changes in gene expression of proteins when analyzed using the 2-D PAGE method stained with CBB. However, this is only one part of the story, because the characterization of differentially expressed proteins needs to be done in the future.

References

Chiang, H.H., Hwang, I., Goodman, H.M.: Isolation of the *Arabidopsis* GA4 locus. - *Plant Cell* **7**: 195-201, 1995.

Hedden, P., Kamiya, Y.: Gibberellin biosynthesis: enzymes, genes and their regulation. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **48**: 431-460, 1997.

Hedden, P., Kamiya, Y.: Gibberellin metabolism: new insights revealed by the genes. - *Trends Plant Sci.* **5**: 523-530, 2000.

Lester, D.R., Ross, J.J., Smith, J.J., Elliott, R.C., Reid, J.B.: Gibberellin 2-oxidation and the SLN gene of *Pisum sativum*. - *Plant J.* **19**: 65-73, 1999.

Martin, D.N., Proebsting, W.T., Hedden, P.: The *SLENDER* gene of pea encodes a gibberellin 2-oxidase. - *Plant Physiol.* **121**: 775-781, 1999.

O'Farrell, P.H.: High resolution two-dimensional electrophoresis of protein. - *J. biol. Chem.* **250**: 4007-4021, 1979.

Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Iwahori, S., Matsuoka, M.: Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. - *Plant Physiol.* **125**: 1508-1516, 2001.

Sasaki, A., Ashihari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., Matsuoka, M.: Green revolution: a mutant gibberellin-synthesis gene in rice. - *Nature* **416**: 701-702, 2002.