

## Cadmium mitigates ultraviolet-B stress in *Anabaena dolium*: enzymatic and non-enzymatic antioxidants

P. BHARGAVA, N. ATRI, A.K. SRIVASTAVA and L.C. RAI\*

*Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India*

### Abstract

Impact of ultraviolet-B (UV-B) and Cd, applied individually and in combination, measured in terms of oxygen-evolution, chlorophyll (Chl) and protein contents, lipid peroxidation, and enzymatic and non-enzymatic antioxidants of *Anabaena dolium*, revealed a greater oxidative damage induced by UV-B than by Cd. While superoxide dismutase (SOD) showed a greater stimulation by UV-B than Cd, the activities of catalase (CAT) and glutathione reductase (GR) declined after UV-B treatment. Cd treatment, however, enhanced the activities of ascorbate peroxidase (APX) and GR. CAT activity increased at low but decreased at high dose of Cd. Increase in carotenoid (Car) content in UV-B treated cells suggested a shielding effect of Car against UV-B stress. A 15- and 10-fold rise in  $\alpha$ -tocopherol ( $\alpha$ -TOC) content at high dose of Cd and/or UV-B offered testimony to the antioxidant role of  $\alpha$ -TOC.

*Additional key words:*  $\alpha$ -tocopherol, ascorbate, antioxidative defence system, carotenoids, chlorophyll, oxidative damage.

UV-B and Cd are two important stressors resulting from stratospheric ozone depletion and increased industrialization, which affect all types of ecosystems including aquatic biota. Both these stresses adversely affect cyanobacteria by inhibiting growth, carbon fixation, nitrogen and phosphorus metabolism, and photosynthesis (Prasad and Zeeshan 2005). Although UV-B and Cd are essentially two different stressors, they generate reactive oxygen species (ROS) stimulating the antioxidative defence system in all organisms including cyanobacteria.

Some reports on the impact of UV-B and heavy metals on the antioxidative defence system of cyanobacteria include those of Mallick and Rai (1999) using Cu on SOD, CAT, GR and APX in *Anabaena dolium* and Nagalakshmi and Prasad (2001) on GSH mediated protection of Cd toxicity in *Scenedesmus*. Car has been reported to offer UV tolerance in cyanobacteria (Ehling-Schulz and Scherer 1999). Surprisingly not much is known about the combined effects of both stressors on the antioxidative defence system of cyanobacteria. Except

the report of Jiang and Zhang (2001) on the effect of abscisic acid on enzymatic and non-enzymatic antioxidants of maize seedling, no information is available on the comparative account of two antioxidants in protecting cyanobacteria from UV-B and Cd stress. Thus the present study is first of its kind to compare the enzymatic and non-enzymatic antioxidative strategies of *Anabaena* for defence against Cd and UV-B applied individually as well as in combination.

*Anabaena dolium* Bharadwaja was isolated from the rice field in Varanasi and grown axenically in a modified medium of Allen and Arnon (1955) buffered with Tris/HCl (pH 7.5) at temperature of  $24 \pm 2$  °C and irradiance of  $72 \mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$  PAR with a 14-h photoperiod. For UV-B treatment the culture suspensions ( $10 \text{ cm}^3$ ) were transferred to 75 mm glass Petri dish and exposed to artificial UV-B radiation (from UV-B lamp CAT No. 34408, *Fotodyne, Inc.*, New Berlin, WI, USA, giving its maximum output at 310 nm) in a temperature-controlled incubator. The doses selected for the study

Received 5 October 2005, accepted 2 May 2006.

*Abbreviations:*  $\alpha$ -TOC -  $\alpha$ -tocopherol; APX - ascorbate peroxidase; ASA - ascorbate; Car - carotenoid; CAT - catalase; Chl - chlorophyll; GSH - glutathione reduced; GR - glutathione reductase; MDA - malondialdehyde; PAR - photosynthetically active radiation; ROS - reactive oxygen species; SOD - superoxide dismutase; UV-B - ultraviolet B radiation.

*Acknowledgements:* Poonam Bhargava and Ashish Kumar Srivastava are thankful to UGC and CSIR for award of Junior Research Fellowships respectively. This study was sponsored by a CSIR project to L.C. Rai. We are thankful to the Head and Coordinator, CAS in Botany for facilities.

\* Corresponding author; fax: (+91) 542 2368174, e-mail: lcrail\_bhu@yahoo.co.in

were Cd<sub>1</sub> (0.02  $\mu$ M) and Cd<sub>2</sub> (1.0  $\mu$ M) and UV-B<sub>1</sub> (20 min) and UV-B<sub>2</sub> (60 min), which were found to be the LC<sub>50</sub> (lethal doses) of Cd and UV-B as determined by the method of Rai and Raizada (1985). The experimental setup included three independent sets: 1) cells treated with Cd for 24 h, 2) cells exposed to UV-B, and 3) cells pretreated with Cd for 24 h followed by UV-B exposure. All sets were then subjected to overnight incubation in dark. All the experiments were repeated thrice.

Total cell protein was estimated by the method of Bradford (1976). O<sub>2</sub>-evolution was measured with a Clark type polarographic O<sub>2</sub> electrode enclosed in a 10 cm<sup>3</sup> airtight reaction vessel and connected to an O<sub>2</sub> analyzer (digital O<sub>2</sub> system, model 10, *Rank Brothers*, Cambridge, UK). Lipid peroxidation was measured in terms of the total thiobarbituric acid reactive substances (TBARS) and expressed as equivalent of malondialdehyde (MDA) content as per Cakmak and Horst (1991) with minor modifications.

Total superoxide dismutase (SOD, EC 1.15.1.1) activity was assayed by monitoring the inhibition of reduction of nitroblue tetrazolium (NBT) according to the method of Gianopolitis and Ries (1977). Catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were determined by measuring the consumption of H<sub>2</sub>O<sub>2</sub>. The former at an coefficient of absorbance of 39.4 mM<sup>-1</sup> cm<sup>-1</sup> at 240 nm for 3 min (Aebi 1984) and the latter at coefficient of absorbance of 2.8 mM<sup>-1</sup> cm<sup>-1</sup> at 290 nm for 1 min (Nakano and Asada 1981). Glutathione reductase (GR, EC 1.6.4.2) was estimated by the method of Schaedle and Bassham (1977).

Chlorophyll (Chl) and carotenoid (Car) contents were calculated using the specific absorption coefficient (Jiang and Zhang 2001).  $\alpha$ -TOC was extracted as per Munné-Bosch *et al.* (1999) using HPLC column (300  $\times$  3.9 mm, C-18 column, *Waters Chromatography Division*, Millipore Corporation, Milford, MA, USA). Ascorbate was measured in terms of reduction of 2,6-dichlorophenolindophenol (DCPIP) (Keller and Schwager 1977). Total GSH was estimated by the 5,5' dithiobis-(2-nitrobenzoic acid) (DTNB)-glutathione reductase coupled

assay as described in Anderson (1985).

Results were statistically analyzed using one-way ANOVA followed by Pearson's correlation coefficient using *SPSS 10* software. There were three independent variables for each experiment.

The O<sub>2</sub> evolution showed a significant decrease following treatments with UV-B and Cd. However, a maximum decline of 85.4 % was observed with Cd<sub>2</sub> treatment as compared to control (Table 1). This can be explained in the light of the sensitivity of PS 2 to both Cd as well as UV-B (Rai *et al.* 1995). However, the decrease in protein and Chl contents was more pronounced for UV-B than Cd. The decline in protein content (Table 1) after UV-B and Cd exposure may be due to production of ROS, which is known to damage protein (Hernandez and Almansa 2002). However, Chl degradation by UV-B could be due to its high energy content and that by Cd may be due to inhibition of Chl biosynthesis (Larsson *et al.* 1998).

Perceptible lipid peroxidation (Table 1) was noticed following UV-B and Cd treatments; UV-B emerged as a stronger inducer of lipid peroxidation (2.0 and 3.4 fold increase after UV-B<sub>1</sub> and UV-B<sub>2</sub> treatments respectively) than Cd (46.3 and 89.8 % increase after Cd<sub>1</sub> and Cd<sub>2</sub> treatments respectively). UV-B induced production of toxic O<sub>2</sub> radicals may oxidize the fatty acids and upset the ratio of saturated/unsaturated fatty acid thereby disturbing the membrane fluidity (Kramer *et al.* 1991). In contrast to this Cd-induced lipid peroxidation is an indirect effect caused by H<sub>2</sub>O<sub>2</sub> accumulated consequent upon inhibition of various metabolic processes including carbon fixation, nitrogen and phosphorus metabolism, and photosynthesis (Prasad and Zeeshan 2005).

The SOD activity was enhanced by 2-fold after UV-B<sub>2</sub> exposure. A greater increase in SOD activity by UV-B than Cd (Fig. 1A) can be explained in the light of the work of Mackerness *et al.* (2001) where O<sub>2</sub><sup>-</sup> was the first ROS generated in response to UV-B stress. Since SOD is stimulated both by UV-B and Cd, the chances of O<sub>2</sub>-induced damage of cell should be minimum. Nonetheless, even the transient presence of the O<sub>2</sub><sup>-</sup> in the

Table 1. Effect of different doses of Cd and UV-B on oxygen evolution, chlorophyll, protein and MDA contents of *Anabaena doliolum*. Mean  $\pm$  SD,  $n = 3$ , \* - values significantly different at  $P < 0.05$  from corresponding controls.

| Treatments                         | Oxygen evolution<br>[mM (O <sub>2</sub> ) mg <sup>-1</sup> (protein) s <sup>-1</sup> ] | Chlorophyll<br>[mg dm <sup>-3</sup> ] | Protein<br>[mg dm <sup>-3</sup> ] | MDA<br>[mmol g <sup>-1</sup> (protein)] |
|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------------|
| Control                            | 0.344 $\pm$ 0.02                                                                       | 6.63 $\pm$ 0.10                       | 66.6 $\pm$ 1.00                   | 0.227 $\pm$ 0.03                        |
| UV-B <sub>1</sub>                  | 0.125 $\pm$ 0.01*                                                                      | 3.58 $\pm$ 0.08*                      | 51.6 $\pm$ 1.11*                  | 0.462 $\pm$ 0.01*                       |
| UV-B <sub>2</sub>                  | 0.100 $\pm$ 0.01*                                                                      | 2.82 $\pm$ 0.06*                      | 42.7 $\pm$ 2.02*                  | 0.780 $\pm$ 0.01*                       |
| Cd <sub>1</sub>                    | 0.147 $\pm$ 0.02*                                                                      | 4.33 $\pm$ 0.05*                      | 57.1 $\pm$ 1.52*                  | 0.332 $\pm$ 0.03*                       |
| Cd <sub>2</sub>                    | 0.050 $\pm$ 0.00*                                                                      | 4.31 $\pm$ 0.11*                      | 52.0 $\pm$ 2.00*                  | 0.430 $\pm$ 0.04*                       |
| Cd <sub>1</sub> +UV-B <sub>1</sub> | 0.153 $\pm$ 0.01*                                                                      | 2.67 $\pm$ 0.06*                      | 59.6 $\pm$ 1.00*                  | 0.470 $\pm$ 0.03*                       |
| Cd <sub>1</sub> +UV-B <sub>2</sub> | 0.144 $\pm$ 0.03*                                                                      | 2.44 $\pm$ 0.10*                      | 41.4 $\pm$ 1.50*                  | 0.630 $\pm$ 0.01*                       |
| Cd <sub>2</sub> +UV-B <sub>1</sub> | 0.175 $\pm$ 0.02*                                                                      | 4.21 $\pm$ 0.08*                      | 64.1 $\pm$ 2.47                   | 0.560 $\pm$ 0.05                        |
| Cd <sub>2</sub> +UV-B <sub>2</sub> | 0.139 $\pm$ 0.01*                                                                      | 1.85 $\pm$ 0.04*                      | 53.2 $\pm$ 1.56*                  | 0.640 $\pm$ 0.05*                       |

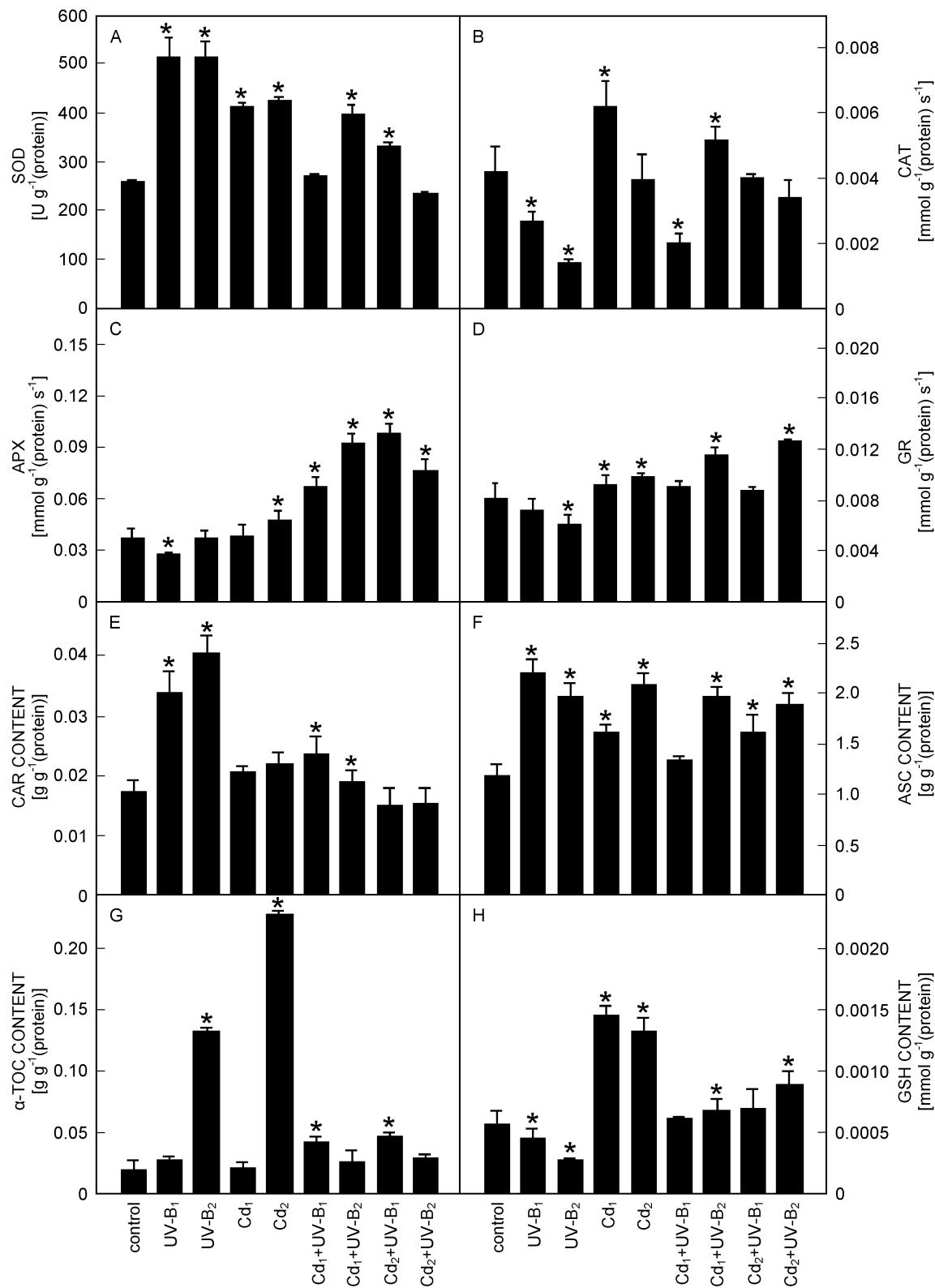



Fig. 1. Effect of different treatments of Cd and UV-B on superoxide dismutase, SOD (A), catalase, CAT (B), ascorbate peroxidase, APX (C), glutathione reductase, GR (D) activities and carotenoid, CAR (E), ascorbate, ASA (F),  $\alpha$ -tocopherol,  $\alpha$ -TOC (G) and glutathione reduced, GSH (H) contents of *Anabaena doliolum*. Means  $\pm$  SD,  $n = 3$ , \* - values significantly different at  $P < 0.05$  from corresponding controls.

cell have the potential to oxidize membrane fatty acids and initiate lipid peroxidation (Kramer *et al.* 1991). Under such circumstances it is essential to scavenge H<sub>2</sub>O<sub>2</sub> either by CAT or APX and GR.

Catalase was found to be sensitive to UV-B and higher dose of Cd (Cd<sub>2</sub>) (Fig. 1B). UV-B-induced inactivation of CAT could also be due to its photo-inactivation and degradation (Streb *et al.* 1993) due to sensitivity of its haem group. The inhibition of Cd can be explained on the basis of the following: Cd increases the production of peroxide which combines with CAT forming CAT-H<sub>2</sub>O<sub>2</sub> complex before its detoxification. This complex under low concentration of peroxide forms H<sub>2</sub>O and O<sub>2</sub> and at high concentration gives rise to OH<sup>·</sup> (Wirstam *et al.* 1999). Thus Cd-induced inhibition could be a part of avoidance of the formation of OH<sup>·</sup> and hence survival strategy of the cell.

APX showed a significant decline after UV-B<sub>1</sub> and GR after UV-B<sub>2</sub> treatment (Fig. 1C,D). However, Cd<sub>2</sub> enhanced the activity of APX (27.5 %) as well as GR (13.4 %). Although lipid peroxidation showed negative correlation with CAT activity, it was significantly correlated with SOD, APX and GR ( $P < 0.05$ ). A decline in APX *vis a vis* GR activity following UV exposure is in accordance with the reports of Strid *et al.* (1994). This decrease could be due to decrease in reduced glutathione (GSH) pool (Fig. 1H), responsible for the inhibition of NADPH requiring enzymes including GR (Mallick and Rai 1999). Further, Cd<sub>2</sub>-induced increase of APX finds support from the work of Nagalakshmi and Prasad (2001) in *Scenedesmus bijugatus* and can be explained on the basis of the report that H<sub>2</sub>O<sub>2</sub> is a systemic signal for *apx* gene (Karpinsky *et al.* 1999). GR stimulation by Cd can be explained in the light of its essentiality for GSH biosynthesis. Above results depict a differential stimulation of antioxidative enzymes by UV-B and Cd and revealed that at high dose of UV-B and Cd the enzymatic machinery could not provide adequate protection as reflected by a fall in chl a content and decrease in the rate of oxygen evolution (Table 1).

UV-B significantly increased the Car content by 80 and 133.3 % ( $P < 0.05$ ) in response to UV-B<sub>1</sub> and UV-B<sub>2</sub> treatments respectively (Fig. 1E). However, Cd failed to significantly affect the Car content. UV-B induced increase in Car content can be explained on the basis of the report of Campos *et al.* (1991) who observed UV-B-induced increase in 3-hydroxy-3 methyl glutaryl CoA reductase RNA responsible for the induction of Car. However, induction of Car by UV-B but not by Cd suggests a possible involvement of UV-B photoreceptor as known for *Nostoc commune* (Ehling-Schulz and

Scherer 1999).  $\alpha$ -TOC showed a 15 and 10-fold increase in its content after Cd<sub>2</sub> and UV-B<sub>2</sub> treatments, respectively (Fig. 1G). Increase in  $\alpha$ -TOC appears justified and essential for the cell in view of its known involvement in the prevention of lipid peroxidation, Chl photooxidation, thymine dimerization and formation of singlet oxygen (McVean and Leiber 1999).

Ascorbate was found to be increased after all the treatments registering maximum increase by 87.5 % after UV-B<sub>1</sub> treatment (Fig. 1F). Increase in ASA content of the test cyanobacterium following exposure to UV-B and Cd could be due to its requirement for scavenging superoxide anion, singlet oxygen, and peroxide. In aqueous phase of cell ASA can efficiently carry out regeneration of  $\alpha$ -TOC from  $\alpha$ -tocopheroxyl radical bound to the cell membrane (Beyer 1994). A significant ( $P < 0.05$ ) positive correlation between ASA and  $\alpha$ -TOC provides testimony to the above view. GSH on the other hand appeared sensitive to UV-B and showed a decline of 18.5 and 51.9 % in its content after UV-B<sub>1</sub> and UV-B<sub>2</sub> treatments (Fig. 1H). However, a rise of 2.6 and 2.3 fold in GSH content was observed after Cd<sub>1</sub> and Cd<sub>2</sub> treatments, respectively. Further, stimulation of GSH by Cd may be due to transcriptional activation of *gsh1* and *gsh2* genes coding for GSH (Xiang and Oliver 1998), which is required for phytochelatin synthesis and Cd sequestration. In addition to this, due to the presence of thiol groups, GSH can also act as a defence compound against oxidative stress. The sensitivity of GSH to UV-B could be because it absorbs in the range of 200 - 300 nm (Tyagi *et al.* 2003), leading to its oxidation.

When *A. doliolum* was exposed to the two stresses in combination, Cd-pretreated cells showed comparatively less lipid peroxidation and lesser inhibition of O<sub>2</sub>-evolution and protein content than by UV-B alone. Further, mild stimulation of SOD, decrease in the level of inhibition of CAT, greater stimulation of APX and GR by Cd + UV-B than UV-B alone was also observed. All the non-enzymatic antioxidants showed an increase in their content; this being less than that by UV-B alone.

Above results show that both enzymatic and non-enzymatic antioxidants were stimulated under Cd stress. Contrary to this, UV-B inhibited all the studied enzymatic parameters except SOD and APX, and stimulated the non-enzymatic compounds, *e.g.*, ASA, Car and  $\alpha$ -TOC. This observation lead us to conclude that the antioxidative defence system was differentially induced by UV-B and Cd. Comparatively less lipid peroxidation, recovery of O<sub>2</sub>-evolution, Chl and protein contents by the combination of UV-B + Cd than UV-B alone suggested Cd mediated protection of UV-B in the cyanobacterium.

## References

Aebi, H.: Catalase *in vitro*. - Methods Enzymol. **105**: 121-126, 1984.  
 Allen, M.B., Arnon, D.I.: Studies on the nitrogen fixing blue green algae. I. Growth and nitrogen fixation by *Anabaena cylindrica* Lemm. - Plant Physiol. **30**: 366-372, 1955.  
 Anderson, M.E.: Determination of glutathione and glutathione disulphide in biological samples. - Methods Enzymol. **113**: 548-555, 1985.

Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **50**: 601-639, 1999.

Beyer, R.E.: The role of ascorbate in antioxidant protection of biomolecules: interaction with vitamin E and coenzyme Q. - *J. Bioenerg. Biomemb.* **26**: 349-358, 1994.

Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantity of proteins utilising the principle of protein dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Cakmak, I., Horst, J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (*Glycine max*). - *Physiol. Plant.* **83**: 463-468, 1991.

Campos, J.L., Figueras, X., Piñol, M.T., Boronat, A., Tiburcio, A.F.: Carotenoid and conjugated polyamine levels as indicators of ultraviolet-C induced stress in *Arabidopsis thaliana*. - *Photochem. Photobiol.* **53**: 689-693, 1991.

Ehling-Schulz, M., Scherer, S.: UV-B protection in cyanobacteria. - *Eur. J. Phycol.* **34**: 329-338, 1999.

Gianopolitis, C.N., Ries, S.K.: Superoxide dismutase. 1. Occurrence in higher plants. - *Plant Physiol.* **59**: 309-314, 1977.

Hernandez, J.A., Almansa, M.S.: Short-term effects of salt stress on antioxidant systems and leaf water relation of pea leaves. - *Physiol. Plant.* **115**: 251-257, 2002.

Jiang, M., Zhang, J.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. - *Plant Cell Physiol.* **42**: 1265-1273, 2001.

Karpinsky, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullenax, P.: Systemic signaling and acclimation in response to excess excitation energy in *Arabidopsis*. - *Science* **284**: 654-657, 1999.

Keller, T., Schwager, H.: Air pollution and ascorbic acid. - *Europ. J. Forest Pathol.* **7**: 338-350, 1977.

Kramer, G.F., Norman, H.A., Krizek, D.T., Mirecki, R.M.: Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. - *Phytochemistry* **30**: 2101-2108, 1991.

Larsson, E.H., Bornman, J. F., Asp, H.: Influence of UV-B radiation and Cd<sup>2+</sup> on chlorophyll fluorescence, growth and nutrient content in *Brassica napus*. - *J. exp. Bot.* **49**: 1031-1039, 1998.

Mackerness, S.A.H., John, C.F., Jordan, B., Thomas, B.: Early signaling components in ultraviolet-B responses: Distinct roles for different reactive oxygen species and nitric oxide. - *FEBS Lett.* **489**: 237-242, 2001.

Mallick, N., Rai, L.C.: Response of the antioxidant systems of the nitrogen fixing cyanobacterium *Anabaena doliolum* to copper. - *J. Plant Physiol.* **155**: 146-149, 1999.

McVean, M., Leiber, D.C.: Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake. - *Mol. Carcinog.* **24**: 169-176, 1999.

Munné-Bosch, S., Schwarz, K., Alegre, L.: Enhanced formation of tocopherol and highly oxidized abietane diterpenes in water-stressed Rosemary plants. - *Plant Physiol.* **121**: 1047-1052, 1999.

Nagalakshmi, N., Prasad, M.N.V.: Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in *Scenedesmus bijugatus*. - *Plant Sci.* **160**: 291-299, 2001.

Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. - *Plant Cell Physiol.* **22**: 867-880, 1981.

Prasad, S.M., Zeeshan, M.: UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium *Plectonema boryanum*. - *Biol. Plant.* **49**: 229-236, 2005.

Rai, L.C., Raizada, M.: Effect of nickel and silver ion on survival, growth, carbon fixation and nitrogenase activity in *Nostoc muscorum*: Regulation of toxicity by EDTA and calcium. - *J. gen. appl. Microbiol.* **31**: 329-337, 1985.

Rai, L.C., Tyagi, B., Mallick, N., Rai, P.K.: Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacterium *Anabaena doliolum*. - *Environ. exp. Bot.* **53**: 177-185, 1995.

Schaedle, M., Bassham, J.A.: Chloroplasts glutathione reductase. - *Plant Physiol.* **59**: 1011-1012, 1977.

Streb, P., Michael-Knauf, A., Feierabend, J.: Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. - *Physiol. Plant.* **88**: 590-598, 1993.

Strid, A., Chow, W.S., Anderson, J.M.: UV-B damage and protection at the molecular level in plants. - *Photosynth. Res.* **39**: 475-489, 1994.

Tyagi, R., Kumar, A., Tyagi, M.B., Jha, P.N., Kumar, H.D., Sinha, R.P., Häder, D.P.: Protective role of certain chemicals against UV-B induced damage in the nitrogen-fixing cyanobacterium *Nostoc muscorum*. - *J. basic Microbiol.* **43**: 137-147, 2003.

Wirstam, M., Blomberg, M.R.A., Siegbahn, P.E.M.: Reaction mechanism of compound I formation in heme peroxidases: a density functional theory study. - *J. amer. chem. Soc.* **121**: 10178-10185, 1999.

Xiang, C., Oliver, D.J.: Gultathione metabolic genes coordinately respond to heavy metals and jasmonic acid in *Arabidopsis*. - *Plant Cell* **10**: 1539-1550, 1998.