

## ***Agrobacterium rhizogenes* mediated transformation of *Scutellaria baicalensis* and production of flavonoids in hairy roots**

R.K. TIWARI\*, M. TRIVEDI, Z.-C. GUANG, G.-Q. GUO\* and G.-C. ZHENG

*Institute of Cell Biology, School of life Sciences, Lanzhou University, Lanzhou-73000, Gansu, P.R. China*

### **Abstract**

Using different explants of *in vitro* seed grown *Scutellaria baicalensis* Georgi plantlets, hairy roots were induced following inoculation of *Agrobacterium rhizogenes* strains A<sub>4</sub>GUS, R1000 LBA 9402 and ATCC11325. The A<sub>4</sub>GUS proved to be more competent than other strains and the highest transformation rates were observed in cotyledonary leaf explant (42.6%). The transformed roots appeared after 15 - 20 d of incubation on hormone free Murashige and Skoog medium. Growth of hairy roots was assessed on the basis of total root elongation, lateral root density and biomass accumulation. Maximum growth rate was recorded in root:medium ratio 1:100 (m/v). Hairy root lines were further established in Gamborg B<sub>5</sub> medium and the biomass increase was maximum from 15 to 30 d. PCR, Southern hybridization and RT-PCR confirmed integration and expression of left and right termini-linked Ri T-DNA fragment of the Ri plasmid from A<sub>4</sub>GUS into the genome of *Scutellaria baicalensis* hairy roots. GUS assay was also performed for further integration and expression. All the clones showed higher growth rate than non-transformed root and accumulated considerable amounts of the root-specific flavonoids. Baicalin content was 14.1 - 30.0 % of dry root mass which was significantly higher than that of control field grown roots (18%). The wogonin content varies from 0.08 to 0.18 % among the hairy root clones which was also higher than in non-transformed roots (0.07%).

*Additional key words:* baicalin, genetic transformation, medicinal plants, wogonin.

### **Introduction**

*Scutellaria baicalensis* Georgi (Lamiaceae) is widely distributed in different regions of Russia, Japan, Korea and Mongolia. High biological activity of huang-qin root extract is determined by the presence of almost 70 flavonoids such as baicalin, baicalein, wogonin, wogonin 7-*o*-glucuronide, oroxylin A, and oroxylin A 7-*o*-glucuronide (Wang *et al.* 1994). Out of these, baicalin and wogonin are the most studied components (Zhou and Gu 1991, Jang *et al.* 2003). They are antioxidants and free radical scavengers (Shieh *et al.* 2000) and possess anti-allergic, anti-bacterial, anti-HIV, anti-hepatitis-B and anti-tumor activities. The natural plant population of this extremely important medicinal plant is over exploited for pharmaceutical preparations and therefore *in vitro* production as an alternative source has been attempted

(Yamamoto *et al.* 1986, Morimoto *et al.* 1995). However, the cultures tend to be genetically unstable and synthesize very low levels of useful secondary metabolites (Rhodes *et al.* 1990). In contrast, *Agrobacterium rhizogenes* mediated hairy root cultures exhibit stable and fast growth rate comparable to cell suspension culture, genetic and biochemical stability and increased production of secondary compounds (Giri and Narasu 2000). Moreover, roots can also be successfully cultured in large-scale bioreactors (Flores *et al.* 1999, Sévon and Oksman-Caldentey 2002). These transformed hairy root, can be produced by inoculation of plants with agropine strains of *A. rhizogenes* containing a T-DNA, divided into two regions, T<sub>L</sub> and T<sub>R</sub> (Huffman *et al.* 1984). The T<sub>L</sub> region of Ri plasmid contains eighteen open reading frames

*Received 2 January 2006, accepted 31 July 2006.*

*Abbreviations:* ags - agropine synthase; B5 medium - Gamborg B<sub>5</sub> medium; FM- fresh mass; HPLC - high performance liquid chromatography; MS medium - Murashige and Skoog medium; NT- non-transformed; PCR - polymerase chain reaction; Ri - root-inducing plasmid; T<sub>L</sub>- left-terminus DNA; T<sub>R</sub> - right-terminus DNA; YEB - yeast extract broth.

*Acknowledgments:* We thank Prof. D. Tepfer, INRA, France for kindly providing the *Agrobacterium rhizogenes* A<sub>4</sub>GUS strain. We also thank Dr. Simon Deroles, New Zealand Institute for Crop & Food Research, New Zealand, Dr. Mark Tepfer, International Center for Genetic Engineering and Biotechnology, Italy and Dr. S.Z. Korac, Institute for Biological Research, Belgrade for stimulating discussions. Financial assistance in the form of Post-doc fellowship provided by the China Post-Doctoral Research Foundation (No. 224-415-203) and PDF fund of Lanzhou University (No. 505-415-104), Lanzhou, China is gratefully acknowledged.

<sup>1</sup> Corresponding authors; fax: (+86) 931 8912561, e-mail: rajeshktindia@rediffmail.com and gqguo@lzu.edu.cn

(ORF) (Slightom *et al.* 1986). ORFs 10, 11, 12 and 15 represent the root locus, *i.e.*, *rolA*, *rolB*, *rolC* and *rolD*, respectively. Root loci (*rol*) have been found to be essential for hairy root induction (White *et al.* 1985, Jouanin *et al.* 1987). Among these *rolB* plays central and most important role while *rolA*, *rolC* and *rolD* promote the root formation synergistically (Aoki and Syono 1999). The  $T_R$ -DNA of the agropine-type Ri plasmid contains genes that are homologous to the *iaaM* and *iaaH* genes of the Ti T-DNA (Huffman *et al.* 1984). The agropine synthase (*ags*) gene responsible for opine biosynthesis in the transformed tissue are also located in  $T_R$  region of Ri plasmid (Binns and Tomashow 1988). The roots produced by subsequent transfer of T-DNA have been recognized as potential alternative sources of many secondary compounds in medicinally important plants as the genetic

transformation does not affect the natural root synthetic capacities (Flores and Medina-Bolivar 1995). The potential of hairy root of *Scutellaria baicalensis* have been investigated several time with respect to production of root specific flavones and flavonoids (Nishikawa *et al.* 1999, Zhou *et al.* 1997, Kuzovkina *et al.* 2001) but no data available on morphology and growth characteristics of hairy roots, time course of accumulation of biologically active compounds (baicalin and wogonin) and establishment of hairy root liquid culture. The aim of the present investigation was the transformation of *Scutellaria baicalensis* by four different *Agrobacterium rhizogenes* strains, establishment of hairy roots cultures, and stable integration of  $T_L$ -DNA and  $T_R$ -DNA and expression in the plant genome. The accumulation of flavonoids baicalin and wogonin in established hairy roots was also studied.

## Materials and methods

**Bacterial strains:** *Agrobacterium rhizogenes* strains A<sub>4</sub>GUS, R1000, LBA 9402 (Pompani *et al.* 1983) and ATCC11325 (Riker *et al.* 1930) were used to determine the transformation efficiency. Agropine-type strain A<sub>4</sub>GUS harbors pRiA<sub>4</sub> plasmid with GUS construct integrated into  $T_L$  region between the *rolC* and *rolD* genes (Tepfer and Casse-Delbart, 1987). GUS construct contains *uidA* sequence under the 70S promoter (enhancer-doubled 35S CaMV promoter), followed by NOS polyadenylation sequence. *A. rhizogenes* strain R1000 is an *A. tumefaciens* strain of C<sub>58</sub> chromosomal background that have been cured of Ti plasmid and has had Ri plasmid of pRiA<sub>4</sub>b conjugated in to it (Moore *et al.* 1979, White *et al.* 1985). Plasmid pRiA<sub>4</sub> of R1000 contains does *uidA* sequence in present study. Bacterial strain A<sub>4</sub>GUS, R1000 and LBA9402 were shaken at 28 °C in liquid YEB medium (Vervliet *et al.* 1975) supplemented with 100 mg dm<sup>-3</sup> neomycin, 50 mg dm<sup>-3</sup> neomycin and 50 mg dm<sup>-3</sup> rifampcine, respectively, whereas ATCC11325 was activated on YMB medium (Hooykas *et al.* 1975) for 3 d followed by shaking at 28 °C in liquid YMB liquid medium in dark. Activated bacterial cultures were collected by centrifugation for 10 min and resuspended in MS (Murashige and Skoog 1962) liquid medium containing 50 µm aceto-syringone. Bacterial cultures were shaken on for 4 h at 28 °C in rotatory shaker at 120 rpm before inoculation.

**Plant material and hairy root induction:** Hypocotyl, cotyledonary leaf, cotyledonary petiole (1-week-old) and young leaf (2-week-old) *in vitro* grown plants of *Scutellaria baicalensis* Georgi were pre-incubated on half-strength MS liquid media for 4 h and inoculated with different bacterial strains of *A. rhizogenes* (A<sub>4</sub>GUS, R1000, LBA9402 and ATCC11325) for hairy root induction. Pre-incubated explants were cut into small pieces and infected with the bacterial cultures separately ( $A_{600} = 0.8 - 1.0$ ) for 20 min. Explants were blotted dry on sterile filter-paper and co-culture onto hormone free MS media

containing 50 µm aceto-syringone. After 48 h of co-culture explants were rinsed with sterile water, blotted dry and transferred onto hormone free MS media containing 500 mg dm<sup>-3</sup> cefotaxime (Shanghai Sangon, Shanghai, China). After 8 d, hairy roots appeared on cut ends of explants; they were detached and cultured onto fresh 1/2 strength MS media containing 500 mg dm<sup>-3</sup> cefotaxime at 23 ± 1°C under dark. Hairy root cultures were transferred to fresh media every 3 weeks and maintained as separate independent clones.

**Growth study and initiation of hairy root liquid culture:** The growth of root clones transformed by *A. rhizogenes* strain A<sub>4</sub>GUS on solid B<sub>5</sub> medium was studied. Roots excised from intact non-transformed (NT) *in vitro* plantlets were used as controls since the uninfected controls did not produce roots. Four root tips [approx. 3 cm long; 0.2 g fresh mass (FM)] of each clone, harvested from approximately 3-week-old cultures were transferred to the same medium (20 cm<sup>3</sup>) in 9-cm Petri dishes and cultured for 35 d. Three Petri dishes were used for each clone. Total root elongation was recorded after 35 d. The number of lateral branches (number of roots per centimeter on the primary roots) was recorded and expressed as the lateral root density. The roots from each sample were washed with sterile water, blotted dry and the fresh mass (FM) determined.

To determine the effect of inoculum : medium ratio (1:50, 1:100, and 1:150 m/v), fastest growing hairy roots (200 mg) of clone emerged from A<sub>4</sub>GUS strain were transferred into MS, White's (White 1963), B<sub>5</sub> (Gamborg *et al.* 1968) and half strength MS + B<sub>5</sub> vitamin liquid media containing 500 mg dm<sup>-3</sup> cefotaxime on rotatory shaker (90 rpm) at 27 °C in dark. Data were taken after 10 and 15 d of culture. To time course for biomass accumulation (FM) an increase in FM was recorded at 5-d intervals for 5 weeks. The concentration of cefotaxime was gradually lowered and finally omitted after 8 weeks.

**GUS histochemical assay:** The GUS expression in transformed (A<sub>4</sub>GUS and R1000) and non-transformed roots was determined histochemically several times over a period of 1 year according to Jefferson (1987). The roots were placed in enough X-GLUC (5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid cyclohexylammonium salt; *AMRESCO*, Ohio, USA) solution and incubated at 37 °C for 12 h followed by washing with sterile water and examine under light microscope for detection of blue spots.

**DNA extraction and PCR amplification:** Total genomic DNA from the different clones of hairy roots was extracted by CTAB DNA isolation method (Khanuja *et al.* 1999) with minor modifications and subjected to PCR analysis. Plasmid DNA from *Agrobacterium rhizogenes* strains was isolated by alkaline lysis methods (Sambrook *et al.* 1989). Approximately 250 ng of genomic DNA was used as a template for PCR. DNA fragments were amplified using 2.5 U of Taq DNA polymerase (*Shanghai Sangon*) in a final volume of 0.03 cm<sup>3</sup>. In order to show the integration of T-DNA of *Ri* plasmid in the transformed roots, segments from both the T<sub>L</sub>-DNA (*rolB* gene) and T<sub>R</sub>-DNA (*ags* gene) regions were amplified. The pair of gene-specific primers used for amplifying *rolB* (780 bp) gene on the T<sub>L</sub>-DNA region were: 5'-ATG-GAT-CCC-AAA-TTG-CTA-TTC-CTT-CCA-CGA-3' and 5'-TTA-GGC-TTC-TTT-CTT-CAG-GTT-TAC-TGC-AGC-3' and primer pair 5'-CGG-AAA-TTG-TGG-CTC-GTT-GTG-GAC-3' and 5'-AAT-CGT-TCA-GAG-AGC-GTC-CGA-AGT-T-3', was used to amplify *ags* gene segment (1.6 kb) of the T<sub>R</sub>-DNA region. Non-transformed *S. baicalensis* root DNA was used as a negative control for PCR analysis. The amplification protocol for 780 bp *rolB* fragment was: a 3-min melting at 94 °C followed by 30 cycles of a 50 s melting at 94 °C, a 1 min annealing at 53 °C and a 1 min elongation at 72 °C and final elongation for 10 min at 72 °C. Amplification conditions for 1.6 kb T<sub>R</sub> (*ags*) fragment was a 3-min melting at 94 °C followed by 36 cycles of a 50 s melting at 94 °C, a 50 s annealing at 53 °C and a 50 s elongation at 72 °C and final elongation for 10 min at 72 °C. The pair of primers specific to the *virD1* sequence of *A. rhizogenes* used was: 5'-ATG-TCG-CAAGGA-CGT-AAG-CCC-3' and 5'-GGA-GTC-TTT-CAG-CAT-GGA-GCA-3'. Amplification of *virD1* gene (450 bp) was attempted to confirm the absence of bacteria in transformed root tissue. The amplification protocol for the *virD1* was: a 5 min melting at 95 °C followed by 25 cycles of a 1 min melting at 95 °C, a 1 min annealing at 52 °C, a 2 min elongation at 72 °C, and final elongation for 5 min at 72 °C. Besides histochemical GUS assay PCR amplification of *uidA* gene was also performed, on hairy root lines and non-transformed control roots to confirm the integration of *uidA* gene in transformed line that fail to react with GUS stain. Primers used for amplification of 697 bp fragment of *uidA* gene were 5'-TTA-TCT-CTA-TGA-ACT-GTG-CGT-CA-3' and 5'-TTG-GAC-ATA-CCA-TCC-GTA-ATA-A-3'. The amplification condition consisted of 1 min melting at 94 °C followed by 30 cycles of a 45 s melting at 94 °C, a

1 min annealing at 57 °C and a 2 min elongation at 72 °C and final elongation for 10 min at 72 °C. PCR products were analyzed by electrophoretic separation on 1 % agarose gels (m/v) in 0.5× TBE buffer and staining with ethidium bromide.

**Southern hybridization analysis:** Hairy roots clones were subjected to Southern analysis. The DNA isolated from untransformed root was used as a negative control. Southern blot analysis was performed as per Sambrook *et al.* (1989). Root DNA (10 µg) and 10 pg plasmid DNA was digested with *BamHI* (*TaKaRa Biotechnology*, Beijing, China) and fractionated on a 1.0 % (m/v) agarose gel. The DNA was then transferred to total blot N+ nylon membranes (*AMRESCO*) by capillary transfer for 20 h. The probe for *rolB* genes were generated by PCR method described above and purified by *TaKaRa* agarose Gel DNA purification kit *ver2.0*. Purified PCR products were labeled with- $\alpha$ [<sup>32</sup>P]-dCTP by using *TaKaRa* random priming kit according to manufacturer's instruction. Hybridization was carried out at 42 °C for 16 h. The membrane was washed with 50 cm<sup>3</sup> pre-warmed buffer: 1) twice with 2× SSC+ 0.1 % (m/v) sodium dodecyl sulphate (SDS) at 42 °C, 2) twice with 1× SSC+ 0.1 % SDS, at 42 °C, 3) twice with 0.5× SSC+ 0.1 % SDS at 65 °C, and 4) twice with 0.1× SSC + 0.1 % SDS at 65 °C for 10 min each. The blots were exposed to *Kodak X-Omat* film at -70 °C for 4 d.

**Reverse polymerase chain reaction (RT-PCR):** Total RNA was extracted from hairy root clones by CTAB and PVP method (Salzman *et al.* 1999). Approximately 0.6 µg total RNA of each hairy root line was subjected to RT-PCR analysis, according to manufacturer's instruction, by using one step RT-PCR kit (*M-MuLV* provided by *Shanghai Sangon*). The pair of gene-specific primers used for 780 bp fragment of *rolB* gene on the T<sub>L</sub>-DNA region were: 5'-ATG-GAT-CCC-AAA-TTG-CTA-TTC-CTT-CCA-CGA-3' and 5'-TTA-GGC-TTC-TTT-CTT-CAG-GTT-TAC-TGC-AGC-3'. RT-PCR condition for 780 bp *rolB* fragment was: a 37 °C for 30 min followed by 3 min melting at 94 °C followed by 30 cycles of a 50 s melting at 94 °C, a 1 min annealing at 53 °C and a 1 min elongation at 72 °C and final elongation for 10 min at 72 °C. RNA sample of each line was tested for the presence of contaminating DNA by PCR amplification with same primer pair and Taq-DNA polymerase. The amplified fragments were separated using electrophoresis on 1 % agarose gel with DNA marker and visualized with ethidium bromide staining under UV radiation.

**Total alkaloid extraction and high-performance liquid chromatography analysis:** In order to determine the time course for production of flavonoids baicalin and wogonin in dry root sample, we selected the fast-growing clone (HQ-16) and analyzed in B<sub>5</sub> liquid medium at 1:100 inoculum:medium ratio. Three replicates of each culture type were removed for analysis every 5 d. All 6 selected

root clones was also subjected to alkaloid analysis at the day when maximum alkaloid accumulation was determined. Hairy roots were carefully cleaned and dried in a hot air oven at about 40 °C for three days. Extraction of total alkaloid and HPLC analysis for flavonoids, baicalin and wogonin was carried out by the method of Yang *et al.* (2002) with minor modifications. Analysis was performed on reverse-phase HPLC (*Shimadzu, LC-4A*,

Japan) with C<sub>18</sub> column (*Water Co., USA*). The mobile phase (methanol:water:acetic acid 41:59:0.2) was pumped at a flow rate of 1.0 cm<sup>3</sup> per min. The cycle time of analysis was about 45 min. The compound was identified on the basis of its retention time and the comparison of UV spectra (254 nm) with the authentic standard. Quantification was repeated three times for each root line.

## Results and discussion

**Establishment of hairy root cultures:** Hairy roots appeared from deeply wounded sites after 15 - 26 d of inoculation from different explants with A<sub>4</sub>GUS, d R1000 and LBA9402 strains of *A. rhizogenes*. Hairy roots, in contrast to untransformed roots, grow autonomously in PGR-free medium showing a loss of gravity response. No adventitious root was formed from control explants. Strain ATCC11325 failed to induce roots from any of the

Table 1. Frequency of hairy root induction at the site of infection on different explants by different *Agrobacterium rhizogenes* strains in *Scutellaria baicalensis*. Means ± SE, n = 30. No response was found with ATCC11325 strain.

| Strain  | Explant        | Hairy roots [%] | Root emergence [d] |
|---------|----------------|-----------------|--------------------|
| A4GUS   | hypocotyl      | 26.4 ± 2.0      | 18 ± 1.3           |
|         | cotyl. leaf    | 42.6 ± 3.0      | 15 ± 1.2           |
|         | cotyl. petiole | 8.4 ± 0.6       | 23 ± 1.2           |
|         | young leaf     | 6.7 ± 0.4       | 25 ± 0.9           |
| R1000   | hypocotyl      | 8.7 ± 0.4       | 19 ± 0.5           |
|         | cotyl. leaf    | 23.3 ± 1.6      | 17 ± 0.7           |
|         | cotyl. petiole | 0               | -                  |
|         | young leaf     | 0               | -                  |
| LBA9402 | hypocotyl      | 0               | -                  |
|         | cotyl. leaf    | 7.4 ± 0.8       | 26 ± 1.6           |
|         | cotyl. petiole | 0               | -                  |
|         | young leaf     | 0               | -                  |

explants used (Table 1) whereas the transformation efficiency with LBA9402 was very low compare to other strains. However R1000 and A<sub>4</sub>GUS strains showed different level of transformation frequency and A<sub>4</sub>GUS proved to be more competent than R1000. The highest transformation rates were observed in cotyledonary leaf with strain A<sub>4</sub>GUS (42.6 %), with strain R1000 23 %, LBA9402 7.4 %, and 15, 17 and 26 d, respectively, was necessary for root emergence. Hypocotyl also proved to be susceptible explant to A<sub>4</sub>GUS (26.4 %) and R1000 (8.7 %). Though A<sub>4</sub>GUS strain proved to be susceptible to all the explants used, besides cotyledonary leaf and hypocotyl the transformation rate was low. Influence of bacterial strains on transformation frequency has been documented earlier in different plant species (Zehra *et al.* 1999). Strains R1000 and A<sub>4</sub>GUS behave differently in present study

because they have different chromosomal virulence genes (see Materials and methods). It was observed that most hairy roots emerged from the deep wounded sites rather than mere scratching but this phenomenon was not investigated further. It was hypothesized that the cell which contain high contents of auxin and sucrose are ideal targets for hairy root induction (Nilsson and Olsson 1997). Since the phloem cells, positioned deep in plant organs, are suppose to have high sucrose and auxin contents, they could be the target of *A. rhizogenes*. This might be the possible explanation of the above observation.

Table 2. GUS activity in transformed and non-transformed (control) roots by histochemical GUS assay and PCR amplification in GUS negative explants.

| Strain             | Number of explants | GUS positive after 7 d | after 2 months | PCR [%] |
|--------------------|--------------------|------------------------|----------------|---------|
| A <sub>4</sub> GUS | 72                 | 58                     | 32             | 100     |
| R1000              | 5                  | 0                      | 0              | 0       |
| Control            | 10                 | 0                      | 0              | 0       |

**GUS histochemical assay:** All the lines induced by A<sub>4</sub>GUS were subjected to GUS histochemical assay to determine the potential of *Scutellaria baicalensis* to react with GUS stain (Table 2). At least 3 root tips of each line were stained after 7 and 60 d. Later, all the lines failed to react with GUS stain, were subjected to PCR analysis for *uidA* gene. Blue spots were observed only in 58 out of 72 lines tested after 7 d. However, the intensity of blue stain varied from faint to intense (Fig. 1). Root tip and central cylinder showed the highest intensity of coloring in different root. Interestingly the number of GUS positive lines reduced to 32 after 60 d of testing. However, all the tested 10 lines which failed to GUS reaction showed positive PCR amplification of *uidA* fragment. These results indicated the silencing of GUS gene during the course of growth and tissue development. Roots emerged from R1000 did not show blue coloring. Control root did not show intrinsic GUS like activity indicated that there is no endogenous GUS activity present in the root tissue of *Scutellaria baicalensis* and *uidA* gene can be used as marker in further studies related to *Scutellaria baicalensis* transformation experiments.

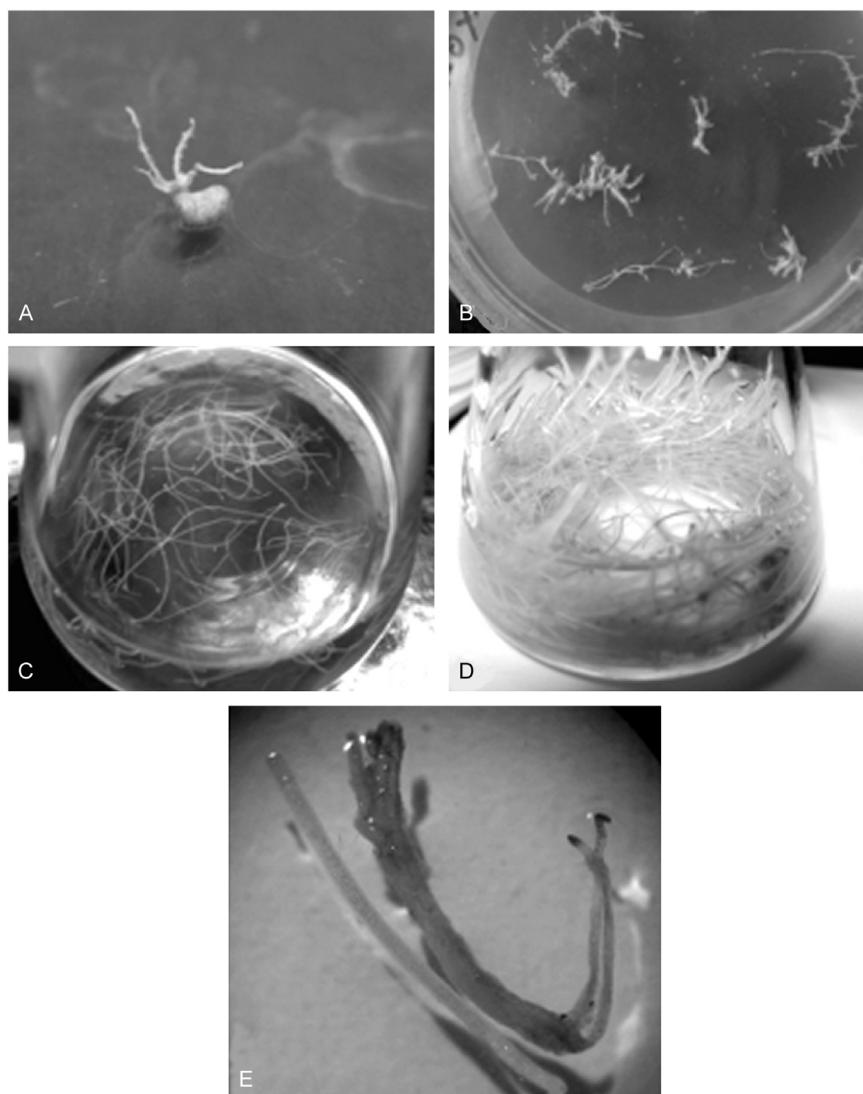



Fig. 1. Hairy root induction in *Scutellaria baicalensis*. A - Hairy root induction in infected explants, B - hairy root in semi solid culture medium, C and D - liquid cultures of hairy roots, E - one week old hairy roots showing positive GUS staining.

**Molecular analysis of transgenic hairy roots:** Initially all lines produced by A<sub>4</sub>GUS and R1000 were maintained (Fig. 1). Further study was carried out on hairy root clones of A<sub>4</sub>GUS only as both R1000 and A<sub>4</sub>GUS strains contain same pRiA4 plasmid and the transformation rate of A<sub>4</sub>GUS was found higher than R1000. Randomly selected 6 lines of A<sub>4</sub>GUS were subjected to molecular analysis for confirmation of transformation event, growth dynamics and chemical analysis of root alkaloids.

T-DNA of agropine type of Ri plasmids consists of T<sub>L</sub>-DNA and T<sub>R</sub>-DNA, which separated by 16 - 18 kb non-transferred DNA sequence (White *et al.* 1985, De Paolis *et al.* 1985). Approximately 19 - 20 kb size of T<sub>L</sub>-DNA integrates into plant genome (Taylor *et al.* 1985). In contrast, T<sub>R</sub>-DNA has been found to vary between 8 kb and 20 kb (Slightom *et al.* 1986).

Randomly selected 6 lines of hairy root were subjected

to PCR analysis. The integration of T-DNA region was confirmed by showing the presence of the 780 bp *rolB* segments and T<sub>R</sub> region by the 1.6 kb agropine synthase (*ags*) gene (Fig. 2A,B). PCR results showed the integration of T<sub>L</sub>-DNA and T<sub>R</sub>-DNA in all the clones except non-transformed root. However, several reports indicated the possibility of either integration of T<sub>L</sub>-DNA or T<sub>R</sub>-DNA or both (Batra *et al.* 2004, Guivarch *et al.* 1999) but we found integration of both in all tested lines. Integration of T<sub>L</sub>-DNA region was further confirmed by amplification of *uidA* gene (integrated between *rolC* and *rolD* at T<sub>L</sub>-DNA region). No amplification of either gene fragments was achieved from non-transformed root DNA. Presence of residual contaminating bacteria was checked by PCR analysis using *virD1* specific primer sequence. No amplification was achieved in any hairy root samples. However, positive control showed amplification of

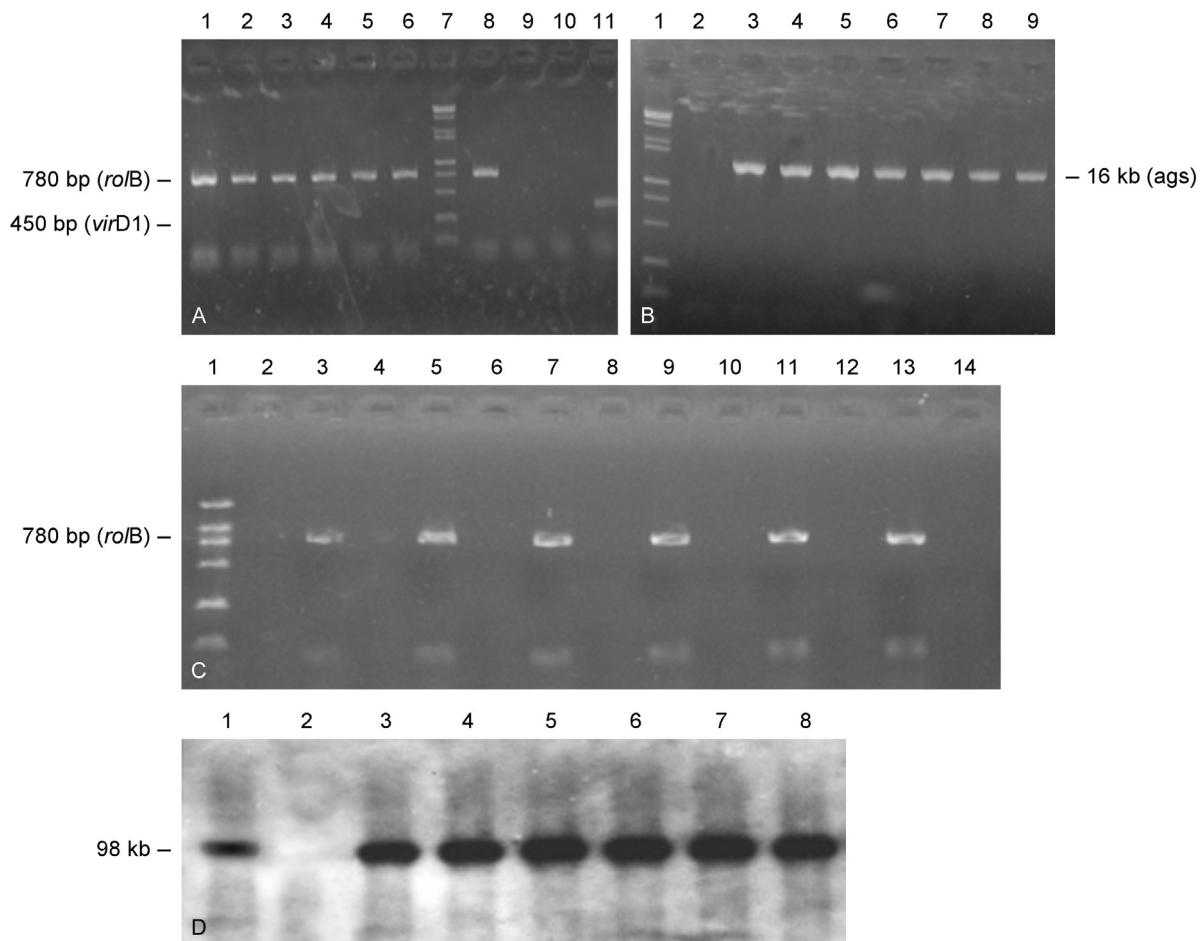



Fig. 2. PCR and RT-PCR analysis of genomic DNA/RNA isolated from *Scutellaria baicalensis* hairy roots. *A* - PCR analysis showing the DNA marker in lane 7, lanes 1 - 6 showing the presence of *rolB* gene in clones HQ-1, HQ-8, HQ-11, HQ-13, HQ-16, HQ-20 respectively, lane 8 positive control (pRiA4Gus plasmid), lane 9 non-transformed plant DNA, lanes 10, 11 sample representative of *virD1* in hairy root DNA of HQ-1 and plasmid DNA. *B* - PCR analysis showing the DNA marker in lane 1, lane 2 non-transformed root DNA, lanes 3 - 8 presence of *ags* genes in HQ-1, HQ-8, HQ-11, HQ-13, HQ-16, HQ-20, lane 9 positive control (pRiA4Gus plasmid) *C* - RT-PCR analysis of RNA; lane 1 DNA marker, lane 2 RNA from non-transformed roots, lanes 3, 5, 7, 9, 11, 13 HQ-1, HQ-8, HQ-11, HQ-13, HQ-16, HQ-20 showing *rolB* expression (one step RT-PCR amplification of *rolB*), lanes 4, 6, 8, 10, 12, 14 PCR amplification of DNAase treated RNA samples showing absence of DNA contamination. *D* - Southern blot analysis. *Bam*H1 digested DNA hybridized to probe *rolB* (T<sub>L</sub>); lane 1 positive control (pRiA4 plasmid), lane 2 DNA of non-transformed root (negative control), lanes 3 - 8 hairy root DNA of HQ-1, HQ-8, HQ-11, HQ-13, HQ-16, HQ-20.

expected 450 bp *virD1* fragment (Fig. 2A; HQ-1 clone showing representative sample).

Integration of T-DNA of Ri plasmid was further confirmed by Southern blot analysis (Fig. 2D). DNA of all the lines previously subjected to PCR analysis was digested with *Bam*H1 and separated on 1.0 % (m/v) agarose gel. Plasmid DNA was taken as positive control and DNA of non-transformed root as negative control. Following hybridization with PCR generated *rolB* (T<sub>L</sub>-DNA) probes, the DNA of independent clones of produced expected band of 9.8 kb whereas no hybridization signal was recorded in non-transformed root DNA. Hairy roots results from the integration of root loci (*rol*), present at T<sub>L</sub>-DNA, in plant genome (White *et al.* 1985, Jouanin *et al.* 1987). The expression of *rolB* is reported to interfere with plant morphogenesis resulting in

morphological anomalies and adventitious rooting (Schmülling *et al.* 1988). Results obtained from RT-PCR assay further confirm the integration and expression of *rolB* gene (T<sub>L</sub> region) in all transformed lines whereas no amplification was seen non-transformed sample (Fig. 2C). However, we did not realize the difference in expression level of *rolB* gene in different samples. No amplification signals in any sample (with Taq-DNA polymerase) confirm that RNA samples were free from DNA. The growth pattern of *rolB*-induced root is characterized by fast growth, high branching and plagiotropism (Capone *et al.* 1989b). The meristem-inductive role of *rolB* has been shown *in planta*, and it has been confirmed that *rolB*-induced meristem are initially indeterminate (Koltunow *et al.* 2001). According to most recent model the auxin-inducible nuclear protein plays key role in

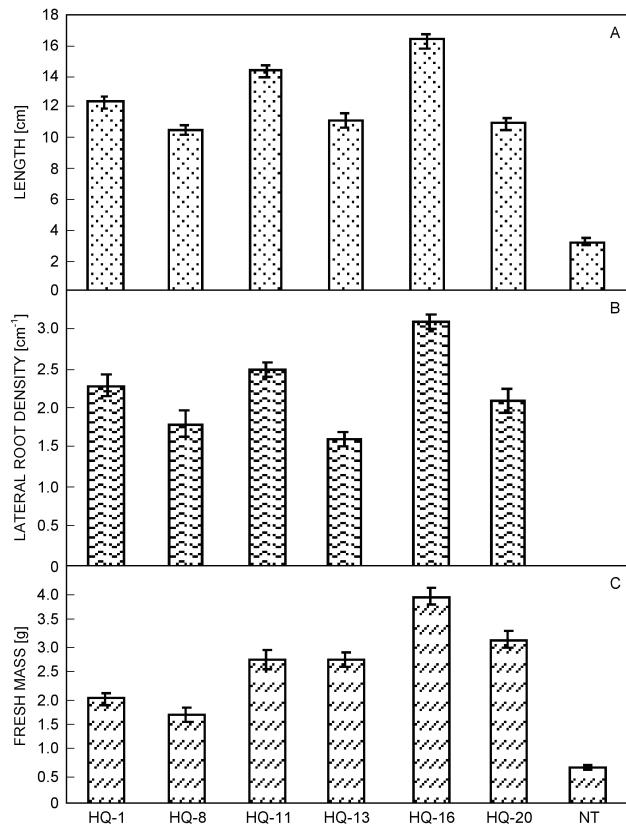



Fig. 3. Growth of *Scutellaria baicalensis* hairy root clones and non-transformed root culture after 35 d of culture on semi-solid culture media in Petri dishes. Total root length (A), lateral root density (number of roots, B) and fresh mass (C). Means  $\pm$  SE,  $n = 10$ .

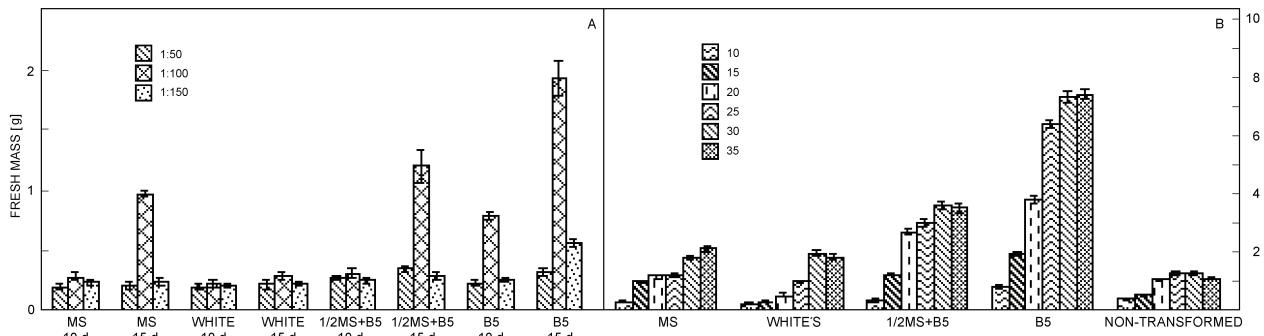



Fig. 4. Establishment of *Scutellaria baicalensis* hairy roots in liquid cultures. A - Effect of culture:media ratio and B - biomass accumulation in different liquid media at 5, 10, 15, 20, 25, 30, 35 d. Means  $\pm$  SE,  $n = 5$ .

regulating the expression of *rolB* thereby triggering meristem formation (Baumann *et al.* 1999).

Further, the determination of a meristem towards the development of a specific organ type depends on the local levels of hormones and on the specific cell competence, which also depends on the physiological stage of the plant. These *rolB*-induced meristem will favour the root formation under higher auxin content. Endogenous auxin content of target cells is regulated by the expression of auxin biosynthesis gene present at  $T_R$  region of T-DNA (Huffman *et al.* 1984). In present study hybridization results showed stable integration of  $T_L$  DNA and at least

single copy integration of T-DNA in plant genome. Evidence collected from GUS assay, PCR amplification, Southern blot and RT-PCR analysis provided sufficient proof of integrative transformation of *S. baicalensis*.

**Growth and establishment of root liquid cultures:** Initially more than 32 transformed *Scutellaria baicalensis* root clones of A<sub>4</sub>GUS were maintained. At the end of the culture period (35 d), transformed root clones varied ( $P \leq 0.05$ ) with respect to total root length, lateral branching density and they accumulated significantly more biomass than control roots (Fig. 3). Total root length

and lateral root density varied significantly also among the clones and was highest in HQ-16 (length  $16.3 \pm 0.4$  cm and density  $3.1 \pm 0.2$  cm $^{-1}$ ) (Fig. 3A,B). No lateral roots were observed on non-transformed roots. Clone HQ-16 was found best for biomass accumulation ( $3.94 \pm 0.58$  g; Fig. 3C), which was 5.6-fold higher than that of control roots and thus it was selected for further study. Similar difference in growth rate of hairy roots was observed earlier (Mano *et al.* 1986, Yoshikawa and Furuya 1987).

To determine the best medium composition and culture conditions, liquid cultures of clone HQ-16 was initiated in MS, White's, B<sub>5</sub>, and 1/2 MS + B<sub>5</sub> vitamins media and growth was monitored every 5 d after inoculation. Approximately 200 mg FM were cultured in different amount of medium to obtain root:media ratios 1:50, 1:100, and 1:150 (m/v). Maximum growth rate was recorded at 1:100 root:medium ratio ( $1.92 \pm 0.152$  g) after 15 d of culture (Fig. 4A). Growth rate was 3.4-fold higher than at 1:50 and 2.9-fold higher than at 1:150 after 10 d. Results indicate that the root media ratio is extremely important for initial establishment. At lower or higher ratios the increase in fresh mass was significantly reduced and culture did not established at all. Therefore, further experiments were performed only on 1:100 root:medium ratio.

In an independent experiment, the maximum biomass increase (37-fold) was found on B<sub>5</sub> vitamin medium after 30 - 35 d followed by 1/2 MS + B<sub>5</sub> vitamin (18-fold), while non-transformed root showed only 6-fold increase in FM after 25 d and turned to watery and eventually died (Fig 4B). The maximum biomass increase was from 15 to

30 d. In the present work we found root: medium ratio was very important for establishment of liquid culture, however, after initial establishment the ratio was not found important. High growth rate in B<sub>5</sub> medium showed that low inorganic and high organic nitrogen source is suitable for hairy root survival and growth. As compare to biomass (FM  $3.94 \pm 0.58$  g) on solid media, biomass accumulation was 1.8-fold higher on liquid media after 35 d of culture.

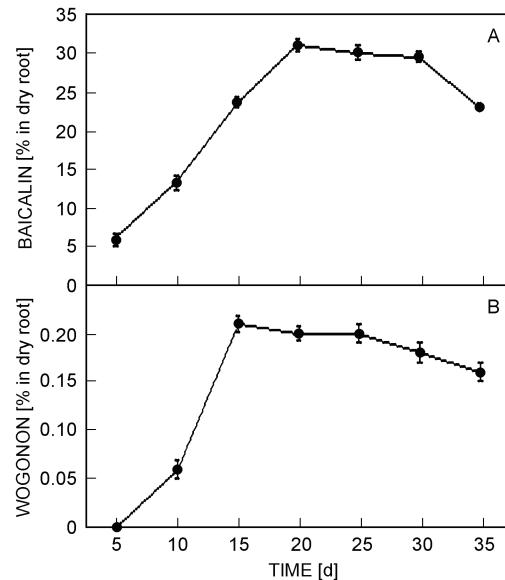



Fig. 5. Time course for baicalin (A) and wogonin (B) accumulation in hairy root clone HQ-16 in B<sub>5</sub> liquid medium at 1:50 inoculum:medium ratio. Means  $\pm$  SE,  $n = 3$ .

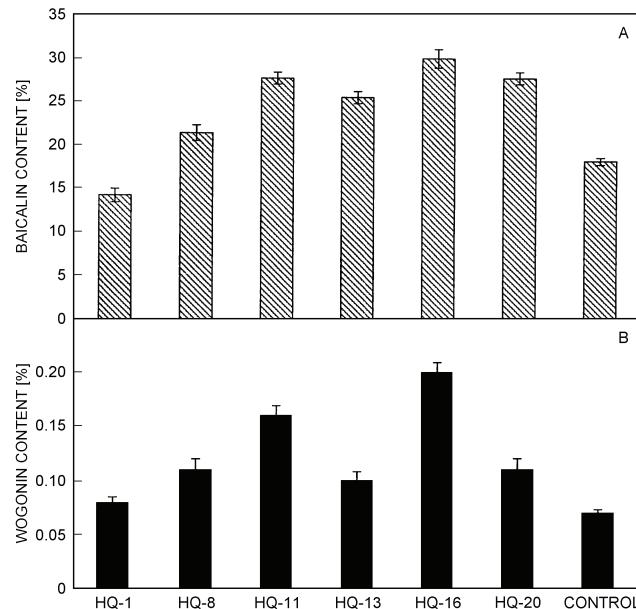



Fig. 6. Baicalin (A) and wogonin (B) contents after 25 d in liquid culture in transformed root clones on B<sub>5</sub> medium at inoculum:medium ratio 1:50. Means  $\pm$  SE,  $n = 3$ .

**HPLC analysis of hairy root clones:** In the present study, we used HPLC to analyze independent hairy root clones of *Scutellaria baicalensis* for the production of flavonoids

baicalin and wogonin in hairy roots and non-transformed roots as a control. In clone HQ-16 showed the baicalin content stabilized at 25 - 30 d, however, maximum content

(31.1 % of dry mass) was recorded at 20 d of culture. Synthesis of wogonin started after 10 d, rapidly increased to maximum (0.21 %) at 15 d, became stable at 20 - 25 d followed by slight decrease (Fig. 5A,B). These flavonoids accumulated in all hairy root lines but in varying amount (Fig. 6A,B). The lowest baicalin content was recorded in clone HQ-1 (14.1 %), which was lower than baicalin content of the roots of non-transformed plants (18 %). The highest baicalin content was found in clones HQ-16 and HQ-20. The highest wogonin content was found in clone HQ-16 and HQ-11 and the lowest in clone HQ-1 (0.08 %), which was only slightly higher than in control roots

(0.07 %). Clone HQ-16 was found most promising as it accumulated highest content of both the compounds and showed best growth. In principle, alkaloid productivity and accumulation by hairy root cultures is directly related to biomass yield and cellular alkaloid content (Jung and Tepfer 1987).

Hairy roots of *S. baicalensis* grew faster (37 times) than non-transformed root in standardized liquid culture and accumulate the higher amount of baicalin and wogonin. This might offer exciting possibility for large-scale production of these flavonoids in bioreactors for pharmaceutical use.

## References

Aoki, S., Syono, K.: Synergistic function of *rolB*, *rolC*, ORF13 and ORF14 of T<sub>L</sub>-DNA of *Agrobacterium rhizogenes* in hairy root induction in *Nicotiana tabacum*. - Plant Cell Physiol. **40**: 252-256, 1999.

Batra, J., Dutta, A., Singh, D., Kumar, S., Sen, J.: Growth and terpenoid indole alkaloid production in *Catharanthus roseus* hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. - Plant Cell Rep. **23**: 148-154, 2004.

Baumann, K., De Paolis, A., Costantino, P., Gualberti, G.: The DNA binding site of the protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the *rolB* oncogene in plants. - Plant Cell. **11**: 323-333, 1999.

Binns, A.N., Tomashow, J.V.: Cell biology of *Agrobacterium* infection and transformation of plants. - Annu. Rev. Microbiol. **42**: 575-606, 1988.

Capone, I., Spano, L., Cardarelli, M., Bellincampi, D., Petit, A., Costantino, P.: Induction and growth properties of carrot roots with different complements of *Agrobacterium rhizogenes* T-DNA. - Plant mol. Biol. **13**: 43-52, 1989.

De Paolis, A., Mauro, M.L., Pomponi, M., Cardarelli, M., Spano, L., Costantino, P.: Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of *Agrobacterium rhizogenes* 1855. - Plasmid **13**: 1-17, 1985.

Flores, H.E., Medina-Bolivar, F.: Root culture and plant natural products: "unearthing" the hidden half of plant metabolism. - Plant Tissue Cult. Biotechnol. **1**: 59-74, 1995.

Flores, H.E., Vivanco, J.M., Loyola-Vargas, V.M.: Radicle biochemistry: the biology of root-specific metabolism. - Trends Plant Sci. **4**: 220-226, 1999.

Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells. - Exp. Cell Res. **50**: 151-158, 1968.

Giri, A., Narasu, M.L.: Transgenic hairy roots: recent trends and applications. - Biotechnol. Adv. **18**: 1-22, 2000.

Guivarch, A., Boccaro, M., Prouteau, M., Chriqui, D.: Instability of phenotype and gene expression in long term culture of carrot hairy root clones. - Plant Cell Rep. **19**: 43-53, 1999.

Hooykaas, P.J.J., Klapwijk, P.M., Nuti, M.P., Shilperoort, R.A., Horsch, A.: Transfer of *A. tumefaciens* Ti plasmid to avirulent *Agrobacterium* and *Rhizobium* ex planta. - J. gen. Microbiol. **98**: 477-484, 1975.

Huffman, G.A., White, F.F., Gordon, M.P., Nester, E.W.: Hairy root-inducing plasmid: physical map and homology to tumor inducing plasmids. - J. Bacteriol. **157**: 269-276, 1984.

Jang, S.I., Kim, H.J., Hwang, K.M., Jekal, S.J., Pae, H.O., Choi, B.M., Yun, Y.G., Kwon, T.O., Chung, H.T., I.M., Y.C.: Hepatoprotective effect of baicalin, a major flavones from *Scutellaria radix*, on acetaminophen-induced liver injury in mice. - Immunopharmacol. Immunotoxicol. **25**: 585-594, 2003.

Jefferson, R.A.: Assaying chimeric genes in plant: the GUS gene fusion system. - Plant mol. Biol. Rep. **5**: 387-405, 1987.

Jouanin, L., Guerche, P., Pamboukjian, N., Tourneur, C., Casse-Delbart, F., Tourneur, J.: Structure of T-DNA in plants regenerated from roots transformed by *Agrobacterium rhizogenes* strain A<sub>4</sub>. - Mol. gen. Genet. **206**: 387-392, 1987.

Jung, G., Tepfer, D.: Use of genetic transformation by the Ri T-DNA of *Agrobacterium rhizogenes* to stimulate biomass and tropane alkaloid production in *Atropa belladonna* and *Calystegia sepium* roots grown *in vitro*. - Plant Sci. **50**: 145-152, 1987.

Khanuja, S.P.S., Shasany, A.K., Darokar, M.P., Kumar, S.: Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. - Plant mol. Biol. Rep. **17**: 1-7, 1999.

Koltunow, A.M., Johnson, S.D., Lynch, M., Yoshihara, T., Costantino, P.: Expression of *rolB* in apomictic *Hieracium piloselloides* Vill. causes ectopic meristems *in planta* and changes *in ovule* formation, where apomixis initiates at higher frequency. - Planta **214**: 196-205, 2001.

Kuzovkina, I.N., Guseva, A.V., Alterman, I.E., Karnachuk, R.A.: Flavonoid production in transformed *Scutellaria baicalensis* roots and ways of its regulation. - Russ. J. Plant Physiol. **48**: 448-452, 2001.

Mano, Y., Nabeshima, S., Matsui, C., Ohkawa, H.: Production of tropane alkaloids by hairy root cultures of *Scopolia japonica*. - Agr. biol. Chem. **50**: 2715-2722, 1986.

Moore, L., Warren, G., Strobel, G.: Involvement of a plasmid in the hairy root disease caused by *A. rhizogenes*. - Plasmid **2**: 617-626, 1979.

Morimoto, S., Harioka, T., Shoyama, Y.: Purification and characterization of flavone-specific beta-glucuronidase from callus culture of *Scutellaria baicalensis* Georgi. - Planta **195**: 535-540, 1995.

Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. **15**: 473-497, 1962.

Nilsson, O., Olsson, O.: Getting to the root: the role of the *Agrobacterium rhizogenes* *rol* genes in the formation of hairy roots. - Physiol. Plant. **100**: 463-473, 1997.

Nishikawa, K., Furukawa, H., Fujioka, T., Hiroko, F., Mihashi, K., Shimomura, K., Ishimaru, K.: Flavone production in transformed root cultures of *Scutellaria baicalensis* Georgi. - Phytochemistry **52**: 885-890, 1999.

Pomponi, M., Spano, L., Sabbadini, M.G., Costantino, P.:

Restriction endonuclease mapping of the root inducing plasmid of *Agrobacterium rhizogenes* 1855. - Plasmid **10**: 119-129, 1983.

Rhodes, M.J.C., Robins, R.J., Hamill, J.D., Parr, A.J., Hilton, M.G., Walton, N.J.: Properties of transformed root cultures. - In: Charlwood, B.V., Rhodes, M.J.C., (ed.): Secondary Products from Plant Tissue Culture. Pp. 201-225. Phytochemical Society of Europe, Oxford 1990.

Riker, A.J., Bandfield, W.M., Wright, W.H., Keitt, G.W., Sagen, H.E.: Studies on infectious hairy root of nursery apple tree. - J. agr. Res. (Washington) **41**: 507-540, 1930.

Salzman, R.A., Fujita, T., Zhu-Salzman, K., Hasegawa, P.M. Bressan, R.A.: An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. - Plant mol. Biol. Rep. **17**: 11-17, 1999.

Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: a Laboratory Manual. 3<sup>rd</sup> Ed. - Cold Spring Harbor Laboratory Press, New York 1989.

Schmulling, T., Schell, J., Spena, A.: Single genes from *Agrobacterium rhizogenes* influence plant development. - EMBO J. **7**: 2621-2629, 1988.

Sevón, N., Oksman-Caldentey, K.M.: *Agrobacterium rhizogenes*-mediated transformation: root cultures as a source of alkaloids. - Planta med. **68**: 859-868, 2002.

Shieh, D.E., Liu, L.T., Lin, C.C.: Antioxidant and free radical scavenging effect of baicalein, baicalin and wogonin. - Anticancer Res. **20**: 2861-2865, 2000.

Slightom, J.L., Durand-Tardif, M., Jouanin, L., Tepfer, D.: Nucleotide sequence analysis of TL-DNA of *Agrobacterium rhizogenes* agropine type plasmid. - J. biol. Chem. **261**: 108-121, 1986.

Taylor, B.H., Amasino, R.M., White, F.F., Nester, E.W., Gordon, M.P.: T-DNA analysis of plants regenerated from hairy root tumor. - Mol. gen. Genet. **201**: 554-557, 1985.

Tepfer, D.: Genetic transformation using *Agrobacterium rhizogenes*. - Physiol. Plant. **79**: 140-146, 1990.

Tepfer, M., Casse-Delbart, F.: *Agrobacterium rhizogenes* as a vector for transforming higher plants. - Microbiol. Sci. **4**: 24-28, 1987.

Vervliet, G., Holsters, M., Teuchy, H., Van, M.M., Schell, J.: Characterization of different plaque forming and defective temperate phages in *Agrobacterium*. - J. gen. Virol. **26**: 33-48, 1975.

Wang, J.Z., Chen, D.Y., Su, Y.Y.: Analytical study on processing of *Scutellaria baicalensis* Georgi by HPLC. - Chin. J. chin. Materia med. **19**: 340-341, 1994.

White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P., Nester, E. W.: Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of *Agrobacterium rhizogenes*. - J. Bacteriol. **164**: 33-44, 1985.

White, P.R.: The Cultivation of Animal and Plant Cells. - Ronald Press, New York 1963.

Yamamoto, H., Chatani, N., Kitayama, A.: Flavonoid production in *Scutellaria baicalensis* callus cultures. - Plant Cell Tissue Organ Cult. **5**: 219-222, 1986.

Yang, L.X., Liu, D., Feng, X.F., Cu, S.L., Yang, J.Y., Tang, X.J., He, L.J., Hu, S.L.: Determination of flavones for *Scutellaria baicalensis* from different area by HPLC. - Chin. J. chin. Materia med. **27**: 166-169, 2002.

Yoshikawa, T., Furuya, T.: Saponin production by cultures of *Panax ginseng* transformed with *Agrobacterium rhizogenes*. - Plant Cell Rep. **6**: 449-453, 1987.

Zehra, M., Banerjee, S., Sharma, S., Kumar, S.: Influence of *Agrobacterium rhizogenes* strains on biomass and alkaloid productivity in hairy root lines of *Hyoscyamus muticus* and *H. albus*. - Planta med. **64**: 60-63, 1999.

Zhou, Y., Hirotani, M., Yoshikawa, T., Furuya, T.: Flavonoids and phenylethanoids from hairy roots of *Scutellaria baicalensis*. - Phytochemistry. **44**: 83-87, 1997.

Zhou, R., Gu, G.: Pharmaceutical study of huang-qin. - Chin. Medicine **13**: 28-29, 1991.