

Improvement of *in vitro* androgenesis in niger using amino acids and polyamines

B.P. HEMA and H.N. MURTHY¹

Plant Tissue Culture Laboratory, Department of Botany, Karnatak University, Dharwad 580 003, India

Abstract

The effects of amino acids (arginine, asparagine, cysteine, glutamine, glycine and proline) and polyamines (putrescine and spermidine) on embryogenesis and plant regeneration from cultured anthers of *Guizotia abyssinica* (L. f.) Cass. cv. Ootacamund was studied. Supplementation of amino acids (0.5 - 5.0 mM) to the induction medium individually and in combination, improved embryo yield. B5 medium supplemented with 2 mM proline, 10 μ M 2,4-dichlorophenoxy-acetic acid, 2 μ M kinetin and 0.2 M sucrose induced highest number of embryos (63 per 60 anthers cultured). Addition of polyamines (5 - 200 μ M) to the same medium also enhanced the rate of embryogenesis.

Additional key words: anther culture, embryogenesis, *Guizotia abyssinica*.

Niger is an oilseed crop cultivated in India, Ethiopia, Kenya, Uganda and Malawi. Niger seed yields 35 - 40 % oil, which is edible, and it is also used in manufacturing soaps, cosmetics, and paints and for lubrication. Self-incompatibility of niger hinders the production of homozygous lines (Getinet and Sharma 1996). Homozygous lines obtained through anther and microspore culture would be used for hybridization and crop improvement. Induction of embryogenesis from cultured anthers has been reported in niger (Survesh *et al.* 1993), however, the frequency of embryo formation was meagre. Generally, medium supplemented with growth regulators such as auxins, cytokinins, gibberellins and abscisic acid have been used for induction of embryogenesis/organogenesis and plantlet regeneration from cultured anthers in many species (Bajaj 1990). Amino acids such as glutamine for *Triticum aestivum* (Indrianto *et al.* 1999), serine for *Brassica oleracea* (Dias and Martins 1999), thiamine and glycine for *Oryza sativa* (Guzman and Zapata 2000) supplemented to anther culture medium have shown positive effect. The addition of an amino acids mixture enhanced androgenesis in *Hordeum vulgare* (Ouédraogo *et al.* 1998) and *Cucumis sativus*

(Ashok Kumar and Murthy 2004). Supplementation of polyamines to culture medium has triggered the process of somatic embryogenesis in oat (Kelly *et al.* 2002), ginseng (Kevers *et al.* 2000, Monteiro *et al.* 2002), oil palm (Rajesh *et al.* 2003) and grape (Bertoldi *et al.* 2004). In *Solanum tuberosum* (Tiainen 1992) and *Cucumis sativus* (Ashok Kumar *et al.* 2004), spermidine and putrescine significantly increased embryos yield in cultured anthers. The main objective of the present study was to examine the influence of amino acids (arginine, asparagine, cysteine, glutamine, glycine and proline) and polyamines (putrescine and spermidine) on androgenesis of niger.

Niger [*Guizotia abyssinica* (L. f.) Cass. Asteraceae] cv. Ootacamund seeds were obtained from Indian Council of Agriculture research, Jawaharlal Nehru Agricultural University Campus, Jabalpur, Madhya Pradesh, India. Plants were grown in the experimental plots at Department of Botany, Karnatak University, Dharwad, Karnataka, India using standard agronomic practices. The immature capitula were collected when most of the microspores were at the uni-nucleate stage and stored at 4 °C for 3 d in dark. Pretreated capitula

Received 29 May 2006, accepted 1 December 2006.

Abbreviations: ABA - abscisic acid; BA - N⁶-benzyladenine; B5 - Gamborg *et al.* (1968) medium; 2,4-D - 2,4-dichlorophenoxy-acetic acid; KN - kinetin.

Acknowledgements: We are thankful to the Project coordinator (Sesame and Niger), AICRP, Jabalpur, India for seed material and Indian Council of Agricultural Research, New Delhi, India for financial assistance in the form of adhoc research project (Project No. 5 (18)/99 O & P).

¹ Corresponding author; fax: (+91) 8362747884, e-mail: nmurthy60@yahoo.co.in

were washed with 1 % (v/v) *Laboline* (detergent) and 0.5 % *Carbendazim* (fungicide) for 10 min and surface sterilized with 5 % sodium hypochlorite solution for 20 min in orbital shaker at 100 rpm. The final step of sterilization was carried out in a horizontal laminar air flow chamber by rinsing the capitula twice in sterile distilled water, followed by 0.1 % mercuric chloride solution for 5 min. Finally, the capitula were rinsed five times in sterile distilled water. Anthers were isolated aseptically from florets and cultured onto an embryo induction medium. Auxins, cytokinins, amino acids, abscisic acid and polyamines were purchased from *Sigma Chemical Company*, St. Louis, USA, and membrane filters were purchased from *Millipore Company*, Bangalore, India. *Carbendazim* was procured from *Hyderabad Chemical Supplies Limited*, Hyderabad, India.

The embryo induction medium was B5 medium (Gamborg *et al.* 1968) supplemented with 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 2 μM kinetin (KN) and 0.2 M sucrose. Amino acids such as arginine, asparagine, cysteine, glutamine, glycine and proline at concentration 0.5, 1.0, 2.0, 5.0 mM and a combination of them at 1 mM and 2 mM concentration were amended to above mentioned medium. Similarly, putrescine and spermidine at 5, 10, 50, 100, 200, 500 and 1000 μM were added to this medium. For differentiation of embryos, the globular stage embryos were subcultured to B5 medium supplemented with 0.5 μM N^6 -benzyladenine (BA) and 0.09 M sucrose. For maturation of embryos, the torpedo stage embryos were cultured onto B5 medium supplemented with 10 μM abscisic acid (ABA). Mature embryos were isolated aseptically and cultured onto B5 medium containing 0.09 M sucrose. The pH of all the media was adjusted to 5.8 using 0.1 M NaOH or HCl and was solidified with 0.8 % agar (*Himedia*, Mumbai, India). Media were sterilized by autoclaving at 120 °C for 20 min. Vitamins, amino acids, polyamines and ABA were filtered using sterilized membrane filters (0.45 μm ; *Millipore*, Bangalore, India) and added to the autoclaved medium.

The cultures were kept in the dark at 24 \pm 2 °C for two weeks and further incubation was at 24 \pm 2 °C and 16-h photoperiod with irradiance of 40 $\mu\text{mol m}^{-2} \text{s}^{-1}$ provided by cool white fluorescent tubes. Well-developed plantlets were removed from cultures and washed in sterilized distilled water to remove the traces of media. These plantlets were transplanted to plastic cups containing a mixture of autoclaved *Vermiculite*, sand and garden soil (1:1:1). The transplanted plantlets were acclimatized in a plant growth chamber for 15 d under relative humidity 80 %, temperature 24 \pm 2 °C, irradiance 40 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and 16-h photoperiod before transferring to greenhouse for further growth.

Embryos at different developmental stages were fixed in FAA (formalin: glacial acetic acid: 70 % ethanol, 10:5:85) for 12 h at room temperature, dehydrated through a graded ethanol-butyl alcohol series and embedded in paraffin wax (Fowke and Rennie 1996). The

tissues sectioned at a thickness of 6 μm were stained with 0.05 % toluidine-blue solution and examined under compound microscope.

The experiments were arranged in a complete randomized design with 12 replicates in each experiment and each replicate consisting of 4 - 6 anthers. Each experiment was repeated three times. The cultures were observed periodically and morphological changes were recorded at weekly intervals and subjected to analysis of variance (*ANOVA*) and mean values were separated according to Duncan's multiple range test (DMRT).

Callus mediated embryogenesis were observed from the cultured anthers of niger, anthers swell in two weeks and turned brown (Fig. 1A) and induced callus in another two weeks (Fig. 1B). Globular embryos were formed from the embryonic callus in two weeks (Fig. 1C). All the amino acids (arginine, asparagine, cysteine, glutamine, glycine and proline; 0.5 - 5 mM) amended individually to induction medium improved the embryogenic response of anthers and the yield of embryos (Table 1). Among the six amino acids tested proline induced greater number of embryos followed by glycine, asparagine, cysteine, glutamine and arginine. The highest number of embryos

Table 1. Effect of different amino acids (or their combination) supplemented to B5 medium with 10 μM 2,4-D, 2 μM KN and 0.2 M sucrose on anther culture of niger cv. Ootacamund. 60 anthers were cultured. In each column, mean values followed by same letters are not significantly different according to DMRT at $P = 0.05$.

Amino acid	Conc. [mM]	Responding anthers [%]	Number of embryos	Regeneration [%]
Control	0.0	32	45 s	30
Arginine	0.5	37	48 qr	28
	1.0	39	51 mn	29
	2.0	43	54 ij	31
	5.0	40	51 lm	32
	0.5	34	50 no	33
Asparagine	1.0	38	55 gh	35
	2.0	43	59 cd	40
	5.0	41	53 k	28
	0.5	32	48 pq	23
	1.0	37	51 lm	27
Cysteine	2.0	40	55 hi	31
	5.0	38	52 lm	26
	0.5	41	50 op	32
	1.0	44	52 kl	32
	2.0	47	51 lm	32
Glutamine	5.0	44	50 no	30
	0.5	41	52 kl	29
	1.0	43	56 fg	35
	2.0	49	61 c	41
	5.0	46	58 e	38
Glycine	0.5	47	54 hi	29
	1.0	51	60 cd	39
	2.0	54	63 a	41
	5.0	49	60 c	36
	1.0 each	52	61 b	38
Combination	2.0 each	48	56 f	36

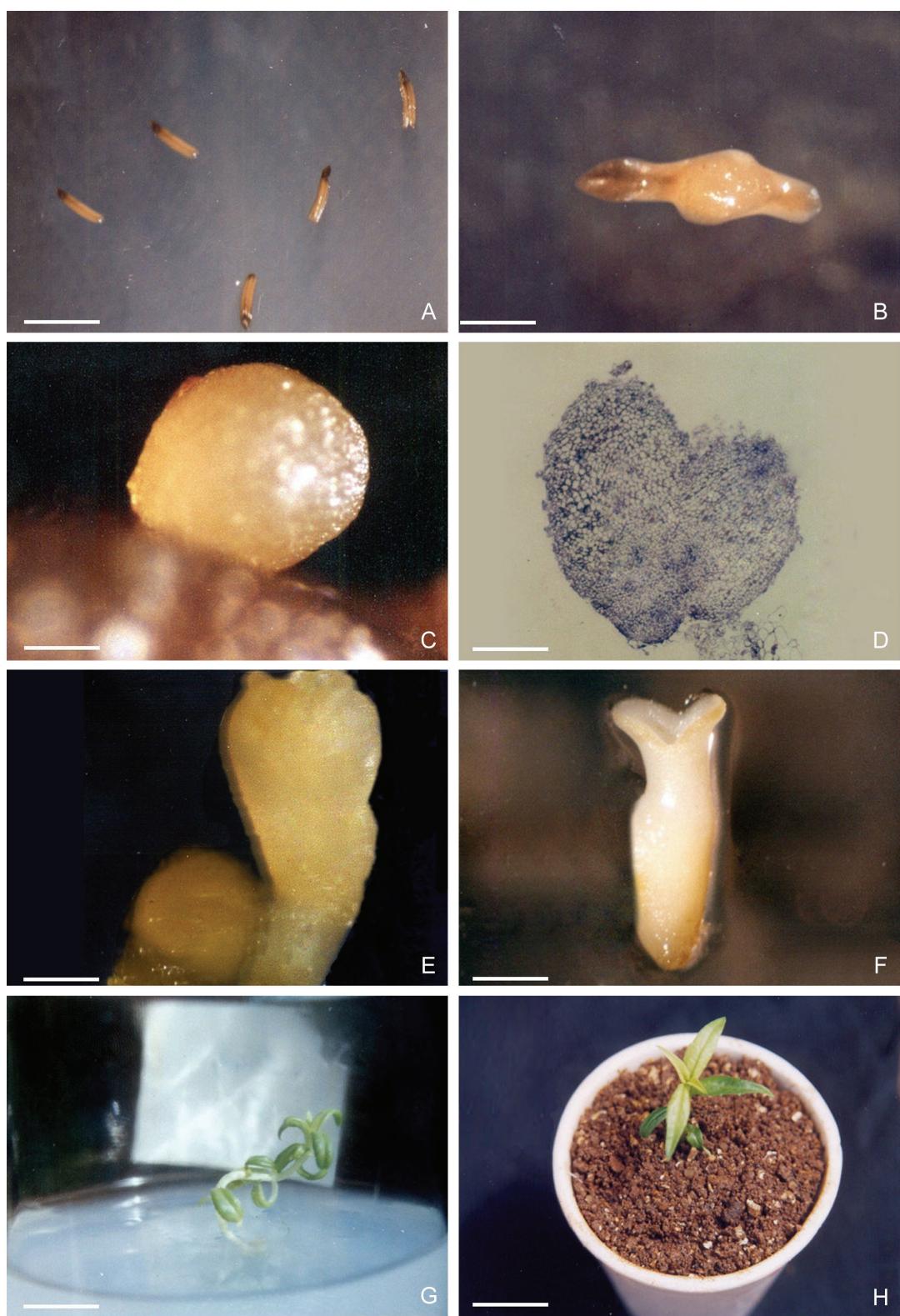


Fig. 1. Embryogenesis and plant regeneration in cultured anthers of niger cv. Ootacamund. *A* - Brown turned anthers after two weeks of culture on induction medium (bar = 0.2 mm). *B* - Emergence of microcalli from the anther after four weeks of culture (bar = 0.5 mm). *C* - Globular embryo originating from the embryogenic calli (bar = 0.8 mm). *D* - Longitudinal section of the heart shaped embryo (bar = 0.5 mm). *E* - Torpedo shaped embryo (bar = 1mm). *F* - Cotyledonary stage embryo (bar = 2 mm). *G* - An anther derived plantlet on embryo germination medium (bar = 1.4 cm). *H* - Transplanted plantlet (bar = 5 cm).

(60 and 63) was induced from 51 and 54 % responding anthers on medium supplemented with 1.0 and 2.0 mM proline in six to eight weeks. Similar to the present results Büter *et al.* (1991) has reported the positive role of proline in induction of embryogenesis from anthers of triticale and maize respectively.

Table 2. Effect of polyamines on induction of embryogenesis from cultured anthers of niger cv. Ootacamund on B5 medium supplemented with 10 μ M 2, 4-D, 2 μ M KN and 0.2 M sucrose. 60 anthers were cultured. In each column, mean values followed by same letters are not significantly different according to DMRT at $P = 0.05$.

Polyamine	Conc. [μ M]	Responding anthers [%]	Number of embryos	Regeneration [%]
Control	0	38	40 i	12
Putrescine	5	39	47 g	14
	10	41	50 f	15
	50	43	54 cd	17
	100	46	57 a	18
	200	45	56 ab	17
	500	44	54 bc	14
	1000	41	50 f	13
	5	39	46 gh	14
Spermidine	10	42	50 f	15
	50	44	52 e	16
	100	44	54 bc	17
	200	47	57 a	18
	500	46	55 ab	17
	1000	44	53 e	15

Addition of a combination of amino acids (arginine, asparagine, cystine, glutamine, glycine and proline; 1.0 and 2.0 mM) to the induction medium was beneficial in induction of embryos (Table 1). Addition of a combination of amino acids has also been beneficial for induction of embryos and plantlet regeneration in *Cucumis sativus* (Ashok Kumar and Murthy 2004), *Hordeum vulgare* (Ouédraogo *et al.* 1998), *Triticum aestivum* (Trottier *et al.* 1993), and *Zea mays* (Claparols *et al.* 1993). Embryo induction was also improved with the addition of putrescine and spermidine (5, 10, 50, 100, 200, 500, 1000 μ M) to the induction medium compared to the control (Table 2). Among the different concentrations of putrescine, optimum of 57 embryos developed

from 60 anthers cultured on medium supplemented with 100 μ M putrescine. Putrecine is an important modulator of biological processes such as cell division, growth and differentiation (Walden *et al.* 1997) and embryogenesis was improved with addition of putrescine to embryo induction medium (Kelly *et al.* 2002, Ashok Kumar *et al.* 2004).

Addition of spermidine to embryo induction medium was shown to increase embryogenic process in potato (Tiainen 1992), ginseng (Monteiro *et al.* 2002) and cucumber (Ashok Kumar *et al.* 2004). In the present study, maximum of 57 embryos were produced from 60 anthers on embryo induction medium supplemented with 200 μ M spermidine.

Embryos induced on different induction media were differentiated in to heart and torpedo shaped embryos (Fig. 1D,E) in four weeks upon subculturing globular embryos on-to differentiation medium. ABA treatment was necessary for maturation and subsequent development of somatic embryos in many crop plants (Bajaj 1990) and to improve plantlet development in androgenesis (Palmer and Keller 1997). In the present studies torpedo shaped embryos were transferred to maturation medium containing 10 μ M ABA upon which embryos matured into cotyledonary embryos within two weeks (Fig. 1F). Mature embryos germinated into plantlets in another two weeks on B5 medium supplemented with 0.09 M sucrose (Fig. 1G). The percentage of plantlet regeneration was also high with 41 % of survival from the embryos induced on media supplemented with 2 mM proline (Table 1) whereas 18 % of plantlets regeneration was observed from the embryos, which were induced on medium supplemented with 100 μ M putrescine and 200 μ M spermidine.

The plantlets were transplanted to potting mixture of *Vermiculite*, sand, garden soil (Fig. 1H) and reared in growth chamber in controlled environmental conditions. Thirty-four plantlets survived out of sixty transplanted plants. Twelve plants showed the haploid chromosome number ($n=15$) and the remaining were diploids. From the present investigation it can be concluded that the efficiency of embryogenesis and plantlet regeneration from cultured anthers of niger was increased with the addition of amino acids and polyamines to the induction medium.

References

Ashok Kumar, H.G., Murthy, H.N.: Effect of sugars and amino acids on androgenesis of *Cucumis sativus*. - Plant Cell Tissue Organ Cult. **78**: 201-208, 2004.

Ashok Kumar, H.G., Ravishankar, B.V., Murthy, H.N.: The influence of polyamines on androgenesis of *Cucumis sativus* L. - Eur. J. hort. Sci. **69**: 201-205, 2004.

Bajaj, Y.P.S.: *In vitro* production of haploids and their use in cell genetics and plant breeding. - In: Bajaj, Y.P.S. (ed.): Haploids in Crop Improvement. Vol. 1. Biotechnology in Agriculture and Forestry, Pp. 213-222. Springer, Berlin 1990.

Bertoldi, D., Tassoni, A., Martinelli, L., Bagni, N.: Polyamines and somatic embryogenesis in two *Vitis vinifera* cultivars. - Physiol. Plant. **120**: 657-666, 2004.

Büter, B., Schmid, J.E., Stamp, P.: Effects of L-proline and post-plating temperature treatment on maize (*Zea mays* L.) anther culture. - Plant Cell Rep. **10**: 325-328, 1991.

Claparols, I., Santos, M.A., Torné, J.M.: Influence of some

exogenous amino acids on the production of maize embryogenic callus and on endogenous amino acid content. - *Plant Cell Tissue Organ Cult.* **34**: 1-11, 1993.

Dias, J.S., Martins, M.G.: Effect of silver nitrate on anther culture embryo production of different *Brassica oleracea* morphotypes. - *Scientia Hort.* **82**: 299-307, 1999.

Fowke, L.C., Rennie, P.J.: Botanical microtechnique for plant cultures. - In: Gamborg, O.L., Phillips, G.C. (ed.): *Plant Cell, Tissue and Organ Culture: Fundamental Methods*. Pp. 217-228. Narosa Publishing House, New Delhi 1996.

Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells. - *Exp. Cell Res.* **50**: 151-158, 1968.

Getinet, A., Sharma, S.M.: Niger, *Guizotia abyssinica* (L. f.) Cass. Promoting the Conservation and Use of Underutilized and Neglected Crops. - International Plant Genetic Resources Institute, Rome 1996.

Guzman, M., Zapata, F.J.: Increasing anther culture efficiency in rice (*Oryza sativa*) using anthers from ratooned plants. - *Plant Sci.* **151**: 107-114, 2000.

Indrianto, A., Heberle-Bors, E., Touraev, A.: Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. - *Plant Sci.* **143**: 71-79, 1999.

Kelly, R.Y., Zipf, A.E., Wesenberg, D.E., Sharma, G.C.: Putrescine-enhanced somatic embryos and plant numbers from elite oat (*Avena* spp. L.) and reciprocal crosses. - *In vitro cell dev. Biol. Plant.* **38**: 508-512, 2002.

Kevers, C., Gal, N.L., Monteiro, M., Dommes, J., Gaspar, T.: Somatic embryogenesis of *Panax ginseng* in liquid cultures: a role for polyamines and their metabolic pathways. - *Plant Growth Regul.* **31**: 209-214, 2000.

Monteiro, M., Kevers, C., Dommes, J., Gaspar, T.: A specific role of spermidine in the initiation phase of somatic embryogenesis in *Panax ginseng* C.A. Meyer. - *Plant Cell Tissue Organ Cult.* **68**: 225-232, 2002.

Ouédraogo, J.T., St-Pierre, C.-A., Collin, J., Rioux, S., Comeau, A.: Effect of amino acids, growth regulators and genotype on androgenesis in barley. - *Plant Cell Tissue Organ Cult.* **53**: 59-66, 1998.

Palmer, C.E., Keller, W.A.: Pollen embryos. - In: Shivanna, K.R., Sawhney, V.K., (ed.): *Pollen Biotechnology for Crop Production and Improvement*. Pp. 392-422. Cambridge University Press, Cambridge 1997.

Rajesh, M.K., Radha, E., Karun, A., Parthasarthy, V.A.: Plant regeneration from embryo-derived callus of oil palm – the effect of exogenous polyamines. - *Plant Cell Tissue Organ Cult.* **75**: 41-47, 2003.

Survesh, A., Reddy, T.P., Kavi Kishor, P.B.: Embryogenesis and organogenesis in cultured anthers of an oil yielding crop niger (*Guizotia abyssinica* Cass.). - *Plant Cell Tissue Organ Cult.* **35**: 75-80, 1993.

Tiainen, T.: The role of ethylene and reducing agents on anther culture response of tetraploid potato (*Solanum tuberosum* L.). - *Plant Cell Rep.* **10**: 604-607, 1992.

Trottier, M.-C., Collin, J., Comeau, A.: Comparison of media for their aptitude in wheat anther culture. - *Plant Cell Tissue Organ Cult.* **35**: 59-67, 1993.

Walden, R., Cordeiro, A., Tiburcio, A.F.: Polyamines: Small molecules triggering pathways in plant growth and development. - *Plant Physiol.* **113**: 1009-1013, 1997.