

Seed protein diversity among lentil cultivars

E. YÜZBAŞIOĞLU¹*, L. AÇIK² and S. ÖZCAN³

Department of Biology, Faculty of Arts and Sciences, Erciyes University, Kayseri 38039, Turkey¹

Faculty of Arts and Sciences, Gazi University, Teknikokullar 06500, Ankara, Turkey²

Department of Field Crops, Faculty of Agriculture, University of Ankara, Dışkapı 06110, Ankara, Turkey³

Abstract

Seed protein diversity of fourteen lentil cultivars grown in Turkey was studied by using sodium dodecyl sulfate polyacrylamide gel electrophoresis. A distance matrix was produced based on five polymorphic protein bands, scored for their absence as 0 and presence as 1. Seed protein distances among the cultivars ranged from 0.00 to 0.80. The dendrogram based on the distance matrix indicated two distinct clusters. The first cluster includes the cultivars Sultan 1, Meyveci 2001 and Kayi 91. The second cluster contains the cultivars Pul 11, Ozbek, Emre 20, Malazgirt 89, Ciftci, Seyran 96, AliDayi, Firat 87, Sazak, Erzurum 89 and YerliKirmizi.

Additional key words: *Lens culinaris*, SDS-PAGE, storage proteins.

Lentil is an important seed legume crop, cultivated worldwide as human food. Historically, lentil breeding has received little attention and most cultivars of lentil have been selected from heterogeneous populations, such as land races (Havey and Muehlbauer 1989).

Seed protein patterns obtained by electrophoresis have been successfully used not only to resolve taxonomic and evolutionary problems of several crop species but also to distinguish cultivars of a particular crop species (Ladizinsky and Hymowitz 1979, Ferguson and Grabe 1986, Karihaloo *et al.* 2002). In particular, seed protein patterns produced by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) have been used for the identification of wheat, triticale, pepper, bean, date and *Cucurbita* cultivars (Hussain *et al.* 1986, Stegemann *et al.* 1987, Igrejas *et al.* 1999, Vladova *et al.* 2000, Cherdouh *et al.* 2005, Stolova *et al.* 2006). The aim of this study was to investigate seed protein diversity among lentil cultivars grown in Turkey by using SDS-PAGE.

Seeds of the lentil (*Lens culinaris* Medik., syn. *Lens esculenta* Moench) cultivars, (Malazgirt 89, Ozbek, Ciftci, Seyran 96, Firat 87, Emre 20, Meyveci 2001,

Erzurum 89, Kayi 91, Ali Dayi, Sultan 1, Sazak, Yerli Kirmizi and Pul 11), were obtained from the Haymana Research Station of the Central Field Crop Research Institution, Ankara, Turkey. For each population, 10 bulked seeds were used for protein extraction. Cotyledons were pounded to flour and protein extractions were performed with a solution of 25 cm³ 0.5 M Tris/HCl (pH 6.8), 10 cm³ 10 % SDS, 20 cm³ glycerol, 1 cm³ 2-mercaptoethanol and 44 cm³ double distilled H₂O. The extracts were centrifuged at 7426 g for 15 min and the supernatants were heated in boiling water for 5 min prior to being loaded on gel. Electrophoresis was performed twice according to Laemmli (1970) and the gels were stained overnight with Coomassie Brilliant Blue G-250.

Protein bands were scored for their absence as 0 and presence as 1. A similarity matrix was established using the similarity coefficient (SM; Sokal and Michener 1958) and *NTSYS-pc* (Version 1.7, Rohlf 1992). SM = m/n, where m = shared present fragments + shared absent fragments and n = total of obtained fragments. The similarity coefficients were converted into distances (D) using the formula D = 1 - SM. The dendrogram based on

Received 12 April 2006, accepted 17 October 2006.

Abbreviations: SDS-PAGE - sodium dodecyl sulfate polyacrylamide gel electrophoresis; RAPD - randomly amplified polymorphic DNA.

Acknowledgements: We would like to thank to Sema Yüzbaşıoğlu for correction of English and Abdulkadir Aydoğan at the Central Field Crops Research Institute, Ankara, for providing plant material. This study was funded by the Erciyes University research grant EUBAP – 01-052-17.

* Author for correspondence; fax: (+90) 352 437 4933, e-mail: yuzbasie@erciyes.edu.tr

the distance matrix was constructed using the unweighted pair-group method with arithmetic averages (UPGMA) under the *NJ* subprogram in the *PHYLIP* software package version 3.6a3.

The band patterns of fourteen lentil cultivars used in this study are shown in Fig. 1. A total of 24 polypeptide bands were detected with molecular masses ranging from

14.4 to 116 kDa. Of the 24 bands, five polypeptide bands with molecular masses ranging from 35 to 116 kDa were polymorphic and used to discriminate the cultivars (Fig. 1, indicated as B1-B5).

The genetic distances based on five SDS-PAGE bands are presented in Table 1. The dendrogram indicated two distinct clusters (Fig. 2). The first cluster with 11.9 %

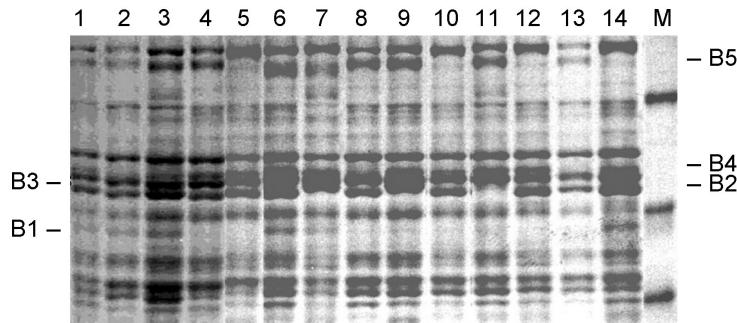


Fig. 1. Electrophoregrams showing seed storage protein banding pattern in 14 lentil cultivars. Lanes 1 - 14 refer to the cultivars Malazgirt 89, Ozbek, Ciftci, Seyran 96, Firat 87, Emre 20, Meyveci 2001, Erzurum 89, Kayi 91, Ali Dayi, Sultan 1, Sazak, Yerli Kirmizi and Pul 11, respectively. M - size marker. B1 to B5 - bands used to discriminate the cultivars.

Table 1. Distance matrix based on observed seed protein patterns of 14 lentil cultivars. Numbers 1 - 14 correspond to accession code denoted in Fig. 1.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	-													
2	0.20	-												
3	0.00	0.20	-											
4	0.20	0.40	0.20	-										
5	0.40	0.60	0.40	0.20	-									
6	0.00	0.20	0.00	0.20	0.40	-								
7	0.40	0.60	0.40	0.60	0.80	0.40	-							
8	0.40	0.20	0.40	0.20	0.40	0.40	0.80	-						
9	0.60	0.80	0.60	0.40	0.60	0.60	0.20	0.60	-					
10	0.20	0.40	0.20	0.00	0.20	0.20	0.60	0.20	0.40	-				
11	0.40	0.60	0.40	0.20	0.40	0.40	0.40	0.40	0.20	0.20	-			
12	0.40	0.60	0.40	0.20	0.00	0.40	0.80	0.40	0.60	0.20	0.40	-		
13	0.40	0.20	0.40	0.20	0.40	0.40	0.80	0.00	0.60	0.20	0.40	0.40	-	
14	0.20	0.40	0.20	0.40	0.20	0.20	0.60	0.60	0.80	0.40	0.60	0.20	0.60	-

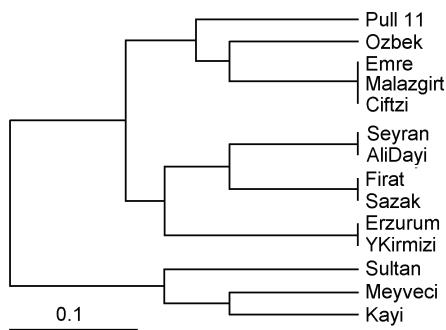


Fig. 2. Dendrogram of 14 lentil cultivars based on dissimilarity matrix of seed storage proteins.

dissimilarity includes the cultivars Sultan, Meyveci and Kayi 91. The second cluster with 8.9 % dissimilarity contains the cultivars Pul11, Ozbek, Emre, Malazgirt, Ciftci, Seyran, AliDayi, Firat, Sazak, Erzurum and YerliKirmizi. The second cluster was divided into two subclusters: Pul11, Ozbek, Emre 20, Malazgirt 89 and Ciftci cultivars, and Seyran 96, AliDayi, Firat 87, Sazak, Erzurum 89 and YerliKirmizi cultivars. Apart from Erzurum 89, the green-seeded cultivars Sultan 1, Meyveci 2001 and Kayi 91 were grouped in the first cluster, while the red and brown seeded cultivars were grouped in the second.

Seed protein distances among the cultivars ranged from 0.00 to 0.80. Meyveci 2001 revealed 80 %

dissimilarity with the cultivars Fırat 87, Erzurum 89, Sazak and YerliKırmızı. However, protein patterns observed among the cultivars Emre 20, Malazgirt 89, Ciftci within the first subcluster and the cultivars between Seyran 96 and AliDayı, Fırat 87 and Sazak, and Erzurum 89 and YerliKırmızı within the second subcluster were identical in the present study. Therefore, protein profiles obtained from SDS-PAGE were not sufficient in distinguishing all lentil cultivars used in this study, whereas band patterns obtained from the previous study with RAPD (Yüzbaşıoğlu *et al.* 2006) differentiated those indistinguished by SDS-PAGE in the present study. This

result is in agreement with the findings of Zavodna *et al.* (2000) which states that the DNA marker systems used differentiated the closely related lentil cultivars. Although Harlan (1951) reported that there is a microcenter of diversity for lentils in Turkey, our findings are in agreement with the study of Ford *et al.* (1999) that states the cultivated lentil has a narrow genetic base due to intensive selection and subsequent exclusion of much genetic variation from germplasm stocks. Based on the SDS-PAGE results, it can be concluded that commercial lentil cultivars grown in Turkey come from a restricted gene pool.

References

Cherdouh, A., Khelifi, D., Carrillo, J.M., Nieto-Taladriz, M.T.: The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars. - *Plant Breed.* **124**: 338-342, 2005.

Ferguson, J.M., Grabe, D.F.: Identification of cultivars of perennial ryegrass by SDS-PAGE of seed proteins. - *Crop Sci.* **26**: 170-176, 1986.

Ford, R., Pang, E.C.K., Taylor, P.W.C.: Genetics of resistance to ascochyta blight (*Ascochyta lenti*) of lentil and the identification of closely linked RAPD markers. - *Theor. appl. Genet.* **98**: 93-98, 1999.

Harlan, J.R.: Anatomy of gene clusters. - *Amer. Natur.* **85**: 97-105, 1951.

Havey, M.J., Muehlbauer, F.J.: Variability for restriction fragment lengths and phylogenies in lentil. - *Theor. appl. Genet.* **77**: 839-843, 1989.

Hussain, A., Ramirez, H., Bushuk, W., Roca, W.: Field bean (*Phaseolus vulgaris* L.) cultivar identification by electrophoregrams of cotyledon storage proteins. - *Euphytica* **35**: 729-732, 1986.

Igrejas, G., Guedes-Pinto, H., Carnide, V., Branlard, G.: Seed storage protein diversity in triticale varieties commonly grown in Portugal. - *Plant Breed.* **118**: 303-306, 1999.

Karihaloo, J.M., Kaur, M., Singh, S.: Seed protein diversity in *Solanum melongena* L. and its wild and weedy relatives. - *Genet. Resources Crop. Evol.* **49**: 533-539, 2002.

Ladizinsky, G., Hymowitz, T.: Seed protein electrophoresis in taxonomic and evolutionary studies. - *Theor. appl. Genet.* **54**: 145-151, 1979.

Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - *Nature* **227**: 680-685, 1970.

Rohlf, F.J.: *NTSYS-pc Numerical Taxonomy and Multivariate Analysis System Version 1.7*. - Exeter Publications, New York 1992.

Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships. - *Univ. Kansas Sci. Bull.* **38**: 1409-1438, 1958.

Stegemann, H., Afify, A.E.M.R., Hussein, K.R.F.: Identification of date (*Phoenix dactylifera*) cultivars by protein patterns. - *Phytochemistry* **26**: 149-153, 1987.

Stoilova, T., Cholakova, N., Markova, M.: Variation in seed protein and isoenzyme patterns in *Cucurbita* cultivars. - *Biol. Plant.* **50**: 450-452, 2006.

Vladova, R., Pandeva, R., Petcolicheva, K.: Seed storage proteins in *Capsicum annuum* cultivars. - *Biol. Plant.* **43**: 291-295, 2000.

Yüzbaşıoğlu, E., Özcan, S., Açıkgöz, L.: Analysis of genetic relationships among Turkish lentil cultivars and breeding lines of *Lens culinaris* Medik. using RAPD markers. - *Genet. Resources Crop Evol.* **53**: 507-514, 2006.

Zavodna, M., Kraic, J., Paglia, G., Gregova, E., Morgante, M.: Differentiation between closely related lentil (*Lens culinaris* Medik) cultivars using DNA markers. - *Seed Sci. Technol.* **28**: 217-219, 2000.