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Abstract 
 
Following leaf application of salicylic acid (SA), calcium chloride, hydrogen peroxide and 6-benzylaminopurine (BA), 
Manila grass (Zoysia matrella) plants were exposed to day/night temperature of 7/2 °C for 120 h in a growth chamber. The 
lower content of malondialdehyde (MDA) and H2O2 and higher activities of ascorbate peroxidase (APX), guaiacol 
peroxidase (POD) and catalase (CAT) during exposure to low temperature in pre-treated plants in comparison with 
control plants demonstrated that these compounds improved the chilling tolerance of Manila grass.  
Additional key words: antioxidant enzymes, cold stress, Manila grass, oxidative damage, signalling compounds. 
 
⎯⎯⎯⎯ 
 
Manila grass (Zoysia matrella) is one of the most popular 
warm-season turf grasses in subtropical cities. However, 
the lower temperature in winter is a major factor restricting 
its utilization in these regions. Therefore, it is necessary to 
study how to enhance the chilling tolerance of Manila 
grass. Chilling can lead to the overproduction of reactive 
oxygen species including hydrogen peroxide (Anderson  
et al. 1995). In order to resist oxidative damage plants 
possess many antioxidative enzymes such as superoxide 
dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 
1.11.1.6), guaiacol peroxidase (POD; EC 1.11.1.7), 
ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione 
reductase (GR; EC 1.6.4.2) (Zhao and Blumwald 1998). 
Previous works have shown that pre-treatment of plants 
with salicylic acid (SA) or calcium chloride up-regulated 
the activities of antioxidant enzymes and increased  
tolerance of plants (Kang et al. 2003, Tasgin et al. 2006, 
Larkindale and Huang 2004, Nayyar and Kaushal 2002). 
Recently, it has been considered that H2O2 of low 
concentration may regulate the expression of numerous 
genes encoding antioxidants enzymes as a stress signalling 
molecule (Chen and Song 2006). H2O2 pre-treatment 
induced salt-tolerance of maize plants and pretreatment of 
seed with H2O2 also improves salt tolerance of wheat  

seedlings by alleviation of oxidative damage (Wahid et al. 
2007). Transgenic tall fescue expressing a gene of 
isopentenyl transferase (ipt), which is a key enzyme in the 
biosynthetic pathway of cytokinins, increased cytokinin 
production and enhanced the tolerance to lower 
temperatures (Hu et al. 2005). In this study, we tried to 
enhance the chilling tolerance of Manila grass by the 
pre-treatment with SA, CaCl2, H2O2 and 6-benzyl- 
aminopurine (6-BA).  
 Manila grass (Zoysia matrella L. Merr) plants were 
collected from a 1-year field plots at the Horticulture 
Cultivation Center, Nanjing University. They were grown 
in plastic pots filled with sand/organic/vermiculite (3/1/1, 
v/v/v) mixture in a greenhouse at day/night temperature of 
32/26 °C for one month. They were clipped to a height of 
10 cm, watered daily and fertilized weekly with 
Hoagland’s solution. Prior to the experiment, the plants 
were transferred to growth chamber (temperature 32/26 °C, 
relative humidity about 70 %, irradiance 200 μmol m-2 s-1 
and 14-h photoperiod) for two weeks. Based on a preli- 
minary experiment, the optimum concentrations for 
pretreatments were: 0.5 mM SA, 10 mM H2O2, 10 mM 
CaCl2 and 30 μM BA. Plants treated with similar volume 
of distilled water were used as controls.  
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 The plants were firstly sprayed by 50 cm3 of the 
appropriate solution or water and then were transferred to 
the chamber with temperature of 7/2 °C and other 
conditions ibidem. To determine activities of POD, CAT, 
APX and GR leaves were sampled after 0, 12, 24, 48, 72 
and 120 h and the contents of malondialdehyde (MDA) 
and H2O2 after 0, 24, 48, 72 and 120 h of chilling. 
 The concentration of malondialdehyde (MDA) was 
measured by the thiobarbituric acid (TBA) method 
described by Xu et al. (2006). Fresh leaf samples (0.2 g) 
were homogenized with a mortar and pestle in 5 cm3 10 % 
(v/v) trichloracetic acid and the homogenate was 
centrifuged at 12 000 g for 15 min. Two cm3 supernatant 
was taken out, added 2 cm3 of 0.6 % (v/v) TBA solution, 
heated in a boiling water bath for 30 min and cooled 
quickly in an ice bath. The mixture was centrifuged at 
12 000 g for 15 min and the resulting supernatant was 
determined at 532 nm and 600 nm with UV-VIS 
spectrophotometer (Beckman M36, USA). Contents of 
H2O2 were estimated by forming a titanium hydroperoxide 
complex (Procházková et al. 2001). Fresh leaf material 
(0.2 g) was ground with 5 cm3 cooled acetone in an ice 
bath and the homogenate was centrifuged at 6 000 g for  
10 min. One cm3 supernatant was taken out and 0.1 cm3  
5 % titanium sulfate and 0.2 cm3 ammonia were added to 
this solution. The reaction mixture was centrifuged at 
10 000 g for 10 min at 4 °C. The supernatant was 
discarded and the precipitate was dissolved in 5 cm3 2 mM 
H2SO4. The solution was analyzed at 415 nm. Content of 
H2O2 was determined using standard curve plotted with 
the known content of H2O2. 
 Pre-treated leaves (0.2 g) were harvested and frozen in 
liquid nitrogen at different times of treatment and stored at 
-80 °C. After the removal from the freezer, the samples 
were immediately ground with a mortar and pestle, in the 
ice bath, in 5 cm3 of cold phosphate saline buffer (PSB, 
100 mM, pH 7.6) containing 2 % polyvinylpolypyrro- 
lidone, 1 mM EDTA and 0.5 mM ascoric acid (AsA). The 
homogenate was then centrifuged at 12 000 g at 4 °C for 
20 min and the supernatant was used as the crude extract 
for the assays of antioxidant enzyme activity. By the 
methods of Larkindale and Huang (2004), APX activity 
was measured by monitoring the rate of oxidation of AsA 
at 290 nm for 1 min, and 3 cm-3 of reaction mixture was 
composed of 50 mM PSB (pH 7.0) containing 0.5 mM 
AsA, 0.06 % H2O2 dissolved in PSB (pH 7.0), and 0.1 cm3 
enzyme extract. POD activity was measured by moni- 
toring the oxidation of guaiacol at 470 nm for 1 min, and  
3 cm3 of reaction mixture was composed of 50 mM PSB 
(pH 7.0), 1 % guaiacol, 0.3 % H2O2 and 0.05 cm3 enzyme 
extract. CAT activity was measured according to the 
decomposition of H2O2 at 240 nm for 1 min, and 3 cm3 of 
reaction mixture included 50 mM PSB (pH 7.0), 0.06 % 
H2O2, and 0.1 cm3 of enzyme extract. GR activity was 
measured by the increase of the absorbance at 412 nm for 
1 min according to Smith et al. (1988). The assayed 
mixture contained 100 mM PSB (pH 7.5), 0.5 mM 
5,5’-dithiobis-2-nitrobenzoic acid (DTNB), 2.0 mM 
NADPH, 2.0 mM GSSG and 0.1 cm-3 extract in a total of  

3 cm3, and the reaction was started by the addition of 
GSSG. The PSB of the same volume replaced the extract 
as blank in the measurement of these enzyme activities. 
One unit of POD, CAT and GR activity was defined as 
absorbance changed 0.01 in 1 min. Protein content was 
determined by the absorbance at 595 nm using bovine 
serum albumin as a standard (Bradford 1976). All data in 
the experiments were subjected to an analysis of variance 
and the least significant difference at 0.05 probability 
levels was performed (Student t-test).  
 MDA is a product of peroxidation of unsaturated fatty 
acids in phospholipids and responsible for cell membrane 
damage (Xu et al. 2006). As chilling stress continued, 
MDA content in controls and pre-treated leaves was 
gradually increased. However, all pre-treated samples 
showed lower contents of MDA than controls during the 
cold stress (Table 1). It proved that pre-treatments 
alleviated and postponed oxidation damage resulted from 
chilling.  
 Biotic and abiotic stresses may induce overproduction 
of H2O2 in plant cells and H2O2 can lead directly to the 
damage of cell membrane, protein and nucleic acids. Our 
results showed contents of H2O2 in plants pre-treated with 
SA, CaCl2, H2O2 and 6-BA significantly increased  
(P < 0.05) before the initiation of cold stress, however, 
these pre-treatments decreased the H2O2 content in the first 
72 h of chilling (Table 1), which was in agreement with the 
changes in MDA content. In further cold stress, H2O2 was 
significantly accumulated (P < 0.05) because the over- 
production of H2O2 exceeded the capacity of antioxidative 
enzymes to eliminate it. However, H2O2 content in 
pre-treated plants was lower than in controls (Table 1). 
 It is well-known that there is a relationship between the 
improvement of antioxidant enzyme activity and chilling 
tolerance (Sala 1998, Zhao and Blumwald 1998, Shen et al. 
1999). Activities of POD, CAT and APX changed rarely in 
controls, which may imply that chilling itself can not 
induce the activities of these enzymes in Manila grass 
(Table 1). However, increased CAT, APX and POD 
activities prior to the chilling initiation protected turf 
grasses against the subsequent chilling-induced damage 
(Horvath et al. 2007). All pre-treatments significantly 
increased POD, CAT and APX activity in first 72 h of 
chilling (P < 0.05). The CAT, APX and POD activities 
decreased during further chilling, but the activities were 
still greater than in controls. It is obvious that POD, CAT 
and APX played a primary role in preventing pre-treated 
plants  from adverse effects of chilling. GR catalyzes the 
regeneration of GSH from GSSG and the activity of GR 
has been reported to associate with the alteration of the 
GSSG/GSH ratio which is more decisive in determining 
plant resistance to abiotic and biotic stresses than GSH 
content (Kómives et al. 1998). Our results showed that the 
GR activities in all pre-treated plants were similar to 
control in the first 24 h, and then they were increased in 
further chilling with some fluctuation, suggesting GR may 
be activated to regulate the oxidant-reduction status of 
GSH after it has been changed by chilling. Some studies 
showed that low temperature activates redox signalling  
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Table 1. Effects of pre-treatment with SA, CaCl2, H2O2 and 6-BA on contents of MDA and H2O2 at 0, 24, 72 and 120 h and activities of 
POD, CAT, APX and GR at 0, 12, 24, 72 and 120 h of chilling (7/2 °C, day/night) in Manila grass. Control plants were pre-treated with 
distilled water and sampled at the same time. Means ± standard deviation (n = 4). Values marked by * differ significantly at P < 0.05 
from corresponding ones measured on control plants according to t-test. 
 

 Time [h] Control SA CaCl2 H2O2 6-BA 

MDA content     0     4.08±0.37     2.19±0.84     5.07±0.45     5.38±0.62     3.30±0.65 
[μmol g-1(f.m.)]   24     6.52±0.32     2.07±0.68*     5.73±0.53     5.85±0.35     4.68±0.51 
   72     7.93±0.79     2.24±0.83*     6.45±0.43*     5.89±0.23*     4.32±0.57* 
 120   13.35±0.88     9.72±0.45   11.76±1.24   12.28±0.6   10.46±0.45 
H2O2 content     0     1.27±0.27     2.74±0.22*     1.75±0.20     2.68±0.02*     2.64±0.05* 
[μmol g-1(f.m.)]   24     1.22±0.14     1.98±0.39*     1.62±0.47     1.34±0.37     2.19±0.14* 
   72     1.16±0.36     1.67±0.34     1.52±0.30     1.17±0.28     2.18±0.45* 
   120     3.80±0.31     3.34±0.27     3.06±0.49     3.52±0.16     3.17±0.37 
POD      0 155.38±24.23 176.78±19.59 240.06±27.79* 177.49±29.76 256.18±22.52* 
[U mg-1(protein) min-1]   12 203.71±18.27 274.77±17.28* 350.47±25.07* 379.50±26.21* 219.19±38.24 
   24 182.04±28.47 252.63±20.30* 241.33±27.46* 324.03±32.09* 299.86±29.61* 
   48 150.43±26.17 458.98±38.49* 255.77±16.49* 384.27±21.41* 259.42±33.42* 
   72 153.59±17.02 447.78±28.17* 261.72±20.28* 316.81±32.87* 332.26±19.72* 
 120 164.50±7.85 206.46±18.25 188.01±12.85 185.36±35.11 160.74±28.37 
CAT     0     6.74±2.17   13.45±1.24*   15.10±1.89*   10.27±2.14*   13.53±2.39* 
[U mg-1(protein) min-1]   12     8.81±1.60   37.07±3.39*   19.94±0.73*   21.19±0.69*   12.04±1.74* 
   24     7.25±1.93   33.36±1.72*   16.01±0.99*   17.89±1.40*   11.85±0.31* 
   48     5.80±1.02   50.63±2.17*   17.95±0.47*   18.66±1.26*   11.86±1.43* 
   72     7.25±1.60   41.32±2.49*   14.52±2.06*   13.72±1.61*   13.09±2.70* 
 120     7.82±0.51   11.15±0.10     8.20±1.08     8.83±0.73     7.58±0.44 
APX      0     2.98±0.87     8.76±0.48*     6.32±0.37*     4.23±0.84*   13.34±0.89* 
[mmol(AsA) mg-1(protein) min-1]   12     2.21±0.81     8.09±1.15*     8.72±0.49*     8.05±0.88*     9.70±1.34* 
   24     4.45±0.70     7.60±0.36*     8.76±1.28*     5.77±1.28*     8.43±0.66* 
   48     3.27±1.14     8.85±0.89*     7.58±0.52*     8.07±1.23*     8.54±0.53* 
   72     3.62±0.89     8.74±1.15*     6.20±0.95*     5.78±0.99*     9.61±0.76* 
 120     3.22±0.29     4.29±0.13     3.53±0.23     3.26±0.13     2.84±0.08 
GR     0     4.82±0.52     3.37±0.45     5.67±0.73     2.82±0.37     5.07±0.35 
[U mg-1(protein) min-1]   12     5.16±0.53     6.16±0.25     5.08±0.39     6.28±0.26     4.84±0.46 
   24     4.98±0.51     5.69±0.46     4.25±0.41     4.83±0.32     5.24±0.38 
   48     3.60±0.41     8.10±0.50*     4.84±0.69*     5.71±0.15*     4.92±0.44* 
   72     3.39±0.36     7.28±0.32*     3.82±0.26     4.41±0.37     4.98±0.34* 
 120     3.27±0.33     3.54±0.36     3.50±0.70     4.78±0.16     4.21±0.33 

 
either directly via changes in H2O2 concentration and 
GSH/GSSG ratio or indirectly by affecting ABA, Ca2+ or 
SA contents, which then alter the GSH/GSSG ratio (Kocsy 
et al. 2001). Our results suggested that the change of H2O2 
content and the GSH/GSSG ratio was possibly involved in 
signal transduction of these compounds (Table 1).  
 In conclusion, our results have demonstrated that SA, 
CaCl2, H2O2 and 6-BA pre-treatments protected Manila 

grass from cold stress. The enhanced chilling tolerance 
may be associated, at least in part, with the control and/or 
prevention of oxidative damage and the increase of POD, 
CAT and APX activities played a primary role in 
preventing plants from adverse effects of chilling. From 
the four compounds tested, SA induced higher activities of 
CAT and GR than other compounds 24 h after chilling, as 
well as the lowest MDA content.  
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