

Enhanced chilling tolerance in *Zoysia matrella* by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine

Y. WANG¹, Z.M. YANG², Q.F. ZHANG¹ and J.L. LI^{1*}

*School of Life Sciences, Nanjing University, Nanjing, 210093, P.R. China*¹

*Horticulture College of Nanjing Agricultural University, Nanjing, 210095, P.R. China*²

Abstract

Following leaf application of salicylic acid (SA), calcium chloride, hydrogen peroxide and 6-benzylaminopurine (BA), Manila grass (*Zoysia matrella*) plants were exposed to day/night temperature of 7/2 °C for 120 h in a growth chamber. The lower content of malondialdehyde (MDA) and H₂O₂ and higher activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD) and catalase (CAT) during exposure to low temperature in pre-treated plants in comparison with control plants demonstrated that these compounds improved the chilling tolerance of Manila grass.

Additional key words: antioxidant enzymes, cold stress, Manila grass, oxidative damage, signalling compounds.

Manila grass (*Zoysia matrella*) is one of the most popular warm-season turf grasses in subtropical cities. However, the lower temperature in winter is a major factor restricting its utilization in these regions. Therefore, it is necessary to study how to enhance the chilling tolerance of Manila grass. Chilling can lead to the overproduction of reactive oxygen species including hydrogen peroxide (Anderson *et al.* 1995). In order to resist oxidative damage plants possess many antioxidative enzymes such as superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), guaiacol peroxidase (POD; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) (Zhao and Blumwald 1998). Previous works have shown that pre-treatment of plants with salicylic acid (SA) or calcium chloride up-regulated the activities of antioxidant enzymes and increased tolerance of plants (Kang *et al.* 2003, Tasgin *et al.* 2006, Larkindale and Huang 2004, Nayyar and Kaushal 2002). Recently, it has been considered that H₂O₂ of low concentration may regulate the expression of numerous genes encoding antioxidants enzymes as a stress signalling molecule (Chen and Song 2006). H₂O₂ pre-treatment induced salt-tolerance of maize plants and pretreatment of seed with H₂O₂ also improves salt tolerance of wheat

seedlings by alleviation of oxidative damage (Wahid *et al.* 2007). Transgenic tall fescue expressing a gene of isopentenyl transferase (*ipt*), which is a key enzyme in the biosynthetic pathway of cytokinins, increased cytokinin production and enhanced the tolerance to lower temperatures (Hu *et al.* 2005). In this study, we tried to enhance the chilling tolerance of Manila grass by the pre-treatment with SA, CaCl₂, H₂O₂ and 6-benzylaminopurine (6-BA).

Manila grass (*Zoysia matrella* L. Merr) plants were collected from a 1-year field plots at the Horticulture Cultivation Center, Nanjing University. They were grown in plastic pots filled with sand/organic/vermiculite (3/1/1, v/v/v) mixture in a greenhouse at day/night temperature of 32/26 °C for one month. They were clipped to a height of 10 cm, watered daily and fertilized weekly with Hoagland's solution. Prior to the experiment, the plants were transferred to growth chamber (temperature 32/26 °C, relative humidity about 70 %, irradiance 200 μmol m⁻² s⁻¹ and 14-h photoperiod) for two weeks. Based on a preliminary experiment, the optimum concentrations for pretreatments were: 0.5 mM SA, 10 mM H₂O₂, 10 mM CaCl₂ and 30 μM BA. Plants treated with similar volume of distilled water were used as controls.

Received 27 February 2008, accepted 5 February 2009.

Abbreviations: APX - ascorbate peroxidase; BA - 6-benzylaminopurine; CAT - catalase; GR - glutathione reductase; GSH - glutathione; GSSG - oxidized glutathione; MDA - malondialdehyde; NBT - nitroblue tetrazolium chloride monohydrate; POD - guaiacol peroxidase; PSB - phosphate saline buffer; SA - salicylic acid.

Acknowledgements: This research was supported by the China's projects (863 and 2007 AA10Z231). The authors thank Mrs. Marilyn White (Brigham Young University) for correction of the English.

* Corresponding author; fax: (+86) 25 83302728; e-mail: jlli2008@nju.edu.cn

The plants were firstly sprayed by 50 cm³ of the appropriate solution or water and then were transferred to the chamber with temperature of 7/2 °C and other conditions *ibidem*. To determine activities of POD, CAT, APX and GR leaves were sampled after 0, 12, 24, 48, 72 and 120 h and the contents of malondialdehyde (MDA) and H₂O₂ after 0, 24, 48, 72 and 120 h of chilling.

The concentration of malondialdehyde (MDA) was measured by the thiobarbituric acid (TBA) method described by Xu *et al.* (2006). Fresh leaf samples (0.2 g) were homogenized with a mortar and pestle in 5 cm³ 10 % (v/v) trichloroacetic acid and the homogenate was centrifuged at 12 000 g for 15 min. Two cm³ supernatant was taken out, added 2 cm³ of 0.6 % (v/v) TBA solution, heated in a boiling water bath for 30 min and cooled quickly in an ice bath. The mixture was centrifuged at 12 000 g for 15 min and the resulting supernatant was determined at 532 nm and 600 nm with UV-VIS spectrophotometer (*Beckman M36*, USA). Contents of H₂O₂ were estimated by forming a titanium hydroperoxide complex (Procházková *et al.* 2001). Fresh leaf material (0.2 g) was ground with 5 cm³ cooled acetone in an ice bath and the homogenate was centrifuged at 6 000 g for 10 min. One cm³ supernatant was taken out and 0.1 cm³ 5 % titanium sulfate and 0.2 cm³ ammonia were added to this solution. The reaction mixture was centrifuged at 10 000 g for 10 min at 4 °C. The supernatant was discarded and the precipitate was dissolved in 5 cm³ 2 mM H₂SO₄. The solution was analyzed at 415 nm. Content of H₂O₂ was determined using standard curve plotted with the known content of H₂O₂.

Pre-treated leaves (0.2 g) were harvested and frozen in liquid nitrogen at different times of treatment and stored at -80 °C. After the removal from the freezer, the samples were immediately ground with a mortar and pestle, in the ice bath, in 5 cm³ of cold phosphate saline buffer (PSB, 100 mM, pH 7.6) containing 2 % polyvinylpolypyrrolidone, 1 mM EDTA and 0.5 mM ascorbic acid (AsA). The homogenate was then centrifuged at 12 000 g at 4 °C for 20 min and the supernatant was used as the crude extract for the assays of antioxidant enzyme activity. By the methods of Larkindale and Huang (2004), APX activity was measured by monitoring the rate of oxidation of AsA at 290 nm for 1 min, and 3 cm³ of reaction mixture was composed of 50 mM PSB (pH 7.0) containing 0.5 mM AsA, 0.06 % H₂O₂ dissolved in PSB (pH 7.0), and 0.1 cm³ enzyme extract. POD activity was measured by monitoring the oxidation of guaiacol at 470 nm for 1 min, and 3 cm³ of reaction mixture was composed of 50 mM PSB (pH 7.0), 1 % guaiacol, 0.3 % H₂O₂ and 0.05 cm³ enzyme extract. CAT activity was measured according to the decomposition of H₂O₂ at 240 nm for 1 min, and 3 cm³ of reaction mixture included 50 mM PSB (pH 7.0), 0.06 % H₂O₂, and 0.1 cm³ of enzyme extract. GR activity was measured by the increase of the absorbance at 412 nm for 1 min according to Smith *et al.* (1988). The assayed mixture contained 100 mM PSB (pH 7.5), 0.5 mM 5,5'-dithiobis-2-nitrobenzoic acid (DTNB), 2.0 mM NADPH, 2.0 mM GSSG and 0.1 cm³ extract in a total of

3 cm³, and the reaction was started by the addition of GSSG. The PSB of the same volume replaced the extract as blank in the measurement of these enzyme activities. One unit of POD, CAT and GR activity was defined as absorbance changed 0.01 in 1 min. Protein content was determined by the absorbance at 595 nm using bovine serum albumin as a standard (Bradford 1976). All data in the experiments were subjected to an analysis of variance and the least significant difference at 0.05 probability levels was performed (Student *t*-test).

MDA is a product of peroxidation of unsaturated fatty acids in phospholipids and responsible for cell membrane damage (Xu *et al.* 2006). As chilling stress continued, MDA content in controls and pre-treated leaves was gradually increased. However, all pre-treated samples showed lower contents of MDA than controls during the cold stress (Table 1). It proved that pre-treatments alleviated and postponed oxidation damage resulted from chilling.

Biotic and abiotic stresses may induce overproduction of H₂O₂ in plant cells and H₂O₂ can lead directly to the damage of cell membrane, protein and nucleic acids. Our results showed contents of H₂O₂ in plants pre-treated with SA, CaCl₂, H₂O₂ and 6-BA significantly increased ($P < 0.05$) before the initiation of cold stress, however, these pre-treatments decreased the H₂O₂ content in the first 72 h of chilling (Table 1), which was in agreement with the changes in MDA content. In further cold stress, H₂O₂ was significantly accumulated ($P < 0.05$) because the over-production of H₂O₂ exceeded the capacity of antioxidative enzymes to eliminate it. However, H₂O₂ content in pre-treated plants was lower than in controls (Table 1).

It is well-known that there is a relationship between the improvement of antioxidant enzyme activity and chilling tolerance (Sala 1998, Zhao and Blumwald 1998, Shen *et al.* 1999). Activities of POD, CAT and APX changed rarely in controls, which may imply that chilling itself can not induce the activities of these enzymes in Manila grass (Table 1). However, increased CAT, APX and POD activities prior to the chilling initiation protected turf grasses against the subsequent chilling-induced damage (Horvath *et al.* 2007). All pre-treatments significantly increased POD, CAT and APX activity in first 72 h of chilling ($P < 0.05$). The CAT, APX and POD activities decreased during further chilling, but the activities were still greater than in controls. It is obvious that POD, CAT and APX played a primary role in preventing pre-treated plants from adverse effects of chilling. GR catalyzes the regeneration of GSH from GSSG and the activity of GR has been reported to associate with the alteration of the GSSG/GSH ratio which is more decisive in determining plant resistance to abiotic and biotic stresses than GSH content (Kómives *et al.* 1998). Our results showed that the GR activities in all pre-treated plants were similar to control in the first 24 h, and then they were increased in further chilling with some fluctuation, suggesting GR may be activated to regulate the oxidant-reduction status of GSH after it has been changed by chilling. Some studies showed that low temperature activates redox signalling

Table 1. Effects of pre-treatment with SA, CaCl_2 , H_2O_2 and 6-BA on contents of MDA and H_2O_2 at 0, 24, 72 and 120 h and activities of POD, CAT, APX and GR at 0, 12, 24, 72 and 120 h of chilling (7/2 °C, day/night) in Manila grass. Control plants were pre-treated with distilled water and sampled at the same time. Means \pm standard deviation ($n = 4$). Values marked by * differ significantly at $P < 0.05$ from corresponding ones measured on control plants according to t -test.

	Time [h]	Control	SA	CaCl_2	H_2O_2	6-BA
MDA content [$\mu\text{mol g}^{-1}$ (f.m.)]	0	4.08 \pm 0.37	2.19 \pm 0.84	5.07 \pm 0.45	5.38 \pm 0.62	3.30 \pm 0.65
	24	6.52 \pm 0.32	2.07 \pm 0.68*	5.73 \pm 0.53	5.85 \pm 0.35	4.68 \pm 0.51
	72	7.93 \pm 0.79	2.24 \pm 0.83*	6.45 \pm 0.43*	5.89 \pm 0.23*	4.32 \pm 0.57*
	120	13.35 \pm 0.88	9.72 \pm 0.45	11.76 \pm 1.24	12.28 \pm 0.6	10.46 \pm 0.45
H_2O_2 content [$\mu\text{mol g}^{-1}$ (f.m.)]	0	1.27 \pm 0.27	2.74 \pm 0.22*	1.75 \pm 0.20	2.68 \pm 0.02*	2.64 \pm 0.05*
	24	1.22 \pm 0.14	1.98 \pm 0.39*	1.62 \pm 0.47	1.34 \pm 0.37	2.19 \pm 0.14*
	72	1.16 \pm 0.36	1.67 \pm 0.34	1.52 \pm 0.30	1.17 \pm 0.28	2.18 \pm 0.45*
	120	3.80 \pm 0.31	3.34 \pm 0.27	3.06 \pm 0.49	3.52 \pm 0.16	3.17 \pm 0.37
POD [U mg^{-1} (protein) min^{-1}]	0	155.38 \pm 24.23	176.78 \pm 19.59	240.06 \pm 27.79*	177.49 \pm 29.76	256.18 \pm 22.52*
	12	203.71 \pm 18.27	274.77 \pm 17.28*	350.47 \pm 25.07*	379.50 \pm 26.21*	219.19 \pm 38.24
	24	182.04 \pm 28.47	252.63 \pm 20.30*	241.33 \pm 27.46*	324.03 \pm 32.09*	299.86 \pm 29.61*
	48	150.43 \pm 26.17	458.98 \pm 38.49*	255.77 \pm 16.49*	384.27 \pm 21.41*	259.42 \pm 33.42*
	72	153.59 \pm 17.02	447.78 \pm 28.17*	261.72 \pm 20.28*	316.81 \pm 32.87*	332.26 \pm 19.72*
	120	164.50 \pm 7.85	206.46 \pm 18.25	188.01 \pm 12.85	185.36 \pm 35.11	160.74 \pm 28.37
CAT [U mg^{-1} (protein) min^{-1}]	0	6.74 \pm 2.17	13.45 \pm 1.24*	15.10 \pm 1.89*	10.27 \pm 2.14*	13.53 \pm 2.39*
	12	8.81 \pm 1.60	37.07 \pm 3.39*	19.94 \pm 0.73*	21.19 \pm 0.69*	12.04 \pm 1.74*
	24	7.25 \pm 1.93	33.36 \pm 1.72*	16.01 \pm 0.99*	17.89 \pm 1.40*	11.85 \pm 0.31*
	48	5.80 \pm 1.02	50.63 \pm 2.17*	17.95 \pm 0.47*	18.66 \pm 1.26*	11.86 \pm 1.43*
	72	7.25 \pm 1.60	41.32 \pm 2.49*	14.52 \pm 2.06*	13.72 \pm 1.61*	13.09 \pm 2.70*
	120	7.82 \pm 0.51	11.15 \pm 0.10	8.20 \pm 1.08	8.83 \pm 0.73	7.58 \pm 0.44
APX [mmol(AsA) mg^{-1} (protein) min^{-1}]	0	2.98 \pm 0.87	8.76 \pm 0.48*	6.32 \pm 0.37*	4.23 \pm 0.84*	13.34 \pm 0.89*
	12	2.21 \pm 0.81	8.09 \pm 1.15*	8.72 \pm 0.49*	8.05 \pm 0.88*	9.70 \pm 1.34*
	24	4.45 \pm 0.70	7.60 \pm 0.36*	8.76 \pm 1.28*	5.77 \pm 1.28*	8.43 \pm 0.66*
	48	3.27 \pm 1.14	8.85 \pm 0.89*	7.58 \pm 0.52*	8.07 \pm 1.23*	8.54 \pm 0.53*
	72	3.62 \pm 0.89	8.74 \pm 1.15*	6.20 \pm 0.95*	5.78 \pm 0.99*	9.61 \pm 0.76*
	120	3.22 \pm 0.29	4.29 \pm 0.13	3.53 \pm 0.23	3.26 \pm 0.13	2.84 \pm 0.08
GR [U mg^{-1} (protein) min^{-1}]	0	4.82 \pm 0.52	3.37 \pm 0.45	5.67 \pm 0.73	2.82 \pm 0.37	5.07 \pm 0.35
	12	5.16 \pm 0.53	6.16 \pm 0.25	5.08 \pm 0.39	6.28 \pm 0.26	4.84 \pm 0.46
	24	4.98 \pm 0.51	5.69 \pm 0.46	4.25 \pm 0.41	4.83 \pm 0.32	5.24 \pm 0.38
	48	3.60 \pm 0.41	8.10 \pm 0.50*	4.84 \pm 0.69*	5.71 \pm 0.15*	4.92 \pm 0.44*
	72	3.39 \pm 0.36	7.28 \pm 0.32*	3.82 \pm 0.26	4.41 \pm 0.37	4.98 \pm 0.34*
	120	3.27 \pm 0.33	3.54 \pm 0.36	3.50 \pm 0.70	4.78 \pm 0.16	4.21 \pm 0.33

either directly via changes in H_2O_2 concentration and GSH/GSSG ratio or indirectly by affecting ABA, Ca^{2+} or SA contents, which then alter the GSH/GSSG ratio (Kocsy *et al.* 2001). Our results suggested that the change of H_2O_2 content and the GSH/GSSG ratio was possibly involved in signal transduction of these compounds (Table 1).

In conclusion, our results have demonstrated that SA, CaCl_2 , H_2O_2 and 6-BA pre-treatments protected Manila

grass from cold stress. The enhanced chilling tolerance may be associated, at least in part, with the control and/or prevention of oxidative damage and the increase of POD, CAT and APX activities played a primary role in preventing plants from adverse effects of chilling. From the four compounds tested, SA induced higher activities of CAT and GR than other compounds 24 h after chilling, as well as the lowest MDA content.

References

Anderson, M.D., Prasad, T.K., Stewart, C.R.: Changes in isozyme profiles of catalase peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedling. - *Plant Physiol.* **109**: 1247-1257, 1995.

Arnon, D.I.: Copper enzymes in isolated chloroplasts: poly-phenol oxidase in *Beta vulgaris*. - *Plant Physiol.* **24**: 1-15, 1949.

Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Cheng, Y.L., Song, C.P.: Hydrogen peroxide homeostasis and

signaling in plant cells. - *Sci. China Ser. C. Life Sci.* **49**: 1-11, 2006.

Fadzillah, N.M., Gill, V., Finch, R.P., Burdon, R.H.: Chilling oxidative stress and antioxidant responses in shoot culture of rice. - *Planta* **199**: 552-556, 1996.

Hu, Y.L., Jia, W.L., Wang, J.D., Zhang, Y.Q., Yang, L.L., Lin, Z.P.: Transgenic tall fescue containing the *Agrobacterium tumefaciens ipt* gene shows enhanced cold tolerance. - *Plant Cell Rep.* **23**: 705-709, 2005.

Horváth, E., Pál, M., Szalai, G., Páldi, E., Janda, T.: Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. - *Biol. Plant.* **51**: 480-487, 2007.

Kang, G.Z., Wang, C.H., Sun, G.C., Wang, Z.X.: Salicylic acid changes activities of H₂O₂-metabolizing enzymes and increases the chilling tolerance of banana seedlings. - *Environ. exp. Bot.* **50**: 9-15, 2003.

Kocsy, G., Galiba, G., Brunold, C.: Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. - *Physiol. Plant.* **113**: 58-164, 2001.

Larkindale, J., Huang, B.R.: Thermotolerance and antioxidant systems in *Agrostis stolonifera*: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. - *J. Plant Physiol.* **161**: 405-413, 2004.

Nayyar, H., Kaushal, S.K.: Chilling induced oxidative stress in germinating wheat grains as affected by water stress and calcium. - *Biol. Plant.* **45**: 601-604, 2002.

Procházková, D., Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. - *Plant Sci.* **161**: 765-771, 2001.

Sala, J.M.: Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. - *Postharvest Biol. Technol.* **13**: 255-261, 1998.

Shen, W., Nada, K., Tachibana, S.: Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. - *J. jap. Soc. hort. Sci.* **68**: 967-973, 1999.

Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude homogenates use 5,5'-dithiol-bis-2-nitrobenzoic acid). - *Anal. Biochem.* **175**: 408-413, 1988.

Székács, A., Hegedüs, G., Tóbiás, I., Pogány, M., Barna, B.: Immunoassays for plant cytokinins as tools for the assessment of environmental stress and disease resistance. - *Anal. chim. Acta* **421**: 135-146, 2000.

Tasgin, E., Atici, O., Nalbantoglu, B., Popova, L.P.: Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. - *Phytochemistry* **67**: 710-715, 2006.

Wahid, A., Perveen, M., Gelani, S., Basra, S.M.A.: Pretreatment of seed with H₂O₂ improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. - *J. Plant Physiol.* **164**: 283-294, 2007.

Xu, S., Li, J.L., Zhang, X.Q., Wei, H., Cui, L.J.: Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. - *Environ. exp. Bot.* **56**: 274-285, 2006.

Zhao, S.Y., Blumwald, E.: Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. - *Physiol. Plant.* **104**: 134-142, 1998.