BRIEF COMMUNICATION

Pre-treatment with H₂O₂ induces salt tolerance in barley seedlings

I.S. FEDINA¹*, D. NEDEVA¹ and N. ÇIÇEK²

Academic Metodi Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Academic Georgi Bonchev Street, Building 21, Sofia BG-1113, Bulgaria¹ Hacettepe University, TUBITAK, Beytepe, Ankara 06800, Turkey²

Abstract

Barley seedlings were pre-treated with 1 and 5 μ M H_2O_2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H_2O_2 alone had no effect on the proline, malondialdehyde (MDA) and H_2O_2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μ M H_2O_2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H_2O_2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14 CO $_2$ fixation was higher and MDA, H_2O_2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H_2O_2 metabolism is involved as a signal in the processes of barley salt tolerance.

Additional key words: catalase, ¹⁴CO₂ fixation, malondialdehyde, NaCl, peroxidase, proline, superoxide dismutase.

Hydrogen peroxide is produced under various abiotic and biotic stresses and causes oxidative damage to plants. Some authors suggested that H₂O₂ plays a dual role in plants: at low concentration acts as a messenger involved in signaling and in triggering tolerance against various abiotic stresses, but at high concentrations H₂O₂ causes oxidative stress which leads to a loss of protein function, membrane integrity, and to programmed cell death (Asada 1996). It has been shown that H₂O₂ acts as a signal to induce defense gene expression (Desikan et al. 2000). Some of these genes encode antioxidant enzymes, and defense and stress-related proteins (Desikan et al. 2001). Noctor et al. (2002) call in attention to the potential significance of photorespiratory H₂O₂ in signaling and acclimation. Pre-treatment of rice seedlings with low concentrations H_2O_2 (< 10 μ M) helped the survival under salt and heat stresses due to more green leaf tissue and higher quantum yield of PS 2 (Uchida et al. 2002). Nodal potato explants subcultured from H₂O₂-treated plantlets were resistant to a 15-h heat shock at 42 °C (Lopez-Delgado et al. 1998). Neto et al. (2005)

reported that pretreatment of wheat seeds with H_2O_2 (1 - 120 μ M) improved their salt tolerance by activating antioxidants and H_2O_2 scavenging. It was shown that exogenously applied H_2O_2 increased chilling stress tolerance, partly due to an enhanced antioxidative system (Prasad *et al.* 1994). The capacity of antioxidant defense system is often increased under stress conditions (Niknam *et al.* 2006, Mandhania *et al.* 2006, He and Zhu 2008), but in most situations the response is moderate (Foyer *et al.* 1994). The aim of this paper was to investigate effects of H_2O_2 pre-treatment for improving barley seedlings tolerance against NaCl stress and the role of the antioxidant defense system in this process.

Barley (*Hordeum vulgare* L. cv. Alfa) seedlings were grown in hydroponic culture in a growth chamber with a 12-h photoperiod, irradiance of 160 μ mol m⁻² s⁻¹, temperature of 25 - 22 °C and humidity of 60 %. Seedlings (4-d-old) were pre-treated with 1 or 5 μ M H_2O_2 for 2 d. The plants were than supplied with water or 150 mM NaCl and were analysed after 4 and 7 d. Thus the four basic variants were analysed: not pre-treated and not

Received 9 May 2007, accepted 20 December 2007.

Abbreviations: CAT - catalase; MDA - malondialdehyde; NBT - nitroblue tetrazolium; POX - peroxidase; ROS - reactive oxygen species; SOD - superoxide dismutase; TBA - thiobarbituric acid; TCA - trichloracetic acid.

Acknowledgements: This research was supported by the grant from the National Science Fund of Bulgaria, project B-1533/05 and by the grant from PISA project 14/05.

^{*} Corresponding author; fax: (+359) 2 73 99 52, e-mail: fedina@obzor.bio21.bas.bg

salt-stressed, not pre-treated and salt-stressed, pre-treated and non salt-stressed, pre-treated and salt-stressed.

Proline was determined by the method of Bates et al. (1973), and malondialdehyde and hydrogen peroxide according to Esterbauer and Cheeseman (1990). ¹⁴CO₂ fixation was determined radiometrically by the method described by Moll (1986). Native PAGE in 7.5 % gel was carried out by the method of Davis (1964). Cationic peroxidase was separated by the method of Reisfeld et al. (1962). Peroxidase (EC 1.11.1.7) iso-enzymes were detected according to procedure of Ornstein (1964). Superoxide dismutase (EC 1.15.1.1) isoenzymes were detected by the method of Greneche et al. (1991). Catalase (EC 1.11.1.6) isoenzymes were stained as described by Woodbury et al. (1971). Protein content was determined according to method of Lowry et al. (1951). Chlorophyll and carotenoids contents were determined according to Lichtenthaler (1987).

 H_2O_2 generation, proline and MDA content increased and $^{\bar{1}4}CO_2$ fixation decreased after NaCl treatment, particularly in plants subjected for 7 d to salinity stress (Table 1). Exogenous H_2O_2 had no effect on $^{14}CO_2$ fixation, proline and MDA content and did not alter endogenous H_2O_2 content in the leaves (Table 1). H_2O_2 pre-treated seedlings exhibited lower proline content after salinization in comparison to plants treated only with NaCl. In the pre-treated seedlings $^{14}CO_2$ fixation decreased following NaCl application, but was about 2-fold higher than that in the non pre-treated NaCl-stressed seedlings.

Cl $^{\scriptscriptstyle -}$ content in the leaves (Table 1) of the plants subjected to NaCl for 4 and 7 d increased approximately 10 and 20 times, respectively. As a result of pre-treatment with H_2O_2 the accumulation of Cl $^{\scriptscriptstyle -}$ was lower both in roots and leaves. More pronounced was the effect of 1 μM H_2O_2 after 7 d of NaCl stress.

SOD activity and isoenzyme patterns changed as a

result of H_2O_2 pre-treatment, salt stress and leaf ageing (Fig. 1A). Three new SOD isoenzymes appeared in 1 μ M H_2O_2 pre-treated seedlings. According to our knowledge this is the first data about H_2O_2 -induced SOD isoenzymes. NaCl inhibited SOD activity both in pre-treated and non pre-treated seedlings. Four SOD isoenzymes were detected in the root samples (Fig. 2A). Pre-treatment with H_2O_2 enhanced the activity of all isoenzymes especially at the end of the experimental period.

 H_2O_2 (1 and 5 μ M) had no effect on POX activity and isoenzyme patterns in the leaves while NaCl increased the activity of isoenzymes 7 and 8 (Fig. 1B). H₂O₂ pretreatment had no effect on the POX activity and isoenzymes number in the roots (Fig. 2B) with exception of temporary increased isoenzymes 6 and 7. Four cationic POX isoenzymes were visualized in the leaf samples. The fastest moving isoenzyme 4 was the most active. The activity of isoenzyme 3 increased in the presence of NaCl (Fig. 3A). Four basic POX isoenzymes were visible in the roots as well (Fig. 3B). As a result of pre-treatment with 1 μM H₂O₂ a slight increase of enzyme activity was observed (Fig. 3B) but POX activity decreased after treatment with 5 µmol H₂O₂ (Fig. 3B). An enhancement of enzyme activity was established during the ageing (Fig. 3B). In the presence of NaCl the activity of all isoenzymes increased, especially isoenzyme 3, both in pre-treated and non pre-treated seedlings (Fig. 3B).

Three CAT highly active closely migrating isoenzymes were stained in the leaves (Fig. 1C). A slight decrease in the CAT activity was established in pretreated seedlings at the end of the experimental period. H_2O_2 pre-treatment decreased CAT activity in the roots (data not shown).

 H_2O_2 applied to growth solution in concentrations 1 and 5 μM 2 d before NaCl supply alleviated salt stress in barley seedlings. Lower H_2O_2 concentration had more pronounced effect than the higher one. Less proline and

Table 1. Contents of chlorophyll [mg g⁻¹(f.m)], carotenoids [mg g⁻¹(f.m)], Cl⁻ [mg g⁻¹(d.m.)], proline [μ g g⁻¹(f.m.)], rate of CO₂ fixation [mg(14 CO₂) g⁻¹(f.m.) h⁻¹], H₂O₂ [nmol g⁻¹(f.m.)] and MDA [μ mol g⁻¹(f.m.)] contents in barley seedling pre-treated with 1 and 5 μ M H₂O₂ before 150 mM NaCl for 4 and 7 d. The H₂O₂ pre-treated seedlings, not subjected to salt stress, were transferred to water for the next 4 and 7 d. Means \pm SE, n = 3, *,**,*** - means significantly different from control at P = 0.05, 0.01, 0,001, respectively.

H_2O_2	NaC	Chl a+ b	Carotenoids	Leaf Cl	Root Cl	Proline	CO ₂	H_2O_2	MDA
Control - 1 1 5 5 5	4 d 4 d - 4 d	1.760±0.004 1.450±0.026** 1.550±0.019 1.720±0.017 1.605±0.011** 1.775±0.032	0.295±0.003 0.270±0.004** 0.286±0.007 0.292±0.003 0.284±0.002* 0.216±0.011**	0.036±0.007 0.004 0.036±0.004	0.005 0.042±0.008 0.031±0.003 0.003 0.034±0.005 0.005	61±1.3 480±43*** 310±28* 73±4* 580±22 48+2.4**	13.5±0.1 2.1±0.18*** 4.3±0.36** 14.1±0.12* 3.8±0.3** 12.2±0.22**	2600±87** 2200±113	0.020±0.001 *0.027±0.003 0.022±0.001 0.022±0.002 *0.024±0.001 0.021+0.001
Control - 1 1 5 5 5	7 d 7 d - 7 d -	1.474±0.007 1.357±0.024** 1.320±0.048 1.396±0.046 1.347±0.027 1.779±0.044*	0.271±0.009 0.247±0.021* 0.275±0.021 0.262±0.003 0.277±0.012 0.319±0.015	0.003 0.068±0.004 0.051±0.008 0.003 0.055±0.006 0.004	0.007 0.056±0.009 0.044±0.009 0.008 0.048±0.006 0.007	42±1.1 4440±20*** 3060±180** 50±5*** 3440±210* 36±2***		2780±87	0.019±0.002 0.038±0.003** 0.025±0.002* 0.018±0.001 0.034±0.002 0.019±0.002

MDA accumulation might be related to lower Cl content in the leaves. It has been shown that the physiological disturbances in citrus by salinity are associated with

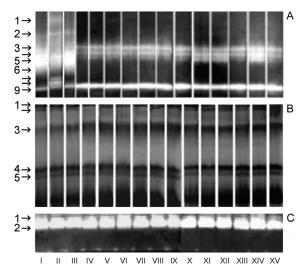


Fig. 1. Isoenzyme profiles of SOD (*A*), POX (*B*) and CAT (*C*) in the leaves of barley seedlings pre-treated with 1 and 5 μ mol H_2O_2 before salinization with 150 mM NaCl for 4 and 7 d. 2 d after H_2O_2 treatment: I - control, II - 1 μ M H_2O_2 , III - 5 μ M H_2O_2 . 4 d after NaCl supply: IV - control, V - NaCl, VI - 1 μ M H_2O_2 + NaCl, VII - 1 μ M H_2O_2 , VIII - 5 μ M H_2O_2 + NaCl, IX - 5 μ M H_2O_2 . 7 d after NaCl supply: X - control, XI - NaCl, XII - 1 μ M H_2O_2 + NaCl, XIII - 1 μ M H_2O_2 , XIV - 5 μ M H_2O_2 + NaCl, XV - 5 μ M H_2O_2 . 50 μ g protein per lane was loaded.

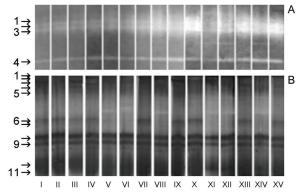


Fig .2. Isoenzyme profiles of SOD (A) and POX (B) in the roots of barley seedlings pre-treated with 1 and 5 μ mol H₂O₂ before salinization with 150 mM NaCl for 4 and 7 d. 25 μ g protein per lane was loaded. The experimental details are the same as in Fig. 1.

References

Asada, K.: Radical production and scavenging in chloroplasts. In: Baker, N.R., (ed.): Photosynthesis and Environment. Pp 123-150. Kluwer Academic Publishers, Dordrecht 1996.
Bates, L.S., Waldren, R.O., Teare, .ID.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-

Cl⁻ rather than Na⁺ accumulation (Moya et al. 2003). Treatment with H₂O₂ was shown to induce stomatal closure (Middleton and Teramura 1993). We did not establish any decrease of ¹⁴CO₂ fixation (Table 1) as a result of H₂O₂ treatment. This is indirect indication that in our experiments there was no H₂O₂-induced stomatal closure. The reduced NaCl uptake, measured by Clcontent in the leaves might be one of the reasons for the established barley seedlings tolerance to salt stress after pre-treatment with H₂O₂. According to Bowler and Fluhr (2000) H₂O₂ is produced in response to variety of stimuli and it is likely that H₂O₂ mediates cross-talk between signalling pathways. In the present study H₂O₂ (1 and 5 μM) had no effect of proline, MDA and even H₂O₂ contents in the leaves, which means that exogenous H₂O₂ itself did not act as a stress factor. Exogenous H₂O₂ might play a signalling role in triggering acclimation of barley seedlings to salt stress implying a complex mechanism for cellular regulation of oxidative status (Neto et al. 2005). Our data suggest that H₂O₂ pre-treatment could directly or indirectly activate antioxidant enzymes leading to higher resistance to salt stress. SOD activity increased in the leaves and in the roots in acclimated seedlings, suggesting that H₂O₂ pre-treated plants had a better ability of superoxide scavenging. Additionally H₂O₂ may increase salt tolerance in barley seedlings by decreasing Na⁺ and Cl⁻ uptake.

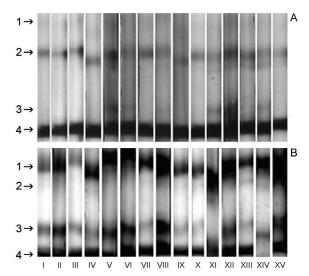


Fig. 3. Isoenzyme profiles of cationic POX in the leaves (A) and in the roots (B) of barley seedlings pre-treated with 1 and 5 μ mol H₂O₂ before salinization with 150 mM NaCl for 4 and 7 d. 100 μ g protein per lane was loaded for the leaves and 50 μ g for the roots. The experimental details are the same as in Fig. 1.

207, 1973.

Davis, B.J.: Disc electrophoresis - II: Method and application to human serum proteins. - Ann. N.Y. Acad. Sci. 15: 404-427, 1964.

Desikan, R., Mackerness, S.A.-H., Hancock, J.T., Neill, S.J.:

- Regulation of the *Arabidopsis* transcriptome by oxidative stress. Plant Physiol. **127**: 159-172, 2001.
- Desikan, R., Neill, S.J., Hancock, J.T.: Hydrogen peroxideinduced gene expression in *Arabidopsis thaliana*. - Free Radical Biol. **28**: 773-778, 2000.
- Esterbauer, H., Cheeseman, K.: Determination of aldehyde lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. **186**: 407-431, 1990.
- Foyer, C.H., Descourvieres, P., Kunert, K.J.: Protection against oxygen radicals: an important defense mechanism study in transgenic plants. Plant Cell Environ. 17: 507-523, 1994.
- Greneche, M., Lallemand, J., Michaud, O.: Comparison of different enzyme loci as a means of distinguishing ryegrass varieties by electrophoresis. - Seed Sci. Technol. 19: 147-158, 1991.
- He, Y., Zhu, Z.J.: Exogenous salicylic acid alleviates naCl toxicity and increases antioxidative enzymes activity in *Lycopersicon esculentum*. Biol. Plant. **52**: 792-795, 2008.
- Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987.
- Lopez-Delgado, H., Dat, J.F., Foyer, C.H., Scott, I.M.: Induction of thermotolerance in potato microplants by acetylsalicylic acid and H₂O₂. J. exp. Bot. **49**: 713-720, 1998
- Lowry, O.H., Rosenberg, N.J., Farr, A.L., Randal, R.L.: Protein measurement with the Folin phenol reagent. - J. biol. Chem. 193: 265-275, 1951.
- Mandhania, S., Madan, S., Sawhney, V.: Antioxidant defense mechanism under salt stress in wheat seedlings. - Biol. Plant. 50: 227-231, 2006.
- Middleton, E.M., Teramura, A.H.: The role of flavonol glycosides and carotenoids in protecting soybean from

- UV-B damage. Plant Physiol. 103: 741-752, 1993.
- Moll, A.: Effects of tuber removal on the rate of ¹⁴CO₂ fixation in potato leaf discs. Photosynthetica **20**:14-19, 1986.
- Moya, J.L., Gomez-Cadenas, A., Primo-Millo, E., Talon, M.: Chloride absorption in salt-sensitive Carrizo citrage and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J. exp. Bot. **54**: 825-33, 2003.
- Neto, A.D.D.A., Prisco, J.T., Enéas-Filho, J., Rolim Medeiros, J.-V., Gomes-Filho, E.: Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. - J. Plant Physiol. 162: 1114-1122, 2005.
- Niknam, V., Razavi, N., Ebrahimzadeh, H., Sharifizadeh, B.: Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two *Trigonella* species. - Biol. Plant. 50: 591-596, 2006.
- Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer, C.: Drought and oxidative load in the leaves of C₃ plants: a predominant role for photorespiration? Ann. Bot. **89**: 841-880, 2002.
- Ornstein, L.: Enzyme Bulletin Canalco Industrial Corporation. Rockville 1964.
- Prasad, T.K., Anderson, M.D., Martin, B.A., Stewart, C.R.: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65-74, 1994.
- Reifeld, R.A., Lewis, U.J., Williams, D.E.: Disc electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature **195**: 282-283, 1962.
- Uchida, A., Jagendorf, A.T., Hibino, T., Takabe, T., Takabe, T.: Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. **163**: 405-414, 2002.