

Effects of phosphorus and chilling under low irradiance on photosynthesis and growth of tomato plants

Y.H. ZHOU^{1,2}, J.X. WU¹, L.J. ZHU¹, K. SHI¹ and J.Q. YU^{1,3*}

Department of Horticulture, Zhejiang University, Kaixuan Road 268, Hangzhou, 310029, P.R. China¹

National Key Laboratory for Sustainable Agricultural and Soil Science, Nanjing, 210008, P.R. China²

Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, 310029, P.R. China³

Abstract

To determine the effects of phosphorus nutrition on chilling tolerance of photosynthetic apparatus, tomato (*Lycopersicon esculentum* Mill. cv. Kenfengxin 2002) plants were raised under different P contents and subjected to 7 d of chilling at 9/7 °C. After chilling (2 h or 7 d) plant growth, P content in tissue, gas exchange and chlorophyll fluorescence were measured. Decreasing P concentration [P] in the nutrient solution markedly reduced plant growth and the chilled plants exhibiting higher optimum [P] than the unchilled plants. Decreasing [P] significantly decreased light saturated net photosynthetic rate (P_{Nsat}), maximum carboxylation velocity of Rubisco (V_{cmax}), maximum potential rate of electron transport contributed to Rubisco regeneration (J_{max}), quantum efficiency of photosystem (PS) 2 (Φ_{PS2}) and O₂ sensitivity of P_{Nsat} (PS_{O2}) and this trend was especially apparent in chilled plants.

Additional key words: chlorophyll fluorescence, inorganic phosphate limitation, net photosynthetic rate, Rubisco, *Lycopersicon esculentum*

Plants are frequently exposed to stresses such as nutrient deficiency, salinity, chilling, pathogens, etc. (Zhou *et al.* 2004a,b, Stepień and Kłobus 2006, Bertamini *et al.* 2007, Weng *et al.* 2008). Phosphorus deficiency is very common since the combination of P with aluminum and iron in soil makes it difficult to be absorbed by plants. There are many reports about the effects of P deficiency on plant physiology (Shinano *et al.* 2005, Wissuwa *et al.* 2005, Weng *et al.* 2008). Low P may affect photosynthesis by modifying the contents of phosphorylated intermediates within the chloroplast, activation of Calvin-cycle enzymes, and RuBP regeneration (Sawada *et al.* 1992, Rao and Terry 1995). In severely P-deficient leaves the regeneration of ATP is slow and the rate of photosynthesis and the export of photosynthates is decreased (Jacob and

Lawlor 1992, Rao and Terry 1995). Recently, it has been suggested that the production, rather than the utilization of photosynthates for tomato plants is limited when P supply is decreased (De Groot *et al.* 2001).

Crops frequently encounter long episodes of unfavourable conditions such as low temperature in combination with low irradiance (Zhou *et al.* 2004b, 2006, Hu *et al.* 2006). Besides inhibition of ion uptake, chilling directly disrupts all major components of the photosynthetic apparatus (Allen and Ort 2001). Although P is known to be involved in the regulation of several photosynthetic processes, relatively little is known about the relationship between chilling, P concentration [P] and photosynthesis. Low [P] increases chilling sensitivity and retards recovery after a chilling period. It has been argued that [P], which is

Received 8 June 2008, accepted 5 February 2009.

Abbreviations: c_i - intercellular CO₂ concentration; F_v/F_m - maximum photochemical efficiency of PS 2; F_v'/F_m' - efficiency of excitation capture by open PS 2 centers; g_s - stomatal conductance; J_{max} - maximum potential rate of electron transport contributed to Rubisco regeneration; [P] - phosphorus concentration; P_{Nsat} - light saturated net photosynthetic rate; PS_{O2} - O₂ sensitivity of photosynthesis; q_p - photochemical quenching coefficient; S/R - shoot to root ratio; TPDM - total plant dry mass; V_{cmax} - maximum carboxylation velocity of Rubisco; Φ_{PS2} - quantum efficiency of PS 2.

Acknowledgements: The authors wish to express sincere thanks to the National Basic Research Program of China (2009CB119000), National Key Technology R&D Program (2008BADA6B02) and National Key Laboratory of Sustainable Agricultural and Soil Science for their financial support, and to Dr. Tanvir for critical reading of the manuscript.

* Correspondence author; fax: (+86) 571 86049815, e-mail: jqyu@zju.edu.cn

sufficient under optimal temperature, may not be sufficient during chilling (Starck *et al.* 2000). Farmers are known to apply more P fertilizer on crops during the cool season than during the optimal growth season, for the purpose of enhancing chill tolerance. However, there is not yet enough evidence to justify this practice.

To examine the relationship between [P] and the chill tolerance of the photosynthetic apparatus, tomato plants were raised under different [P] in nutrient solutions and subjected to a period of chilling under low irradiance.

The experiments were conducted at Huajiachi Campus, Zhejiang University from March to June in 2006. Tomato (*Lycopersicon esculentum* Mill. cv. Kenfengxin 2002) plants were grown in plastic pots in a greenhouse. The pots were filled with a mixture of soil: *Perlite* (1:1, v/v). The plants were watered and fertilized daily with a half-strength Enshi nutrient solution comprising the following nutrients [mM]: $\text{Ca}(\text{NO}_3)_2 \cdot 4 \text{H}_2\text{O}$ 1.5, KNO_3 4.0, $\text{MgSO}_4 \cdot 7 \text{H}_2\text{O}$ 1.0, $\text{NH}_4\text{H}_2\text{PO}_4$ 0.6, H_3BO_3 46×10^{-3} , FeSO_4 18×10^{-3} , Na_2EDTA 16×10^{-3} , MnCl_2 14×10^{-3} , ZnSO_4 0.7×10^{-3} , Na_2MoO_4 0.5×10^{-3} , CuSO_4 0.3×10^{-3} . Groups of six seedlings at the 4-leaf stage were transplanted into 15 dm³ containers filled with the same Enshi solution. The conditions in the greenhouse were as follows: a 12-h photoperiod, day/night temperature of 25/17 °C, average photosynthetic photon flux density (PPFD) of 600 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and air relative humidity 80 %.

After 5 d pre-culture, plants were transported into nutrient solutions with different [P]: 1) 0 mM, 2) 0.15 mM, 3) 0.60 mM, 4) 2.40 mM. To grow plants under different [P], PO_4^{3-} was replaced by SO_4^{2-} at an equivalent Na^+ concentration, or KNO_3 was replaced by KH_2PO_4 and NaNO_3 . The nutrient solutions were changed every 5 d. Fourteen days later, half of the plants were exposed to 9/7 °C (day/night) at 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ PPFD as the chilling treatment. The other half of the plants was maintained in the greenhouse at 25/17 °C at 600 $\mu\text{mol m}^{-2} \text{s}^{-1}$ PPFD as unchilled plants. After 7 d, the chilled plants were returned back to the greenhouse and grown together with unchilled plants for further 7 d.

Dry mass of shoots and roots was measured after drying in oven at 80 °C till constant mass. Leaf samples (300 mg) were digested using concentrated sulphuric acid at 250 °C. The total P concentration was analyzed using the ammonium molybdate colorimetric method (Jackson 1958). During plant growth, light saturated photosynthetic rate (P_{Nsat}), stomatal conductance (g_s) and intercellular CO_2 concentration (c_i) were measured with an infrared gas analyser (*Ciras-1, PP System*, Hitchin, UK). The air temperature was maintained at 25 °C, air humidity at 80 %, PPFD at 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$, and CO_2 concentration at 380 $\mu\text{mol mol}^{-1}$. Measurement and estimation of the maximum carboxylation velocity of Rubisco (V_{cmax}) and the maximum potential rate of electron transport contributed to RuBP regeneration (J_{max}) were made according to Zhou *et al.* (2004b) and Ethier and Livingston (2004).

Modulated chlorophyll fluorescence was measured with a pulse amplitude fluorimeter (*Hansatech Instruments*,

Norfolk, UK) on the same leaves previously used for gas exchange measurements. Leaves were maintained in darkness for 20 min prior to measurement of the maximum quantum efficiency of PS 2 (F_v/F_m). An actinic light source (600 $\mu\text{mol m}^{-2} \text{s}^{-1}$) was applied to achieve steady state fluorescence yield, *i.e.* the quantum efficiency of PS 2 (Φ_{PS2}), the efficiency of excitation capture by open PS 2 centers (F_v'/F_m'), and the photochemical quenching coefficient (q_p) (Zhou *et al.* 2004a,b).

To estimate deficiency in inorganic phosphate (Pi) in chloroplasts, P_{Nsat} was determined under both photo-respiratory (21 % O_2) and non-photorespiratory (2 % O_2) conditions. O_2 sensitivity of photosynthesis (PS_{O_2}) was calculated as follows: $PS_{\text{O}_2} = (P_{\text{Nsat}} \text{ at } 2\% \text{ } \text{O}_2 - P_{\text{Nsat}} \text{ at } 21\% \text{ } \text{O}_2) / P_{\text{Nsat}} \text{ at } 21\% \text{ } \text{O}_2$. Pi limitation is characterized by reduced sensitivity to O_2 (Leegood and Furbank 1986).

The measurements were performed on randomly selected samples from four replicates and Duncan's multiple range test at $P \leq 0.05$ was used to compare the significance of differences among treatments.

The unchilled plants had their highest P contents in leaves at 0.60 mM [P] while chilled plants had their highest P contents in leaves at 2.40 mM [P]. Chilling resulted in reductions in P contents in leaves except that P contents in chilled leaves supplied with 2.40 mM [P] was not significantly different from that in unchilled leaves. For unchilled plants, roots and shoots showed greatest biomass accumulation at 0.15 mM and 0.60 mM [P], respectively. Other concentrations decreased root and shoot biomass accumulation. Chilling significantly decreased plant dry matter and a larger effect on shoots than on roots was observed. However, an increase in root biomass accumulation was observed in chilled plants at 0 and 2.40 mM [P]. In comparison to unchilled plants showing the highest total plant dry mass (TPDM) at 0.60 mM [P], chilled plants showed highest TPDM at 2.40 mM [P]. It is apparent that plants need higher [P] under low temperature than under optimum conditions (Table 1). In agreement with this, previous studies showed that increased P supply increased plant growth at high salinity (Kaya *et al.* 2001, Shibli *et al.* 2001). Here we also found that R/S increased with the decrease in P supply, and this trend is especially apparent in chilled plants. In agreement with our observation, Starck *et al.* (2000) observed that chilling had greater negative effects on shoots than on roots in tomato plants. Results from other studies also support that plants allocate a greater proportion of their biomass to the root system when mineral elements are scarce (Hermans *et al.* 2006).

Unchilled plants showed their highest P_{Nsat} and g_s at 0.60 mM [P] with only slight difference among 0.15, 0.60 and 2.40 mM [P] treatments (Table 2). As observed in our previous studies (Hu *et al.* 2006), chilling resulted in significant decreases in P_{Nsat} and g_s and the reductions were most significant at 0.15 mM [P] in which P_{Nsat} and g_s were only 36.7 and 24.2 % of the unchilled plants at 2 h of recovery after chilling, respectively. P_{Nsat} and g_s were very low at 0 mM [P]. In addition to the decreases in P_{Nsat} and g_s ,

Table 1. Changes of phosphorus contents in leaves, root and shoot dry matter, total plant dry matter (TPDM) and root/shoot ratio (R/S) as influenced by phosphorus concentration (0 - 2.40 mM) in the nutrient solution and chilling (7/9 °C). Means ($n = 4$) within a row followed by different letters are significantly different at $P \leq 0.05$.

Parameters	Recovery	0 mM		0.15 mM		0.60 mM		2.40 mM	
		unchilled	chilled	unchilled	chilled	unchilled	chilled	unchilled	chilled
P content [mg g ⁻¹ (d.m.)]	2 h	4.00d	3.10e	5.70c	4.40d	8.10a	5.50c	7.40ab	7.30b
Root d.m. [g plant ⁻¹]	7 d	0.19e	0.37d	0.71a	0.57c	0.55c	0.65b	0.38d	0.63b
Shoot d.m. [g plant ⁻¹]	7 d	0.62e	0.99e	5.55b	2.87d	8.45a	4.48c	7.38a	4.80bc
TPDM [g plant ⁻¹]	7 d	0.81g	1.36f	6.26c	3.44e	9.00a	5.13d	7.76b	5.43d
R/S	7 d	0.31a	0.37a	0.13c	0.20b	0.07d	0.15c	0.05d	0.13c

Table 2. Changes of light saturated photosynthetic rate (P_{Nsat}), stomatal conductance (g_s), intercellular CO_2 concentration (c_i), maximum carboxylation velocity by Rubisco (V_{cmax}), maximum potential rate of electron transport contributed to RuBP regeneration (J_{max}), maximum photochemical efficiency of PS 2 (F_v/F_m), quantum efficiency of PS 2 (Φ_{PS2}), photochemical quenching coefficient (q_p), efficiency of excitation capture by open PS 2 centers (F_v'/F_m') and O_2 sensitivity of photosynthesis (PS_{O2}) as influenced by phosphorus concentration in the nutrient solution and chilling. Means ($n = 4$) within a row followed by different letters are significantly different at $P \leq 0.05$.

Parameters	Recovery	0 mM		0.15 mM		0.60 mM		2.40 mM	
		unchilled	chilled	unchilled	chilled	unchilled	chilled	unchilled	chilled
P_{Nsat} [$\mu\text{mol m}^{-2} \text{s}^{-1}$]	2 h	0.35e	0.73d	10.59ab	3.43d	12.95a	8.17bc	11.71a	6.70c
	7 d	0.41d	3.62c	5.24c	7.13b	8.47a	9.17a	8.23ab	9.41a
g_s [$\text{mmol m}^{-2} \text{s}^{-1}$]	2 h	52.3 c	12.7 e	135.5 a	31.4 d	161.7 a	91.5 b	149.6 a	63.3 c
	7 d	74.3 c	84.1 c	79.3 c	144.2 ab	144.1 ab	159.3 a	122.7 b	129.8 b
c_i [$\mu\text{mol mol}^{-1}$]	2 h	323.7 a	231.3 b	189.2 c	161.1 d	206.7 bc	183.3 cd	211.5 bc	198.3 c
	7 d	328.3 a	283.3 b	267.7 b	241.3 c	234.3 c	239.2 c	216.7 c	228.3 c
V_{cmax} [$\mu\text{mol m}^{-2} \text{s}^{-1}$]	2 h	7.9 e	16.5 d	66.3 a	29.0 c	67.8 a	43.6 b	78.6 a	49.6 b
	7 d	12.9 f	22.5 e	35.9 d	58.8 bc	74.6 a	78.9 a	71.3 ab	67.4 b
J_{max} [$\mu\text{mol m}^{-2} \text{s}^{-1}$]	2 h	25.8 d	38.3 d	221.8 a	116.7 c	246.8 a	136.8 b	215.0 a	159.6 b
	7 d	32.7 e	71.7 d	111.3 c	146.2 b	209.3 a	213.1 a	214.9 a	194.1 a
F_v/F_m	2 h	0.31c	0.47b	0.84a	0.83a	0.84a	0.83a	0.83a	0.83a
	7 d	0.28d	0.67c	0.78b	0.71b	0.85a	0.84a	0.84a	0.84a
Φ_{PS2}	2 h	0.08d	0.09d	0.36b	0.21c	0.47a	0.24c	0.44a	0.28c
	7 d	0.04d	0.16d	0.23c	0.30ab	0.26bc	0.36a	0.32a	0.37a
q_p	2 h	0.46c	0.27d	0.58b	0.61ab	0.69a	0.56b	0.65a	0.58b
	7 d	0.19e	0.29d	0.41c	0.46c	0.51bc	0.65a	0.59ab	0.68a
F_v'/F_m'	2 h	0.17e	0.32d	0.62a	0.34d	0.68a	0.43c	0.68a	0.47b
	7 d	0.21c	0.54b	0.57b	0.66a	0.51b	0.56b	0.54b	0.55b
PS_{O2}	2 h	0.21c	0.13d	0.29b	0.22c	0.37a	0.33b	0.38a	0.43a
	7 d	0.19c	0.22bc	0.29b	0.27b	0.40a	0.38a	0.41a	0.38a

chilling also lowered c_i values. There was a general decrease in P_{Nsat} and g_s for unchilled plants due to leaf senescence while P_{Nsat} and g_s for chilled plants were little changed and increased after 7 d of recovery at optimal growth conditions. Starck *et al.* (2000) found that mineral starvation combined with chilling reduced the rate of photosynthesis and stomatal conductance to a greater extent than in plants grown in a full nutrient solution. Therefore, plants need higher [P] for the proper operation of the photosynthetic apparatus at low temperature than at optimum temperature.

Although chilling and P supply had significant influence on g_s , reduction in CO_2 assimilation could not be solely attributed to stomatal factor alone. For example, P starvation resulted in a reduction in g_s while c_i was

increased (Table 1). In fact, V_{cmax} and J_{max} were not different at 0.15 - 2.40 mM [P] in unchilled plants at time corresponding to 2-h recovery of chilled plants but they were significantly lower in plants treated with 0.15 mM [P] after 7 d. V_{cmax} and J_{max} for chilled plants mostly increased with the increases in [P] in the nutrient solution. At 7 d, chilled leaves had similar to or slightly higher V_{cmax} and J_{max} values than the unchilled leaves especially under P deficient conditions. The significant correlation between P_{Nsat} and V_{cmax} ($r^2 = 0.99$, $P < 0.05$) suggest that non-stomatal factors were mainly responsible for the changes in P_{Nsat} induced by P supply, irrespective of chilling. V_{cmax} may decrease owing to the inactivation or loss of Rubisco, while the reduction in J_{max} is associated with a diminution in other enzymes of Calvin cycle

(Woodrow and Berry 1988, Harrison *et al.* 1998). Indeed, the inactivation of Rubisco can be induced by inhibition of cytokinin synthesis under low P supply and chilling (Schmülling *et al.* 1997). Moreover, the decrease in RuBP regeneration could have resulted from limited ATP supply, either because low [P] treatment diminishes photosynthetic electron transport capacity, or because there is insufficient Pi available for the phosphorylation of ADP to ATP.

Significant declines in F_v/F_m were observed only in P deficient plants, suggesting that photoinhibition is responsible, at least partly, for the reduction in CO_2 assimilation for P-deficient plants. At 2 h of recovery after chilling, unchilled plants showed higher Φ_{PS2} , q_p and F_v'/F_m' than the chilled plants. Meanwhile, unchilled plants had the highest Φ_{PS2} , q_p and F_v'/F_m' at 0.60 mM [P] while chilled plants had the highest Φ_{PS2} and F_v'/F_m' at 2.40 mM [P], respectively, although the difference was not significant in some cases. Similar to those changes previously seen in P_{Nsat} and g_s , there were significant decreases in Φ_{PS2} , q_p and F_v'/F_m' in unchilled plants and increases in Φ_{PS2} , q_p and F_v'/F_m' in chilled plants at 7 d although there were some exceptions. Accordingly, chilled plants showed higher Φ_{PS2} , q_p and F_v'/F_m' than unchilled plants (Table 2). Both Φ_{PS2} and q_p increased with the increase in [P] in the nutrient solution while F_v'/F_m' was highest at 0.15 mM [P] at 7 d. Since photoinhibition occurred only in 0 mM [P] treated plants, the reductions in Φ_{PS2} in other treatments could be attributed to the reduced demand for energy in the form of ATP and NADPH. This is indicated by the decreases of V_{cmax} and J_{max} , a downstream regulation mechanism for the photosynthetic electron transport under stress conditions (Zhou *et al.* 2004b, Hu *et al.* 2006). Meanwhile, the reduction in Φ_{PS2} can be attributed to a decrease in the number of open PS 2 reaction centres as well as reduced efficiency of PS 2

reaction centres since both q_p and F_v'/F_m' changed with the change in Φ_{PS2} . In agreement with our results, Campbell and Sage (2006) also showed that photosynthesis in low-P plants appeared limited by the rate of RuBP regeneration, probably through inhibition of the Calvin cycle.

To determine whether the change of [P] or chilling was associated with the changes in limitations in Pi supply to the chloroplasts, PS_{O2} was determined in unchilled plants and chilled plants at 2 h and 7 d of recovery after chilling. PS_{O2} increased with the increase in [P] in the nutrient solution both in chilled and unchilled plants. Chilling significantly decreased PS_{O2} within 0 - 0.60 mM [P] range especially in P-deficient plants. There was significant increase in PS_{O2} for P-deficient plants when they were moved to optimum growth conditions. The decrease of PS_{O2} indicated that low [P] led to the limitation of thylakoid ATP synthase activity arising from insufficient return of Pi to the chloroplast caused by the accumulation of triose phosphates (Allen and Ort 2001). All these results indicate that Pi limitation was the cause of a reduction in the RuBP regeneration capacity in low [P] conditions. In other word, limitations in P supply to the chloroplasts were partly responsible for the decreased photosynthesis (Paul *et al.* 1992).

In conclusion, our results provide clear evidence for the P-dependent difference in the susceptibility of tomato plants to chill-induced inhibition of photosynthesis and plant growth. It is apparent that plants need higher P supply at low temperature than at optimal growth temperature. P deficiency has diverse effects on many photosynthetic processes and reduction in photosynthetic capacity induced by P deficit is mostly attributed to the dysfunction of Calvin cycle and limitations in Pi supply to the chloroplasts, leading to a down-regulation photochemical activity in PS 2.

References

Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm climate plants. - *Trends Plant Sci.* **6**: 36-42, 2001.

Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezian, N.: Low night temperature effects on photosynthetic performance on two grapevine genotypes. - *Biol. Plant.* **51**: 381-385, 2007.

Campbell, C.D., Sage, R.F.: Interactions between the effects of atmospheric CO_2 content and P nutrition on photosynthesis in white lupin (*Lupinus albus* L.). - *Plant Cell Environ.* **29**: 844-853, 2006.

De Groot, C.C., Marcelis, L.F.M., Van den Boogaard, R., Lambers, H.: Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. - *Plant Cell Environ.* **24**: 1309-1317, 2001.

Ethier, G.J., Livingston, N.J.: On the need to incorporate sensitivity to CO_2 transfer conductance into the Farquhar-Von Caemmerer-Berry leaf photosynthesis model. - *Plant Cell Environ.* **27**: 137-153, 2004.

Harrison, E.P., Willingham, N.M., Lloyd, J.C., Raines, C.A.: Reduced sedoheptulose-1,7-bisphosphate levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. - *Planta* **204**: 27-36, 1998.

Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N.: How do plants respond to nutrient shortage by biomass allocation? - *Trends Plant Sci.* **11**: 610-617, 2006.

Hu, W.H., Zhou, Y.H., Du, Y.S., Xia, X.J., Yu, J.Q.: Differential response of photosynthesis in greenhouse- and field-ecotypes of tomato to long-term chilling under low light. - *J. Plant Physiol.* **163**: 1238-1246, 2006.

Jackson, M.L.(ed.): *Soil Chemical Analysis*. - Prentice-Hall Inc., Englewood Cliffs 1958.

Jacob, J., Lawlor, D.W.: Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1,5-biphosphate carboxylase/oxygenase activity and ribulose-1,5-bisphosphate pool size. - *Plant Physiol.* **98**: 801-807, 1992.

Kaya, C., Kirnak, H., Higgs, D.: Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. - *J. Plant Nutr.* **24**: 357-367, 2001.

Leegood, R.C., Furbank, R.T.: Stimulation of photosynthesis by 2 % oxygen at low temperatures is restored by phosphate. - *Planta* **168**: 84-93, 1986.

Paul, M.J., Driscoll, S.P., Lawlor, D.W.: Sink regulation of photosynthesis in relation to temperature in sunflower and rape. - *J. exp. Bot.* **43**:147-153, 1992.

Rao, I.M., Terry, N.: Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate to low-phosphate plants. - *Plant Physiol.* **107**: 1313-1321, 1995.

Sawada, S., Usuda, H., Tsukui, T.: Participation of inorganic orthophosphate in regulation of the ribulose-1,5-biphosphate carboxylase activity in response to changes in the photosynthetic source-sink balance. - *Plant Cell Physiol.* **33**: 943-949, 1992.

Schmülling, T., Schäfer, S., Ramanov, G.: Cytokinins as regulators of gene expression. - *Physiol. Plant* **100**: 505-519, 1997.

Shibli, R.A., Sawwan, J., Swaidat, B., Tahat, M.: Increased phosphorus mitigates the adverse effects of salinity in tissue culture. - *Commun. Soil Sci. Plant Anal.* **32**: 429-440, 2001.

Shinano, T., Nanamori, M., Dohi, M., Wasaki, J., Osaki, M.: Evaluation of phosphorus starvation inducible genes relating to efficient phosphorus utilization in rice. - *Plant Soil* **269**: 81-87, 2005.

Starck, Z., Niemyska, B., Bogdan, J., Akour Tawalbeh, R.N.: Response of tomato plants to chilling stress association with nutrient or phosphorus starvation. - *Plant Soil* **226**: 99-106, 2000.

Stępień, P., Kłobus, G.: Water relations and photosynthesis in *Cucumis sativus* L. leaves under salt stress. - *Biol. Plant.* **50**: 610-616, 2006.

Weng, X.Y., Xu, H.X., Yang, Y., Peng, H.H.: Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. - *Biol. Plant.* **52**: 307-313, 2008.

Wissuwa, M., Gamat, G., Ismail, A.M.: Is root growth under phosphorus deficiency affected by source or sink limitations? - *J. exp. Bot.* **56**: 1943-1950, 2005.

Woodrow, I.E., Berry, J.A.: Enzymatic regulation of photosynthetic CO_2 fixation in C_3 plants. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **39**:533-594, 1988.

Zhou, Y.H., Peng, Y.H., Lei, J.L., Zou, L.Y., Zheng, J.H., Yu, J.Q.: Effects of potato virus Y-NTN infection on gas exchange and photosystem 2 function in leaves of *Solanum tuberosum* L. - *Photosynthetica* **42**: 417-423, 2004a.

Zhou, Y.H., Yu, J.Q., Huang, L.F., Nogués, S.: The relationship between CO_2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. - *Plant Cell Environ.* **27**: 1503-1514, 2004b.

Zhou, Y.H., Yu, J.Q., Mao, W.H., Huang, L.F., Song, X.S., Nogués, S.: Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. - *Plant Cell Physiol.* **47**: 192-199, 2006.