

REVIEW

Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses

X.J. HU^{1,2,3*}, Z.B. ZHANG^{1*}, P. XU¹, Z.Y. FU^{1,3,4}, S.B. HU² and W.Y. SONG^{1,3,5}

Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS, Shijiazhuang, 050021, P.R. China¹

Linyi Normal University, Linyi, 276005, P.R. China²

Graduate University of the Chinese Academy of Sciences, Beijing, 100049, P.R. China³

Xinjiang Institute of Physics and Chemistry Technology, CAS, Wulumuqi, 830011, P.R. China⁴

Shangqiu Normal University, Shangqiu, 476000, P.R. China⁵

Abstract

Unfavourable environment brings many kinds of stresses to plants. To survive such stresses, efficient resistance is required for the plants. Multifunctional genes enable the cross-talk among the various abiotic stress resistance systems. This paper reviews the action mechanisms of multifunctional genes. These genes can be classified into three groups: genes encoding diverse proteins through mRNA splicing (*e.g.* *AOX* in rice); genes like *BADH*, *P5CS* and *HAV* that control drought, salinity, osmotic and heat stress resistance; and a gene family, for example *AQP*, controlling transport of many compounds including water and nutrients. These genes participate in signal sensing and transduction, transcriptional regulation and functional gene activation during stress resistance induction. Furthermore, it should be noted that, under abiotic stresses, the regulation cascades are mutually interdependent and there also exists a close correlation between those cascades and normal plant growth and development.

Additional key words: abscisic acid, aquaporins, cuticular wax, detoxification, osmotic adjustment, reactive oxygen species, signal transduction, transcriptional regulation.

Introduction

The increasing deterioration of the world environment has great influence on the plant abiotic stress resistance and has become one of the most important causes for crop yield reduction (Bhatnagar-Mathur *et al.* 2008, Mazzucotelli *et al.* 2008). Initially, researchers mainly focused attention on the morphological and physiological traits in plants under stresses (Zhang and Shan 1998, Zhang *et al.* 2007b). For example, plant leaves curl and shrink and wax load increases under water or salt stress (Zhang and Shan 1998). The development of molecular biology, genetic mapping and transgenic techniques opens

a new route to understanding the mechanism underlying the above mentioned morphological changes. For example, it was found that osmoregulatory and antioxidant genes play important roles in biotic or abiotic stress resistance (Zhang *et al.* 2002).

Different abiotic stresses such as drought, cold, salinity and heavy metal pollution have similar effects on plants (Mittler 2006, Shen *et al.* 2006, Quresh *et al.* 2007, Shao *et al.* 2007, Zhuang *et al.* 2008). Generally, they cause disruption of osmotic and ionic homeostasis, and damage of proteins and cell membrane structure (Xiong and Zhu

Received 28 December 2008, accepted 28 July 2009.

Abbreviations: ABA - abscisic acid; AOX - alternative oxidase; APX - ascorbate peroxidase; AQP - aquaporins; BADH - betaine aldehyde dehydrogenase; CAT - catalase; CDPK - calmodulin binding protein kinase; COR - cold regulated proteins; DREB - dehydration-responsive element binding; EREB - ethylene-responsive element binding; GB - glycine betaine; GR - glutathione reductase; HSP - heat-shock protein; LEA - late-embryogenesis-abundant; MAPK - mitogen-activated protein kinase; NUE - nutrition use efficiency; POX - peroxidase; ROS - reactive oxygen species; SOD - superoxide dismutase; WUE - water use efficiency.

Acknowledgements: This work is supported by the High-Tech Research and Development Program of China (Grant No. 2006AA100201), the National Key Technology R&D Program of China (Grant No. 2006BAD29B02, 2009BADA3B01), the Excellent Middle-aged or Young Scientists from Shandong Province (BS2009DX028) and the College Foundation from Shandong Province (J09LG82).

* Authors for correspondence; fax (+86) 311 85886648, e-mail: zzb@sjziam.ac.cn, huxiaojun19812003@126.com

2002, Vinocur and Altman 2005, Rácz *et al.* 2008). Once these disorders appear, the plants produce stress signals, which can combine to relevant sensors and transduce stress information by protein kinase networks till the activation of functional genes (Xiong and Zhu 2001, Chinnusamy *et al.* 2004, Goodwin and Sutter 2009, Ying *et al.* 2009). Finally, cellular homeostasis, proteins and cell membranes will be rebuilt. In these processes, participation of multifunctional genes enables the cross-talk among the gene regulation networks. As the regulation cascades of various abiotic stresses are mutually interdependent, the plants often show different stress resistance (Cheong *et al.* 2002). Up to now, some genes have been found to be multifunctional genes. For example, *BADH* encodes betaine aldehyde dehydrogenase, and it is involved in the biosynthesis of glycine betaine (GB). GB is an amphoteric quaternary amine, acting as a compatible

solute in plants. Transgenic plants with *BADH* not only manifested osmoregulation ability but also increased salt and heat tolerance (Moghaieb *et al.* 2000, Kumar *et al.* 2004, Yang *et al.* 2005b, 2008, Wu *et al.* 2008).

For plants growing in increasingly deteriorated environment, studies of the genomics, proteomics, signal transport network, metabolic network, and multifunctional genes are important for the understanding of the stress resistance (Xiong and Zhu 2001, Chinnusamy *et al.* 2004). Although multifunctional genes have been widely studied, as far as we know, the recent research progress has not been reviewed. Therefore, in this review, we propose the definition and classification of multifunctional genes, and summarize the progress from three aspects including signal sensing and transduction, transcription regulation and functional gene activation.

Definition and classification of multifunctional genes

Multifunctional gene is a gene or a gene family that can regulate several kinds of traits and manifest several kinds of functions. According to the published papers, it can be classified into three groups as follows:

The first class are genes that encode diverse proteins through mRNA splicing. For example, *ASY*, a multifunctional gene that may suppress tumor development, produces three protein variants from the cognate mRNAs by alternative splicing (Watari and Yutsudo 2003). Alternative oxidase (*AOX*) gene in soybean manifests different isoforms during cotyledon development, and each of them correlates with the increase of capacity of the alternative pathway (McCabe *et al.* 1998, Ferreira *et al.* 2008). Liu *et al.* (2005) isolated a cDNA clone encoding two novel heat-shock factors *OsHSF6* and *OsHSF12* in rice, and found that *OsHSF6* can regulate the early expression of stress genes in response to heat shock, whereas *OsHSF12* can act as a synergistic factor to regulate the expression of the down-stream genes. The first group of multifunctional genes is mainly found in animals and microorganisms. The other two groups are often observed in plants under abiotic stress conditions.

The second class includes genes like *BADH*, *P5CS* and *HAV* that control drought, salt, osmotic and heat stress resistance. For example, *Apetala* is a multifunctional gene involved in inflorescence, flower, and ovule development regulation in *Arabidopsis* (Byzova *et al.* 1999). *DREB*, a gene encoding transcription factor in plant, can improve the drought, salt and cold tolerance of rice as confirmed by transgenic researches (Ito *et al.* 2006). Similar results were found in *Arabidopsis* (Kasuga *et al.* 1999, Sakuma *et al.* 2006), tobacco (Kasuga *et al.* 2004, Cong *et al.* 2008), wheat (Pellegrineschi *et al.* 2004) and other plants.

The third class are gene families. For example, the genes encoding membrane aquaporins (*AQP*), controlling transport of many compounds including water and nutrients, play an important role in plant abiotic stress resistance, including drought, cold and high salt stress resistance (Jang *et al.* 2004, 2007, Yu *et al.* 2005). In addition, *AQP* can modulate water use efficiency (WUE) and nutrition use efficiency (NUE), and thus play an important role in increasing crop yield under unfavourable conditions (Porcel *et al.* 2006, Jang *et al.* 2007).

Multifunctional genes involved in signal sensing and transduction

Hormones, Ca^{2+} , carbamide, NO, H_2O_2 , phospholipase (PL), polyphosphatidylinositol phosphate (PIP₂), inositol triphosphate (IP₃), diacylglycerol (DAG), etc. are signals during plant development and stress resistance process (Bhattacharjee 2008, Caeiro *et al.* 2008, Chang *et al.* 2008, Courtois *et al.* 2008, Lopez-Carrion *et al.* 2008, Quan *et al.* 2008). Among them ABA is one of the best researched messengers. Transgenic researches on genes regulating ABA sensitivity, such as *ABA27*, *HAB1* group, *LLA23*, and *AtMYB44*, indicate that ABA is important in the cold, drought and salt resistance and stomata opening regulation (Kume *et al.* 2005, Larkindale *et al.* 2005, Lin *et al.* 2007,

Yang *et al.* 2005a, Saez *et al.* 2006, Jung *et al.* 2008). 9-cis-epoxycarotenoid dioxygenase (NCED) is a pivotal enzyme in the biosynthesis of ABA. Over-expression of NCED leads to the accumulation of ABA under stress conditions (Qin *et al.* 1999). For example, in detached leaves, *NCED* mRNA responds rapidly to small reduction in water content (Thompson *et al.* 2000). Transpiration rate in transgenic *Arabidopsis* with *AtNCED3* was reduced and drought resistance improved (Lefebvre *et al.* 2006). Over-expression of *VuNCED* in transgenic creeping bent grass induced accumulation of ABA under drought and NaCl stresses (Aswath *et al.* 2005). Similar results were

reported on *EIN2* (a gene related to ABA signalling pathway) (Wang *et al.* 2007c), and *Sp12* and *Sp5* in tomato (Thompson *et al.* 2007).

Sensors can perceive stress signals through the combination reactions of signals (Wang *et al.* 2007c, Luan *et al.* 2002). Genes encoding sensors have been extensively studied (Taylor *et al.* 2005, Hu *et al.* 2006). For example, over-expression of a calcium sensor calcineurin B-like protein 1 (CBL1) in *Arabidopsis*, induces the expression of early stress-responsive transcription factors and stress adaptation genes in non-stressed plants (Albrecht *et al.* 2003, Cheong *et al.* 2003). Calcium dependent protein kinases (*CDPKs*) are unique Ca^{2+} sensors in plants. When *CDPK2* under stress-inducible promoter was over-expressed in barley, the responses of transgenic plants to cold, salt and ABA were different from those of wild plants (Sheen 1996). Besides, transgenic rice with over-expression of *OsCDPK7* exhibited enhanced tolerance to cold, salt and drought (Saijo *et al.* 2000). Transgenic plants with gene encoding other kinds of sensors can also exhibit increased abiotic stress tolerance. These sensors include salt sensor (Shi *et al.* 2002, Qiu *et al.* 2004) and osmosensor (Urao *et al.* 1999, Langridge *et al.* 2006).

Protein kinases participate in the transduction of signals in the whole regulation network (Koornneef and Pieterse 2008, Mohanpuria *et al.* 2008, Pandey *et al.* 2008). Mitogen activated protein kinase (*MAPK*) is generally

considered as an important multifunctional gene involved in the cascade consisting of MAPK, MAPKK, MAPKKK. The corresponding genes are activated in sequence after plant cells received the signals (Chinnusamy *et al.* 2004, Ren *et al.* 2008). After *MAPK* is activated, it further activates transcription factors in nucleus, or phospholipid-cleaving enzymes in cytoplasm. At least, some kinds of physiological and biochemical reactions are activated to acclimatize the plant to environmental stresses (Cheong *et al.* 2002, Chinnusamy *et al.* 2004, Xu *et al.* 2003, Wu *et al.* 2004, Hu *et al.* 2006,). It should be noted that one environmental stress can activate various kinases, and in turn, a single kinase gene can affect various kinds of stress resistance. For example, when maize was transformed with the tobacco *MAPKK/NPK1*, an oxidative signal cascade was activated, leading to the improvement of cold, heat, and salt tolerance (Shou *et al.* 2004).

Moreover, these genes can regulate not only stress resistance but also normal development. For example, kinase with extracellular leucine-rich repeats is known for its effects on inflorescence development, leaf pleiotropy. *ERECTA* can affect the resistance to bacterial wilt, or regulate transpiration under water stress through manipulating stomata density, epidermal cell expansion, mesophyll cell proliferation and cell-to-cell contact in *Arabidopsis* (Torii *et al.* 1996, Lease *et al.* 2001, Douglas *et al.* 2002, Godiard *et al.* 2003, Xu *et al.* 2003, Masle *et al.* 2005).

Multifunctional genes involved in regulation of transcription

Regulation of transcription often works through binding of transcription factors (TFs) and *cis*-elements in the upstream of functional genes. There are a lot of TFs and most of them fall into gene families like *AP2/EREBPs* (*APETALA2* and ethylene-responsive element binding proteins), *DREB/CBF* (dehydration-responsive element/C-repeat-binding), *bZIP* (basic-domain leucine zipper), *NAC*, *MYB/MYC*, *Cys2/His2* zinc-finger and *WRKY* (Umezawa *et al.* 2006, Tran *et al.* 2007). TFs are the members of multifunctional gene family (Shen *et al.* 2003, Shao *et al.* 2007). Under both cold and drought stresses, *DREB2*, *bZIP*, *CBFs*, *Cys2/His2* zinc-finger, *MYB/MYC* and other TFs are induced (Chinnusamy *et al.* 2004, Shinozaki and Yamaguchi-Shinozaki 2007).

Over-expression of TFs can induce stress-responsive gene expression and increase the abiotic stress tolerance

(Xiong and Zhu 2001). For example, over-expression of *HRD* gene (an *AP2/ERF*-like TF from *Arabidopsis*) in rice increased leaf biomass, photosynthesis and WUE (Karaba *et al.* 2007). Similarly, over-expression of *OsMYB3R-2*, a rice *R1R2R3 MYB* gene in transgenic *Arabidopsis*, can increase its tolerance to freezing, drought, and salt stresses (Dai *et al.* 2007). *WRKY* proteins are other important transcription factors responding to drought, cold, heat, hurt and ABA treatments (Ross *et al.* 2007). In our group, eight *TaWRKY* genes (1, 2, 13, 14, 16, 17, 19 and 27) were cloned from wheat, and the level of transcription increased under dehydration and other abiotic stresses but at different levels in different cultivars. Recently, *TaWRKY* genes have been cloned and their functions were studied (Niu *et al.* 2006).

Activation of multifunctional genes

Stress resistance can be achieved through functional gene activation (Xiong and Zhu 2001, Cheong *et al.* 2002, Chinnusamy *et al.* 2004). The induction of genes related to osmotic adjustment, ROS scavenging, chaperone production as well as water and ion transport channels participates in the rebuilding of cellular homeostasis, reestablishing proteins structure and membranes during

stresses (Xiong and Zhu 2002, Bhatnagar-Mathur *et al.* 2008). In addition, the genes involved in changes in structure of epidermis can be important for abiotic stress tolerance (Zhang *et al.* 2005b). Only when all these genes are translated normally, the plants survive from unfavourable environmental conditions (Bhatnagar-Mathur *et al.* 2008).

Multifunctional genes involved in osmotic regulation: Proline, betaine, free amino acids, sugars, sugar alcohols, alkaloids, *etc.*, are osmotically active compounds (Sharma and Dietz 2006, Sokhansanj *et al.* 2006). Their physiological functions include keeping cell pressure potential, stabilizing proteins and cell structures and scavenging of reactive oxygen species (Wang *et al.* 2003). The increase of their accumulation is achieved by over-expression of enzymes involved in their biosynthesis or suppression of enzymes causing their degradation (Chen and Murata 2002). Strategies for the genetic manipulation require precise understanding of biosynthetic pathways including up and down regulations of key regulatory enzymes, feedback inhibition, *etc.* (Vendruscolo *et al.* 2007).

Over-expression of pyrroline-5-carboxylate synthetase (*P5CS*) gene results in the overproduction of this enzyme as well as proline accumulation (Zhu *et al.* 1998, Sharma and Dietz 2006). Transgenic rice plants over-expressing *P5CS* showed increased amount of proline and, at least in part, enhanced biomass production under water stress or salinity (Zhu *et al.* 1998, Hong *et al.* 2000, Su and Wu 2004, Sokhansanj *et al.* 2006). Similarly, transgenic soybean with *P5CS* showed improved drought and heat resistance (De Ronde *et al.* 2001, 2004), transgenic tobacco showed improved salt resistance (Parvanova *et al.* 2004a,b) and transgenic wheat showed improved drought resistance (Vendruscolo *et al.* 2007).

Mt1D encodes mannitol-1-phosphate dehydrogenase, which catalyzes the reversible conversion of fructose-6-phosphate to mannitol-1-phosphate and mannitol-1-phosphate is converted to mannitol via nonspecific phosphatases. Mannitol exists in numerous plant species, but not in wheat (Abebe *et al.* 2003). Transgenic wheat with *Mt1D* accumulates mannitol from 0.6 to 2.0 mol g⁻¹(f.m.) in the mature leaves and showed drought and salt resistance but some abnormalities (Abebe *et al.* 2003). Furthermore, transgenic *Petunia* expressing *Mt1D* showed improved cold tolerance (Chiang *et al.* 2005) and transgenic loblolly pine (Tang *et al.* 2005) and *Populus tomentosa* (Hu *et al.* 2005) improved salt tolerance.

Glycine betaine (GB) plays an important role in stabilization of oxygen-evolving complex of photosystem 2, Rubisco activity and membrane integrity (Chen and Murata 2002, Sakamoto and Murata 2002, Park *et al.* 2007). *CodA* encoding choline oxidase is an important multifunctional gene regulating the biosynthesis of GB. Transgenic rice over-expressing *CodA* showed better tolerance to salt and cold (Sakamoto and Murata 1998, Mohanty *et al.* 2002), transgenic tobacco showed reduced oxidative damage under freezing stress (Parvanova *et al.* 2004a,b) and transgenic tomato showed improved cold and oxidative stress tolerance (Park *et al.* 2004, 2007).

From the above-mentioned survey, it is obvious that the stress resistance can be improved in transgenic plants with increased accumulation of osmotically active compounds. These compounds can be also exogenously applied and they can affect gene expression. For example, the exogenous trehalose alters the expression of

transcription factors and genes related to cell wall modification, nitrogen metabolism, and fatty acid biosynthesis (Bae *et al.* 2005).

Multifunctional genes involved in ROS scavenging: When plants are under stress conditions, reactive oxygen species are produced, which disturb oxidation-reduction balance and might damage proteins, lipids and nucleic acids (Xiong and Zhu 2001, Mittler *et al.* 2006, Shamsi *et al.* 2008, Silva *et al.* 2008). Plants protect themselves by increased activities of antioxidative enzymes, such as ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR) and production of low molecular mass antioxidants (Río *et al.* 2006, Wang *et al.* 2007b, Rana *et al.* 2008, Serrot *et al.* 2008).

When compared with wild type plants, the transgenic ones over-expressing genes encoding ROS-scavenging enzymes had higher cold, drought, and salinity resistance (Chen *et al.* 2005, Tarantino *et al.* 2005, Shen *et al.* 2006, Eltayeb *et al.* 2007, Lee *et al.* 2007). For example, transgenic alfalfa plants over-expressing *SOD* showed tolerance to cold and drought (Samis *et al.* 2002, Rubio *et al.* 2002), similarly, transgenic rice (Badawi *et al.* 2004, Gupta *et al.* 2005), *Arabidopsis* (Wang *et al.* 2004), and cabbage (Tseng *et al.* 2007) to drought and salinity. Transgenic tobacco plants over-expressing *APX*, *GST* (coding glutathione S-transferase) and *GPX* (coding glutathione peroxidase) were studied under oxidative stress induced by herbicides or ozone, and under chilling and salinity (Roxas *et al.* 2000, Kwon *et al.* 2002, Eltayeb *et al.* 2007, Lee *et al.* 2007). It is interesting that a ROS-scavenging genes suppressed in transgenic plant can be activated by abiotic stress (Tarantino *et al.* 2005). For instance, expression of Cu/Zn-SOD decreased in the transgenic tobacco under normal conditions and it increased under salt and PEG stresses (Chen *et al.* 2005).

Multifunctional genes involved in the protection of proteins: Multifunctional genes involved in stabilizing the structures of proteins and cell membranes play important roles for abiotic and biotic stress resistance (Cho and Hong 2006). Late embryogenesis abundant (LEA) proteins and molecular chaperones often have conservative sequence and polar amino acids, so they are stable (Fu *et al.* 2007, Jyothisnakumari *et al.* 2009). LEA proteins, molecular chaperones such as HAV1, heat shock proteins (HSP) and cold regulated proteins (COR) are also required during normal development of plants (Manfre *et al.* 2006). Under abiotic stresses, LEA and molecular chaperones are produced in a variety of plant organs to stabilize protein structures, cell membranes and ion homeostasis (Vij and Tyagi 2007).

Transgenic plants over-expressing genes encoding LEA proteins and molecular chaperone can increase the resistance to drought, salt, cold and other stresses (Cho and Hong 2006, Jyothisnakumari *et al.* 2009). For example, *HAV1* gene from barley over-expressed in transgenic rice, led to drought and salt resistance (Xu *et al.* 1996) due to

the cell membrane protection and osmotic adjustment (Babu *et al.* 2004, Fu *et al.* 2007). Transgenic wheat and oat over-expressing *HAV1* also showed improved drought and salt stress resistance (Sivamani *et al.* 2000, Maqbool *et al.* 2002, Bahieldin *et al.* 2005, Oraby *et al.* 2005).

Transgenic tobacco with sense *NtHSP70-1* exhibited slower decrease in water content under progressive drought than the wild type or the transgenic anti-sense plants. Moreover, the expression of *CaERD15* (early responsive to dehydration) is considerably reduced in tobacco plants that over-expressed *NtHSP70-1* (Cho and Hong 2006, Vij and Tyagi 2007).

Multifunctional genes coding ion and water transporters: Aquaporins (AQP) are important membrane transporters of water and other small molecules and ions (Hachez *et al.* 2006). Ion channels transport ions more specifically than AQP. Both respond to different abiotic stresses (Galmés *et al.* 2007, Wang *et al.* 2007a). For example, the transcript level of plasma membrane intrinsic protein (*PIP*) gene decreased in olive plants submitted to drought stress (Secchi *et al.* 2007). On the other hand, expression of *TaTPC1* gene (coding Ca^{2+} -channel protein) increased under high salinity, polyethylene glycol, low temperature (4°C), and ABA treatment (Wang *et al.* 2005). Over-expression of a *Panax ginseng* gene coding AQP alters the salt tolerance, drought tolerance and cold acclimation ability of transgenic *Arabidopsis* (Peng *et al.* 2007). Increased activity of vacuolar Na^+/H^+ antiporter in transgenic rice (Zhao *et al.* 2006), wheat (Xue *et al.* 2004) and cotton (Wu *et al.* 2004) increased their salt tolerance.

Multifunctional genes related to cuticular wax formation: Plant cuticle is the first protective barrier against many biotic and abiotic stresses (Leide *et al.* 2007). It is generally accepted that abiotic stresses induce the expression of genes related to the biosynthesis and accumulation of cuticular wax, which in turn affect the

stress resistance (Shepherd and Griffiths 2006). For example, nonspecific lipid-transfer protein (nsLTP) can transport several classes of phospholipids and glycolipids. The expression of *nsLTP* was induced by cold (in barley), drought (in barley and sunflower), and salinity (in tomato) (Salcedo *et al.* 2007). Another case in point is that the transcript level of *Cer6* encoding β -ketoacyl-coenzyme A, an important synthase for cuticular wax production, which is increased in *Arabidopsis* under drought, salinity and ABA treatment (Hooker *et al.* 2002). In transgenic alfalfa or *Arabidopsis* with *Wxp1*, a putative *Medicago truncatula* AP2 domain-containing transcription factor gene, cuticular wax was accumulated and thus drought tolerance was increased (Zhang *et al.* 2005a, 2007a). Transgenic rice plants over-expressing *Shn2* and *Cer6* also showed increase in WUE and drought resistance (Karaba 2007).

In addition, the *Arabidopsis* mutants such as *Cer1* (Aarts *et al.* 1995) and *Cer6* (Hooker *et al.* 2002) were male-sterile. Aharoni (2004) identified an *Arabidopsis* mutant *shn* that displays a brilliant, shiny green leaf surface with increased cuticular wax compared with wild-type plants. In contrast, over-expression of the *Shn* genes increased cuticle permeability, alters leaf and petal epidermal cell structures, trichome number, branching, and the stomatal index. Recently, we focused on the functions of wheat cuticular wax and the relationships between the wax and stresses. We found that the wax content of wheat flag leaf during grain filling has positive correlation to photosynthetic rate, leaf temperature, leaf WUE and the yield (Zhang and Shan 1998, Huang *et al.* 2003). Currently, three complete sequences and some partial sequences of genes related to cuticular wax have been cloned and the expression patterns were analyzed under abiotic stresses. It is found that the genes related to wax biosynthesis can respond to different stresses. However, the reason of expression responses and the relationship between wax components and WUE under different stresses require further studies.

Summary and outlook

When a plant is under unfavourable conditions, ROS can be produced, the ion homeostasis disturbed, and the structures and functions of proteins and cell membranes damaged. Meanwhile, compatible solutes, ROS-scavenging enzymes, LEA proteins, molecular chaperones, and stress regulating factors are induced to rebuild the cell. It is clear that the signalling pathways of abiotic stresses have cross-talk. There is cross-talk among the signalling pathways of individual abiotic stresses and connections with normal metabolism and development (Kosová *et al.* 2008).

Plant abiotic stress resistance is a multidisciplinary area ranging from physiology to molecular biology. Take the drought resistance as an example. It depends on the water absorption, which depends on the root morphological characteristics (length, density, distribution, hair development) and physiological adaptations (osmotic

adjustments, hydraulic conductance) (Yadav *et al.* 1997, Dubrovsky *et al.* 1998, Ma *et al.* 2001). On the other hand, water transport can be affected by AQP activity (Jang *et al.* 2004, 2007, Yu *et al.* 2005). No less important is regulation of transpiration by stomata and the relationship between photosynthesis and transpiration (WUE) (Buckley *et al.* 2005, Zhang *et al.* 2007b).

Previously, the research focused on plant abiotic stress resistance has been mainly concentrated on mono-functional genes or the specific function of multifunctional genes. To endow a plant with multiple stress resistance, co-transformation of several genes is possible, however, it is complicated and troublesome to design plasmid and transform plant (Komari *et al.* 1996). Moreover, most transgenic plants are model species such as *Arabidopsis thaliana* and tobacco. Nowadays, the production of transgenic plants in some crops such as rice, wheat, potato,

and sugar beet, have gained various degrees of success. Transformation of multifunctional genes to crops might be useful. Some regulating factors, especially TFs, are

transformed because the corresponding transgenic plants possess multiple ability of abiotic stress resistance.

References

Aarts, M.G., Keijzer, C.J., Stiekema, W.J., Pereira A.: Molecular characterization of the *CER1* gene of *Arabidopsis* involved in epicuticular wax biosynthesis and pollen fertility. - *Plant Cell* **7**: 2115-2127, 1995.

Abebe, T., Guenzi, A.C., Martin, B., Cushman, J.C.: Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. - *Plant Physiol.* **131**: 1748-1755, 2003.

Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., Pereira A.: The *SHINE* clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in *Arabidopsis*. - *Plant Cell* **16**: 2463-2480, 2004.

Albrecht, V., Weinl, S., Blazevic, A., D'Angelo, C., Batistic, O., Kolukisaoglu, Ü., Bock, R., Schulz, B., Harter, K., Kudla, J.: The calcium sensor *CBL1* integrates plant responses to abiotic stresses. - *Plant J.* **36**: 457-470, 2003.

Aswath, C.R., Kim, S.H., Mo, S.Y., Kim, D.H.: Transgenic plants of creeping bent grass harboring the stress inducible gene, 9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress. - *Plant Growth Regul.* **47**: 129-139, 2005.

Babu, R.C., Zhang, J.X., Blum, A., Ho, T.H.D., Wu, R., Nguyen, H.T.: *HVA1*, a LEA gene from barley confers dehydration tolerance in transgenic rice (*Oryza sativa L.*) via cell membrane protection. - *Plant Sci.* **166**: 855-862, 2004.

Badawi, G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K., Tanaka, K.: Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (*Nicotiana tabacum*) chloroplasts. - *Plant Sci.* **166**: 919-928, 2004.

Bae, H., Herman, E., Bailey, B., Bae, H.J., Sicher, R.: Exogenous trehalose alters *Arabidopsis* transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. - *Physiol. Plant.* **125**: 114-126, 2005.

Bahieldin, A., Mahfouz, H.T., Eissa, H.F., Saleh, O.M., Ramadan, A.M., Ahmed, I.A., Dyer, W.E., El-Ittry, H.A., Madkour, M.A.: Field evaluation of transgenic wheat plants stably expressing the *HVA1* gene for drought tolerance. - *Physiol. Plant.* **123**: 421-427, 2005.

Bhattacharjee, S.: Calcium-dependent signaling pathway in the heat-induced oxidative injury in *Amaranthus lividus*. - *Biol. Plant.* **52**: 137-140, 2008.

Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K.: Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. - *Plant Cell* **27**: 411-424, 2008.

Buckley, T.N.: The control of stomata by water balance. - *New Phytol.* **168**: 275-292, 2005.

Byzova, M.V., Franken, J., Aarts, M.G., de Almeida-Engler, J., Engler, G., Mariani, C., Van Lookeren Campagne, M.M., Angenent, G.C.: *Arabidopsis STERILE APETALA*, a multifunctional gene regulating inflorescence, flower, and ovule development. - *Genes Dev.* **13**: 1002-1014, 1999.

Caeiro, A.S., Ramos, P.C., Teixeira, A.R., Ferreira, R.B.: The ubiquitin/proteasome pathway from *Lemna minor* subjected to heat shock. - *Biol. Plant.* **52**: 695-702, 2008.

Chang, W.C., Capite, J.D., Singaravelu, K., Nelson, C., Halse, V., Parekh, A.B.: Local Ca^{2+} influx through Ca^{2+} release-activated Ca^{2+} (CRAC) channels stimulates production of an intracellular messenger and an intercellular proinflammatory signal. - *J. biol. Chem.* **283**: 4622-4631, 2008.

Chen, S.Y., Xiao, S., Zhang, M.X., Chen, T., Wang, H.C., An, L.Z.: Antisense and RNAi expression for a chloroplastic superoxide dismutase gene in transgenic plants. - *Bot. Bull. Acad. sin.* **46**: 175-182, 2005.

Chen, T.H.H., Murata, N.: Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. - *Curr. Opin. Plant Biol.* **5**: 250-257, 2002.

Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., Luan, S.: Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in *Arabidopsis*. - *Plant Physiol.* **129**: 1-17, 2002.

Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., Luan, S.: *CBL1*, a calcium sensor that differentially regulates salt, drought, and cold responses in *Arabidopsis*. - *Plant Cell* **15**: 1833-1845, 2003.

Chiang, Y.J., Stushnoff, C., McSay, A.E.: Overexpression of mannitol-1-phosphate dehydrogenase increase mannitol accumulation and adds protection against chilling injury in *Petunia*. - *J. amer. Soc. hort. Sci.* **130**: 605-610, 2005.

Chinnusamy, V., Schumaker, K., Zhu, J.K.: Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. - *J. exp. Bot.* **55**: 225-236, 2004.

Cho, E.K., Hong, C.B.: Overexpression of tobacco *NtHSP70-1* contributes to drought-stress tolerance in plants. - *Plant Cell* **25**: 349-358, 2006.

Cong, L., Zheng, H.C., Zhang, Y.X., Chai, T.Y.: *Arabidopsis DREB1A* confers high salinity tolerance and regulates the expression of GA dioxygenases in tobacco. - *Plant Sci.* **174**: 156-164, 2008.

Courtois, C., Besson, A., Dahan, J., Bourque, S., Dobrowolska, G., Pugin, A., Wendehenne, D.: Nitric oxide signalling in plants: interplays with Ca^{2+} and protein kinases. - *J. exp. Bot.* **59**: 155-163, 2008.

Dai, X.Y., Xu, Y.Y., Ma, Q.B., Xu, W.Y., Wang, T., Xue, Y.B., Chong, K.: Overexpression of an *R1R2R3 MYB* gene, *OsMYB3R-2*, increases tolerance to freezing, drought, and salt stress in transgenic *Arabidopsis*. - *Plant Physiol.* **143**: 1739-1751, 2007.

De Ronde, J.A., Cress, W.A., Mescht, A.V.D.: *Agrobacterium* mediated transformation of soybean seed with the *GUS-INT* marker gene. - *South Afr. J. Sci.* **97**: 421-424, 2001.

De Ronde, J.A., Laurie, R.N., Caetano, T., Greyling, M.M., Kerepesi, I.: Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. - *Euphytica* **138**: 123-132, 2004.

Douglas, S.J., Chuck, G., Dengler, R.E., Pelecanda, L., Riggs, C.D.: *KNAT1* and *ERECTA* regulate inflorescence architecture in *Arabidopsis*. - *Plant Cell* **14**: 547-558, 2002.

Dubrovska, J.G., North, G.B., Nobel, P.S.: Root growth, developmental changes in the apex, and hydraulic conductivity for *Opuntia ficus-indica* during drought. - *New Phytol.* **138**: 75-82, 1998.

Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Shibahara, T., Inanaga, S., Tanaka, K.: Overexpression of monodehydroascorbate reductase in

transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. - *Planta* **225**: 1255-1264, 2007.

Ferreira, A.L., Arrabaca, J.D., Vaz-Pinto, V., Lima-Costa, M.E.: Induction of alternative oxidase chain under salt stress conditions. - *Biol. Plant.* **52**: 66-71, 2008.

Fu, D.L., Huang, B.R., Xiao, Y.M., Muthukrishnan, S., Liang, G.H.: Overexpression of barley *hval* gene in creeping bentgrass for improving drought tolerance. - *Plant Cell* **26**: 467-477, 2007.

Galmés, J., Pou, A., Alsina, M.M., Tomás, M., Medrano, H., Flexas, J.: Aquaporin expression in response to different water stress intensities and recovery in *Richter-110* (*Vitis* sp.): relationship with ecophysiological status. - *Planta* **226**: 671-681, 2007.

Godiard, L., Sauviac, L., Torii, K.U., Grenon, O., Mangin, B., Grimsley, N.H., Marco, Y.: *ERECTA*, an LRR receptor-like kinase protein controlling development, pleiotropically affects resistance to bacterial wilt. - *Plant J.* **36**: 353-365, 2003.

Goodwin, S.B., Sutter, T.R.: Microarray analysis of *Arabidopsis* genome response to aluminum stress. - *Biol. Plant.* **53**: 85-99, 2009.

Gupta, P., Duplessis, S., White, H., Karnosky, D.F., Martin, F., Podila, G.K.: Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO₂ and tropospheric O₃. - *New Phytol.* **167**: 129-142, 2005.

Hachez, C., Zelazny, E., Chaumont, F.: Modulating the expression of aquaporin genes in plant: a key to understand their physiological functions? - *Biochim. biophys. Acta* **1758**: 1142-1156, 2006.

Hong, Z.L., Lakkineni, K., Zhang, Z.M., Verma, D.P.S.: Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. - *Plant Physiol.* **122**: 1129-1136, 2000.

Hooker, T.S., Millar, A.A., Kunst, L.: Significance of the expression of the *CER6* coding enzyme for cuticular wax production in *Arabidopsis*. - *Plant Physiol.* **129**: 1-13, 2002.

Hu, L., Lu, H., Liu, Q., Chen, X., Jiang, X.: Overexpression of *mtLD* gene in transgenic *Populus tomentosa* improves salt tolerance through accumulation of mannitol. - *Tree Physiol.* **25**: 1273-1281, 2005.

Hu, X.B., Song, F.M., Zheng, Z.: Molecular characterization and expression analysis of a rice protein phosphatase 2C gene, *OsBIPP2C1*, and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance. - *Plant Physiol.* **127**: 225-237, 2006.

Huang, L., Zhang, Z.B., Cui, Y.R., Liu, M.Y., Chai, S.X., Chen, Z.B.: [Relationship between wax content and water use efficiency of leaf and yield in wheat.] - *J. Triticeae Crops* **23**: 41-44, 2003. [In Chin.]

Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice *DREB1/CBF*-type transcription factors involved in cold-responsive gene expression in transgenic rice. - *Plant Cell Physiol.* **47**: 141-153, 2006.

Jang, J.Y., Kim, D.G., Kim, Y.O., Kim, J.S., Kang, H.: An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in *Arabidopsis thaliana*. - *Plant mol. Biol.* **54**: 713-725, 2004.

Jang, J.Y., Lee, S.H., Rhee, J.Y., Chung, G.C., Ahn, S.J., Kang, H.S.: Transgenic *Arabidopsis* and tobacco plants over-expressing an aquaporin respond differently to various abiotic stresses. - *Plant mol. Biol.* **64**: 621-632, 2007.

Jyothsnakumari, G., Thippeswamy, M., Veeranagamallaiah, G., Sudhakar, C.: Differential expression of LEA proteins in two genotypes of mulberry under salinity. - *Biol. Plant.* **53**: 145-150, 2009.

Jung, C., Seo, J.S., Han, S.W., Koo, Y.J., Kim, C.H., Song, S.I., Nahm, B.H., Choi, Y.D., Cheong, J.J.: Overexpression of *AtMYB44* enhances stomatal closure to confer abiotic stress tolerance in transgenic *Arabidopsis*. - *Plant Physiol.* **146**: 623-635, 2008.

Karaba, A.: Improvement of water use efficiency in rice and tomato using *Arabidopsis* wax biosynthetic genes and transcription factors. - PhD. Thesis, Wageningen University, Wageningen 2007.

Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R., Marsch-Martinez, N., Krishnan, A., Nataraja, K.N., Udayakumar, M., Pereira, A.: Improvement of water use efficiency in rice by expression of *HARDY*, an *Arabidopsis* drought and salt tolerance gene. - *Proc. nat. Acad. Sci. USA* **104**: 15270-15275, 2007.

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. - *Natur. Biotechnol.* **17**: 287-291, 1999.

Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the *Arabidopsis DREB1A* gene and stress-inducible *rd29A* promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. - *Plant Cell Physiol.* **45**: 346-350, 2004.

Komari, T., Hiei, Y., Saito, Y., Murai, N., Kumashiro, T.: Vectors carrying two separate T-DNA for co-transformation of higher plants mediated by *Agrobacterium tumefaciens* and segregation of transformants free from selection markers. - *Plant J.* **10**: 165-174, 1996.

Koornneef, A., Pieterse, C.M.J.: Cross talk in defense signaling. - *Plant Physiol.* **146**: 839-844, 2008.

Kosová, K., Prášil, I.T., Vítámvás, P.: The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. - *Biol. Plant.* **52**: 601-615, 2008.

Kumar, S., Dhingra, A., Daniell, H.: Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaf confers enhanced salt tolerance. - *Plant Physiol.* **136**: 1-12, 2004.

Kume, S.B., Kobayashi, F., Ishibashi, M., Ohno, R., Nakamura, C., Takumi, S.: Differential and coordinated expression of *Cbf* and *Cor/Lea* genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. - *Genes Genet. Syst.* **80**: 185-197, 2005.

Kwon, S.Y., Jeong, Y.J., Lee, H.S., Kim, J.S., Cho, K.Y., Allen, R.D., Kwak, S.S.: Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. - *Plant Cell Environ.* **25**: 873-882, 2002.

Langridge, P., Paltridge, N., Fincher, G.: Functional genomics of abiotic stress tolerance in cereals. - *Brief. Func. Genom. Proteom.* **4**: 343-354, 2006.

Larkindale, J., Hall, J.D., Knight, M.R., Vierling, E.: Heat stress phenotypes of *Arabidopsis* mutants implicate multiple signaling pathways in the acquisition of thermotolerance. - *Plant Physiol.* **138**: 882-897, 2005.

Lease, K.A., Lau, N.Y., Schuster, R.A., Torii, K.U., Walker, J.C.: Receptor serine/threonine protein kinases in signalling: analysis of the *ERECTA* receptor-like kinase of *Arabidopsis thaliana*. - *New Phytol.* **151**: 133-143, 2001.

Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S., Kwon,

S.Y.: Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. - *Plant Cell* **26**: 591-598, 2007.

Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E., Marion-Poll, A.: Functional analysis of *Arabidopsis NCED6* and *NCED9* genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. - *Plant J.* **45**: 309-319, 2006.

Leide, J., Hildebrandt, U., Reussing, K., Riederer, M., Vogg, G.: The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a β -ketoacyl-coenzyme A synthase (*LeCER6*). - *Plant Physiol.* **144**: 1667-1679, 2007.

Lin, P.C., Hwang, S.G., Endo, A., Okamoto, M., Koshiba, T., Cheng, W.H.: Ectopic expression of abscisic acid 2/glucose insensitive 1 in *Arabidopsis* promotes seed dormancy and stress tolerance. - *Plant Physiol.* **143**: 745-758, 2007.

Liu, J.G., Yao, Q.H., Zhang, Z., Peng, R.H., Xiong, A.S., Xu, F., Zhu, H.: Isolation and characterization of a cDNA encoding two novel heat-shock factor *OsHSF6* and *OsHSF12* in *Oryza sativa* L. - *J. Biochem. mol. Biol.* **38**: 602-608, 2005.

Lopez-Carrion, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M., Romero, L.: Role of nitric oxide under saline stress: implications on proline metabolism. - *Biol. Plant.* **52**: 587-591, 2008.

Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., Gruissem, W.: Calmodulins and calcineurin B-like proteins, calcium sensors for specific signal response coupling in plants. - *Plant Cell* **14**(Suppl.): s389-s400, 2002.

Ma, Z., Bielenberg, D.G., Brown, K.M., Lynch, J.P.: Regulation of root hair density by phosphorus availability in *Arabidopsis thaliana*. - *Plant Cell Environ.* **24**: 459-467, 2001.

Manfre, A.J., Lanni, L.M., Marcotte, W.R.: The *Arabidopsis* group 1 late embryogenesis abundant protein *ATEM6* is required for normal seed development. - *Plant Physiol.* **140**: 140-149, 2006.

Maqbool, S.B., Zhong, H., El-Maghraby, Y., Ahmad, A., Chai, B., Wang, W., Sticklen, M.: Competence of oat (*Avena sativa* L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing *hva1*. - *Theor. appl. Genet.* **105**: 201-208, 2002.

Masle, J., Gilmore, S.R., Farquhar, G.D.: The *ERECTA* gene regulates plant transpiration efficiency in *Arabidopsis*. - *Nature* **436**: 866-879, 2005.

Mazzucotelli, E., Mastrangelo, A.M., Crosatti, C., Guerra, D., Stanca, A.M., Cattivelli, L.: Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. - *Plant Sci.* **174**: 420-431, 2008.

McCabe, T.C., Finnegan, P.M., Millar, A.H., Day, D.A., Whelan, J.: Differential expression of alternative oxidase genes in soybean cotyledons during postgerminative development. - *Plant Physiol.* **118**: 675-682, 1998.

Mittler, R.: Abiotic stress, the field environment and stress combination. - *Trends Plant Sci.* **11**: 15-19, 2006.

Moghaieb, R.E.A., Tanaka, N., Saneoka, H., Hussein, H.A., Yousef, S.S., Ewada, M.A.F., Mohamed, A.M.A., Kounosuke, F.: Expression of *Betaine Aldehyde Dehydrogenase* gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. - *Soil Sci. Plant Nutr.* **46**: 873-883, 2000.

Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., Tyagi, A.: Transgenics of an elite *indica* rice variety Pusa Basmati 1 harbouring the *codA* gene are highly tolerant to salt stress. - *Theor. appl. Genet.* **106**: 51-57, 2002.

Mohanpuria, P., Rana, N.K., Yadav, S.K.: Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in *Camellia sinensis* (L.) O. Kuntze somatic embryos. - *Biol. Plant.* **52**: 361-364, 2008.

Niu, C.F., Tian, A.G., Zhang, Z.B., Zhang, J.S., Chen, S.Y.: Molecular cloning and characterization of the *WRKY* genes induced by water deficit in wheat (*Triticum aestivum* L.). - In: The First International Conference on the Theory and Practices in Bio-Water-Saving. Vol. 1. Pp. 4-78, Beijing 2006.

Oraby, H.F., Ransom, C.B., Kravchenko, A.N., Sticklen, M.B.: Barley *HVA1* gene confers salt tolerance in *R3* transgenic oat. - *Crop Sci.* **45**: 2218-2227, 2005.

Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li, L.G., Luan, S.: Calcineurin-B-Like protein *CBL9* interacts with target kinase *CIPK3* in the regulation of ABA response in seed germination. - *Mol. Plant* **1**: 238-248, 2008.

Park, E.J., Jeknic, Z., Pino, M.T., Murata, N., Chen, T.H.H.: Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. - *Plant Cell Environ.* **30**: 994-1005, 2007.

Park, E.J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N.: Genetic engineering of glycine betaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. - *Plant J.* **40**: 474-487, 2004.

Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D.: Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. - *Plant Physiol. Biochem.* **42**: 57-63, 2004a.

Parvanova, D., Popova, A., Zaharieva, I., Lambrey, P., Konstantinova, T., Taneva, S., Atanassov, A., Goltsev, V., Djilianov, D.: Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine, variable chlorophyll fluorescence evidence. - *Photosynthetica* **42**: 175-185, 2004b.

Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K., Hoisington, D.: Stress-induced expression in wheat of the *Arabidopsis thaliana DREB1A* gene delays water stress symptoms under greenhouse conditions. - *Genome* **47**: 493-500, 2004.

Peng, Y.H., Lin, W.L., Cai, W.M., Arora, R.: Overexpression of a *Panax ginseng* tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic *Arabidopsis* plants. - *Planta* **226**: 729-740, 2007.

Porcel, R., Aroca, R., Azcón, R., Ruiz-Lozano, J.M.: PIP aquaporin gene expression in arbuscular mycorrhizal *Glycine max* and *Lactuca sativa* plants in relation to drought stress tolerance. - *Plant mol. Biol.* **60**: 389-404, 2006.

Qin, X.Q., Zeevaart, J.A.D.: The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. - *Plant Biol.* **96**: 15354-15361, 1999.

Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., Zhu, J.K.: Regulation of vacuolar Na^+/H^+ exchange in *Arabidopsis thaliana* by the salt-overly-sensitive (SOS) pathway. - *J. biol. Chem.* **279**: 207-215, 2004.

Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y.: Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. - *J. intergr. Plant Biol.* **50**: 2-18, 2008.

Quresh, M.I., Qadir, S., Zolla, L.: Proteomics-based dissection of stress-responsive pathways in plants. - *J. Plant Physiol.* **164**: 1239-1260, 2007.

Rácz, I., Páldi, E., Szalai, G., Janda, T., Pál, M., Lásztity, D.: S-methylmethionine reduces cell membrane damage in higher plants exposed to low-temperature stress. - *J. Plant Physiol.* **165**: 1483-1490, 2008.

Rana, N.K., Mohanpuria, P., Yadav, S.K.: Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress. - *Biol. Plant.* **52**: 361-364, 2008.

Ren, D., Liu, Y., Yang, K.Y., Han, L., Mao, G., Glazebrook, J., Zhang, S.: A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in *Arabidopsis*. - *PNAS* **105**: 5638-5643, 2008.

Río, L.A.D., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B.: Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling. - *Plant Physiol.* **141**: 330-335, 2006.

Ross, C.A., Liu, Y., Shen, Q.X.: The *WRKY* gene family in rice. - *J. intergr. Plant Biol.* **49**: 827-842, 2007.

Roxas, V.P., Lodhi, S.A., Garrett, D.K., Mahan, J.R., Allen, R.D.: Stress tolerance in transgenic tobacco seedlings that over-express glutathione-S-transferase/glutathione peroxidase. - *Plant Cell Physiol.* **41**: 1229-1234, 2000.

Rubio, M.C., González, E.M., Minchin, F.R., Webb, K.J., Arrese-Igor, C., Ramos, J., Becana, M.: Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. - *Physiol. Plant.* **115**: 531-540, 2002.

Saez, A., Robert, N., Maktabi, M.H., Schroeder, J.I., Serrano, R., Rodriguez, P.L.: Enhancement of abscisic acid sensitivity and reduction of water consumption in *Arabidopsis* by combined inactivation of the protein phosphatases type 2C *ABII* and *HAB1*. - *Plant Physiol.* **141**: 1389-1399, 2006.

Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K.: Overexpression of a single Ca^{2+} -dependent protein kinase confers both cold and salt/drought tolerance on rice plants. - *Plant J.* **23**: 319-327, 2000.

Sakamoto, A., Murata, A.N.: Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. - *Plant mol. Biol.* **38**: 1011-1019, 1998.

Sakamoto, A., Murata, A.N.: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. - *Plant Cell Environ.* **25**: 163-170, 2002.

SDKuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of an *Arabidopsis* transcription factor, *DREB2A*, involved in drought-responsive gene expression. - *Plant Cell* **18**: 1292-1309, 2006.

Salcedo, G., Sánchez-Monge, R., Barber, D., Díaz-Perales, A.: Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. - *Biochim. biophys. Acta* **1171**: 781-791, 2007.

Samis, K., Bowley, S., McKersie, B.: Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in *alfalfa*. - *J. exp. Bot.* **53**: 1343-1350, 2002.

Secchi, F., Lovisolo, C., Uehlein, N., Kaldenhoff, R., Schubert, A.: Isolation and functional characterization of three aquaporins from olive (*Olea europaea* L.). - *Planta* **225**: 381-392, 2007.

Serrot, P.H., Sabater, B., Martin, M.: Expression of the *ndhCKJ* operon of barley and editing at the 13th base of the mRNA of the *ndhC* gene. - *Biol. Plant.* **52**: 347-350, 2008.

Shao, H.B., Guo, Q.J., Chu, L.Y., Zhao, X.N., Su, Z.L., Hu, Y.C., Cheng, J.F.: Understanding molecular mechanism of higher plant plasticity under abiotic stress. - *Colloid Surface Biointerfaces* **54**: 37-45, 2007.

Sharma, S.S., Dietz, K.J.: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. - *J. exp. Bot.* **57**: 711-726, 2006.

Shamsi, I.H., Wei, K., Zhang, G.P., Jilani, G.H., Hassan, M.J.: Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. - *Biol. Plant.* **52**: 165-169, 2008.

Sheen, J.: Ca^{2+} -dependent protein kinases and stress signal transduction in plants. - *Science* **274**: 1900-1902, 1996.

Shen, Y.G., He, S.J., Zhang, W.K., Zhang, J.S., Liu, Q., Chen, S.Y.: An *EREBP/AP2*-type protein in *Triticum aestivum* was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. - *Theor. appl. Genet.* **106**: 923-930, 2003.

Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.C., Yu, X.C., Zhu, S.Y., Fan, R.C., Xu, Y.H., Zhang, D.P.: The *Mg-chelatase H* subunit is an abscisic acid receptor. - *Nature* **443**: 823-826, 2006.

Shepherd, T., Griffiths, D.W.: The effects of stress on plant cuticular waxes. - *New Phytol.* **171**: 469-499, 2006.

Shi, H.Z., Xiong, L.M., Stevenson, B., Lu, T.G., Zhu, J.K.: The *Arabidopsis* salt overly sensitive 4 mutants uncover a critical role for vitamin B₆ in plant salt tolerance. - *Plant Cell* **14**: 575-588, 2002.

Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. - *J. exp. Bot.* **58**: 221-227, 2007.

Shou, H., Bordallo, P., Wang, K.: Expression of the *Nicotiana* protein kinase (*NPK1*) enhanced drought tolerance in transgenic maize. - *J. exp. Bot.* **55**: 1013-1019, 2004.

Silva, C., Martinez, V., Carvajal, M.: Osmotic versus toxic effects of NaCl on pepper plants. - *Biol. Plant.* **52**: 72-79, 2008.

Sivamani, E., Bahieldinb, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., David Ho, T.H., Qu, R.D.: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley *HVA1* gene. - *Plant Sci.* **155**: 1-9, 2000.

Sokhansanj, A., Sadat, Noori, S.A., Niknam, V.: Comparison of bacterial and plant genes participating in proline biosynthesis with respect to enhancing salinity tolerance of transgenic tobacco plants. - *Rus. J. Plant Physiol.* **53**: 110-115, 2006.

Su, J., Wu, R.: Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. - *Plant Sci.* **166**: 941-948, 2004.

Tang, W., Peng, X.X., Newton, R.J.: Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. - *Plant Physiol. Biochem.* **43**: 139-146, 2005.

Tarantino, D., Vannini, C., Bracale, M., Campa, M., Soave, C., Murgia, I.: Antisense reduction of thylakoidal ascorbate peroxidase in *Arabidopsis* enhances Paraquat-induced photooxidative stress and Nitric Oxide-induced cell death. - *Planta* **221**: 757-765, 2005.

Taylor, I.B., Sonneveld, T., Bugg, T.D.H., Thompson, A.J.: Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. - *Plant Growth Regul.* **24**: 253-273, 2005.

Thompson, A.J., Andrews, J., Mulholland, B.J., McKee, J.M.T., Hilton, H.W., Horridge, J.S., Farquhar, G.D., Smeeton, R.C., Smillie, I.R.A., Black, C.R., Taylor, I.B.: Overproduction of abscisic acid in tomato increases transpiration efficiency and

root hydraulic conductivity and influences leaf expansion. - *Plant Physiol.* **143**: 1905-1917, 2007.

Thompson, A.J., Jackson, A.C., Parker, R.A., Morpeth, D.R., Burbidge, A., Taylor, I.B.: Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. - *Plant mol. Biol.* **42**: 833-845, 2000.

Torii, K.U., Mitsukawa, N., Oosmull, T., Matsuura, Y., Yokoyama, R., Whittier, R.F., Komeda, Y.: The *Arabidopsis ERECTA* gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. - *Plant Cell* **8**: 735-746, 1996.

Tran, L.S.P., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S.D., Maruyama, K., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K.: Co-expression of the stress-inducible zinc finger homeodomain *ZFHD1* and *NAC* transcription factors enhances expression of the *ERD1* gene in *Arabidopsis*. - *Plant J.* **49**: 46-63, 2007.

Tseng, M.J., Liu, C.W., Yiu, J.C.: Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. - *Plant Physiol. Biochem.* **45**: 822-833, 2007.

Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. - *Curr. Opin. Biotechnol.* **17**: 113-122, 2006.

Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., Shinozaki, K.: A transmembrane hybrid-type histidine kinase in *Arabidopsis* functions as an osmosensor. - *Plant Cell* **11**: 1743-1754, 1999.

Vendruscolo, E.C.G., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B.C., Marur, C.J., Vieira, L.G.E.: Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. - *J. Plant Physiol.* **164**: 1367-1376, 2007.

Vij, S., Tyagi, A.K.: Emerging trends in the functional genomics of the abiotic stress response in crop plants. - *Plant Biotechnol. J.* **5**: 361-380, 2007.

Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. - *Curr. Opin. Biotechnol.* **16**: 123-132, 2005.

Wang, F., Jiang, Y., Feng, X.C., Xu, L.N., Li, M.T., Liang, H.T., Li, Y.M., Zhu, N., Liu, Y.L., Ma, T.H.: Molecular cloning of a *Glycyrrhiza uralensis* F. aquaporin *GuPIP1* up-regulated in response to drought, salt and ABA stress. - *Chem. Res. Chin. Univ.* **23**: 52-57, 2007a.

Wang, W.X., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. - *Planta* **218**: 1-14, 2003.

Wang, Y.H., Ying, Y., Chen, J., Wang, X.C.: Transgenic *Arabidopsis* overexpressing *Mn-SOD* enhanced salt-tolerance. - *Plant Sci.* **167**: 671-677, 2004.

Wang, Y.J., Yu, J.N., Chen, T., Zhang, Z.G., Hao, Y.J., Zhang, J.S., Chen, S.Y.: Functional analysis of a putative Ca^{2+} channel gene *TaTPC1* from wheat. - *J. exp. Bot.* **56**: 3051-3060, 2005.

Wang, Y.L., Wang, X.D., Zhao, B., Wang, Y.C.: Reduction of hyperhydricity in the culture of *Lepidium meyenii* shoots by the addition of rare earth elements. - *Plant Growth Regul.* **52**: 151-159, 2007b.

Wang, Y.N., Liu, C., Li, K.X., Sun, F.F., Hu, H.Z., Li, X., Zhao, Y.K., Han, C.Y., Zhang, W.S., Duan, Y.F., Liu, M.Y.: *Arabidopsis EIN2* modulates stress response through abscisic acid response pathway. - *Plant Mol. Biol.* **64**: 633-644, 2007c.

Watari, A., Yutsudo, M.: Multi-functional gene *ASY/Nogo/RTN-X/RTN4*: Apoptosis, tumor suppression, and inhibition of neuronal regeneration. - *Apoptosis* **8**: 5-9, 2003.

Wu, C.A., Yang, G.D., Meng, Q.W., Zheng, C.C.: The cotton *GhNHX1* gene encoding a novel putative tonoplast Na^+/H^+ antiporter plays an important role in salt stress. - *Plant Cell Physiol.* **45**: 600-607, 2004.

Wu, W., Su, Q., Xia, X.Y., Wang, Y., Luan, Y.S., An, L.J.: The *Suaeda liaotungensis* kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. - *Euphytica* **159**: 17-25, 2008.

Xiong, L., Zhu, J.K.: Molecular and genetic aspects of plant responses to osmotic stress. - *Plant Cell Environ.* **25**: 131-139, 2002.

Xiong, L.M., Zhu, J.K.: Abiotic stress signal transduction in plants: molecular and genetic perspectives. - *Physiol. Plant.* **112**: 152-157, 2001.

Xu, D.P., Duan, X., Wang, B.: Expression of a late embryogenesis abundant protein gene, *HAV1*, from barley confers tolerance to water deficit and salt stress in transgenic rice. - *Plant Physiol.* **110**: 249-257, 1996.

Xu, L., Xu, Y., Dong, A., Sun, Y., Pi, L., Xu, Y., Huang, H.: Novel *asl1* and *asl2* defects in leaf adaxial-abaxial polarity reveal the requirement for *ASYMMETRIC LEAVES1* and *2* and *ERECTA* functions in specifying leaf adaxial identity. - *Development* **130**: 4097-4107, 2003.

Xue, Z.Y., Zhi, D.Y., Xue, G.P., Zhang, H., Zhao, Y.X., Xia, G.M.: Enhanced salt tolerance of transgenic wheat (*Triticum aestivum L.*) expressing a vacuolar Na^+/H^+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na^+ . - *Plant Sci.* **167**: 849-859, 2004.

Yadav, R., Courtois, B., Huang, N., McLaren, G.: Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. - *Theor. appl. Genet.* **94**: 619-632, 1997.

Yang, C.Y., Chen, Y.C., Jauh, G.Y., Wang, C.S.: A lily *ASR* protein involves abscisic acid signaling and confers drought and salt resistance in *Arabidopsis*. - *Plant Physiol.* **139**: 836-846, 2005a.

Yang, X.H., Liang, Z., Lu, C.M.: Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. - *Plant Physiol.* **138**: 2299-2309, 2005b.

Yang, X.H., Liang, Z., Wen, X.G., Lu, C.M.: Genetic engineering of the biosynthesis of glycine betaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. - *Plant mol. Biol.* **66**: 73-86, 2008.

Ying, N., Tachiiri, Y., Tsuchiya, H., Hua, Y.: Responses of tiller growth and related genes expression in rice to red and blue radiation. - *Biol. Plant.* **53**: 188-190, 2009.

Yu, Q.J., Hu, Y.L., Li, J.F., Wu, Q., Lin, Z.P.: Sense and antisense expression of plasma membrane aquaporin *BnPIP1* from *Brassica napus* in tobacco and its effects on plant drought resistance. - *Plant Sci.* **169**: 647-656, 2005.

Zhang, J.Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W., Wang, Z.Y.: Overexpression of *WXP1*, a putative *Medicago truncatula* AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (*Medicago sativa*). - *Plant J.* **42**: 689-707, 2005a.

Zhang, J.Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W., Wang, Z.Y.: Heterologous expression of two *Medicago truncatula* putative *ERF* transcription factor genes, *WXP1* and *WXP2*, in *Arabidopsis* led to increased leaf wax accumulation and improved drought tolerance, but

differential response in freezing tolerance. - *Plant mol. Biol.* **64**: 265-278, 2007a.

Zhang, W.X., Ruan, J.H., Ho, T.H.D., You, Y.S., Yu, T.T., Quatrano, R.S.: *Cis*-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in *Arabidopsis thaliana*. - *Bioinformatics*. **21**: 3074-3081, 2005b.

Zhang, Z.B., Shao, H.B., Xu, P., Chu, L.Y., Lu, Z.H., Tian, J.Y.: On evolution and perspectives of bio-water-saving. - *Colloid Surface Biointerfaces* **55**: 1-7, 2007b.

Zhang, Z.B., Shan, L.: [Studies on relationship between drought resistance physiological traits and leaf curl degree and wax of wheat.] - *Acta agron. sin.* **24**: 608-612, 1998. [In Chin.]

Zhang, Z.B., Xu, P., Zhang, J.H., Wang, J.: [Advance on study of molecular marker and gene cloning and transgenes in drought resistance and water saving in crops.] - *Acta bot. boreali-occid. sin.* **22**: 1537-1544, 2002. [In Chin.]

Zhao, F.Y., Wang, Z.L., Zhang, Q., Zhao, Y.X., Zhang, H.: Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na^+/H^+ antiporter gene from *Suaeda salsa*. - *J. Plant Res.* **119**: 95-104, 2006.

Zhu, B., Su, J., Chang, M., Verma, D.P.S., Fan, Y.L., Wu, R.: Overexpression of a D1-pyrroline-5- carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. - *Plant Sci.* **139**: 41-48, 1998.

Zhuang, Y.L., Ren, G.J., Zhu, Y., Hou, G.H., Qu, X., Li, Z.X., Yue, G.D., Zhang, J.R.: Transcriptional profiles of immature ears and tassels in maize at early stage of water stress. - *Biol. Plant.* **52**: 754-758, 2008.