
BIOLOGIA PLANTARUM 54 (2): 213-223, 2010 

213 

REVIEW 
 
 
Multifunctional genes: the cross-talk among the regulation networks  
of abiotic stress responses 
 
 
X.J. HU1,2,3*, Z.B. ZHANG1*, P. XU1, Z.Y. FU1,3,4, S.B. HU2 and W.Y. SONG1,3,5  
 
Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS,  
Shijiazhuang, 050021, P.R. China1 
Linyi Normal University, Linyi, 276005, P.R. China2 
Graduate University of the Chinese Academy of Sciences, Beijing, 100049, P.R. China3 
Xinjiang Institute of Physics and Chemistry Technology, CAS, Wulumuqi, 830011, P.R. China4 
Shangqiu Normal University, Shangqiu, 476000, P.R. China5  
 
 
Abstract 
 
Unfavourable environment brings many kinds of stresses to plants. To survive such stresses, efficient resistance is 
required for the plants. Multifunctional genes enable the cross-talk among the various abiotic stress resistance systems. 
This paper reviews the action mechanisms of multifunctional genes. These genes can be classified into three groups: 
genes encoding diverse proteins through mRNA splicing (e.g. AOX in rice); genes like BADH, P5CS and HAV that control 
drought, salinity, osmotic and heat stress resistance; and a gene family, for example AQP, controlling transport of many 
compounds including water and nutrients. These genes participate in signal sensing and transduction, transcriptional 
regulation and functional gene activation during stress resistance induction. Furthermore, it should be noted that, under 
abiotic stresses, the regulation cascades are mutually interdependent and there also exists a close correlation between 
those cascades and normal plant growth and development.  
Additional key words: abscisic acid, aquaporins, cuticular wax, detoxification, osmotic adjustment, reactive oxygen species, signal 
transduction, transcriptional regulation. 
 
 
Introduction 
 
The increasing deterioration of the world environment has 
great influence on the plant abiotic stress resistance and 
has becoming one of the most important causes for crop 
yield reduction (Bhatnagar-Mathur et al. 2008, 
Mazzucotelli et al. 2008). Initially, researchers mainly 
focused attention on the morphological and physiological 
traits in plants under stresses (Zhang and Shan 1998, 
Zhang et al. 2007b). For example, plant leaves curl and 
shrink and wax load increases under water or salt stress 
(Zhang  and Shan 1998). The development of molecular 
biology, genetic mapping and transgenic techniques opens 

a new route to understanding the mechanism underlying 
the above mentioned morphological changes. For example, 
it was found that osmoregulatory and antioxidant genes 
play important roles in biotic or abiotic stress resistance 
(Zhang et al. 2002).  
 Different abiotic stresses such as drought, cold, salinity 
and heavy metal pollution have similar effects on plants 
(Mittler 2006, Shen et al. 2006, Quresh et al. 2007, Shao  
et al. 2007, Zhuang et al. 2008). Generally, they cause 
disruption of osmotic and ionic homeostasis, and damage 
of proteins and cell membrane structure (Xiong and Zhu  
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2002, Vinocur and Altman 2005, Rácz et al. 2008). Once 
these disorders appear, the plants produce stress signals, 
which can combine to relevant sensors and transduce 
stress information by protein kinase networks till the 
activation of functional genes (Xiong and Zhu 2001, 
Chinnusamy et al. 2004, Goodwin and Sutter 2009, Ying 
et al. 2009). Finally, cellular homeostasis, proteins and cell 
membranes will be rebuilt. In these processes, partici- 
pation of multifunctional genes enables the cross-talk 
among the gene regulation networks. As the regulation 
cascades of various abiotic stresses are mutually 
interdependent, the plants often show different stress 
resistance (Cheong et al. 2002). Up to now, some genes 
have been found to be multifunctional genes. For example, 
BADH encodes betain aldehyde dehydrogenase, and it is 
involved in the biosynthesis of glycine betaine (GB). GB 
is an amphoteric quaternary amine, acting as a compatible 

solute in plants. Transgenic plants with BADH not only 
manifested osmoregulation ability but also increased salt 
and heat tolerance (Moghaieb et al. 2000, Kumar et al. 
2004, Yang et al. 2005b, 2008, Wu et al. 2008).  
For plants growing in increasingly deteriorated 
environment, studies of the genomics, proteomics, signal 
transport network, metabolic network, and multifunctional 
genes are important for the understanding of the stress 
resistance (Xiong and Zhu 2001, Chinnusamy et al. 2004). 
Although multifunctional genes have been widely studied, 
as far as we know, the recent research progress has not 
been reviewed. Therefore, in this review, we propose the 
definition and classification of multifunctional genes, and 
summarize the progress from three aspects including 
signal sensing and transduction, transcription regulation 
and functional gene activation. 

 
 
Definition and classification of multifunctional genes 
 
Multifunctional gene is a gene or a gene family that can 
regulate several kinds of traits and manifest several kinds 
of functions. According to the published papers, it can be 
classified into three groups as follows:  
 The first class are genes that encode diverse proteins 
through mRNA splicing. For example, ASY, a multi- 
functional gene that may suppress tumor development, 
produces three protein variants from the cognate mRNAs 
by alternative splicing (Watari and Yutsudo 2003). 
Alternative oxidase (AOX) gene in soybean manifests 
different isoforms during cotyledon development, and 
each of them correlates with the increase of capacity of the 
alternative pathway (McCabe et al. 1998, Ferreira et al. 
2008). Liu et al. (2005) isolated a cDNA clone encoding 
two novel heat-shock factors OsHSF6 and OsHSF12 in 
rice, and found that OsHSF6 can regulate the early 
expression of stress genes in response to heat shock, 
whereas OsHSF12 can act as a synergistic factor to 
regulate the expression of the down-stream genes. The 
first group of multifunctional genes is mainly found in 
animals and microorganisms. The other two groups are 
often observed in plants under abiotic stress conditions. 

 The second class includes genes like BADH, P5CS and 
HAV that control drought, salt, osmotic and heat stress 
resistance. For example, Apetala is a multifunctional gene 
involved in inflorescence, flower, and ovule development 
regulation in Arabidopsis (Byzova et al. 1999). DREB, a 
gene encoding transcription factor in plant, can improve 
the drought, salt and cold tolerance of rice as confirmed by 
transgenic researches (Ito et al. 2006). Similar results were 
found in Arabidopsis (Kasuga et al. 1999, Sakuma et al. 
2006), tobacco (Kasuga et al. 2004, Cong et al. 2008), 
wheat (Pellegrineschi et al. 2004) and other plants.  
 The third class are gene families. For example, the 
genes encoding membrane aquaporins (AQP), controlling 
transport of many compounds including water and 
nutrients, play an important role in plant abiotic stress 
resistance, including drought, cold and high salt stress 
resistance (Jang et al. 2004, 2007, Yu et al. 2005). In 
addition, AQP can modulate water use efficiency (WUE) 
and nutrition use efficiency (NUE), and thus play an 
important role in increasing crop yield under unfavourable 
conditions (Porcel et al. 2006, Jang et al. 2007).  

 
 
Multifunctional genes involved in signal sensing and transduction  
 
Hormones, Ca2+, carbamide, NO, H2O2, phospholipase 
(PL), polyphosphatidylinositol phosphate (PIP2), inositol 
triphosphate (IP3), diacylglycerol (DAG), etc. are signals 
during plant development and stress resistance process 
(Bhattacharjee 2008, Caeiro et al. 2008, Chang et al. 2008, 
Courtois et al. 2008, Lopez-Carrion et al. 2008, Quan et al. 
2008). Among them ABA is one of the best researched 
messengers. Transgenic researches on genes regulating 
ABA sensitivity, such as ABA27, HAB1 group, LLA23, and 
AtMYB44, indicate that ABA is important in the cold, 
drought and salt resistance and stomata opening regulation 
(Kume et al. 2005, Larkindale et al. 2005, Lin et al. 2007, 

Yang et al. 2005a, Saez et al. 2006, Jung et al. 2008). 
9-cis-epoxycarotenoid dioxygenase (NCED) is a pivotal 
enzyme in the biosynthesis of ABA. Over-expression of 
NCED leads to the accumulation of ABA under stress 
conditions (Qin et al. 1999). For example, in detached 
leaves, NCED mRNA responds rapidly to small reduction 
in water content (Thompson et al. 2000). Transpiration 
rate in transgenic Arabidopsis with AtNECD3 was reduced 
and drought resistance improved (Lefebvre et al. 2006). 
Over-expression of VuNCED in transgenic creeping bent 
grass induced accumulation of ABA under drought and 
NaCl stresses (Aswath et al. 2005). Similar results were 
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reported on EIN2 (a gene related to ABA signalling 
pathway) (Wang et al. 2007c), and Sp12 and Sp5 in tomato 
(Thompson et al. 2007).  
 Sensors can perceive stress signals through the 
combination reactions of signals (Wang et al. 2007c, Luan 
et al. 2002). Genes encoding sensors have been 
extensively studied (Taylor et al. 2005, Hu et al. 2006). 
For example, over-expression of a calcium sensor 
calcineurin B-like protein 1 (CBL1) in Arabidopsis, 
induces the expression of early stress-responsive 
transcription factors and stress adaptation genes in 
non-stressed plants (Albrecht et al. 2003, Cheong et al. 
2003). Calcium dependent protein kinases (CDPKs) are 
unique Ca2+ sensors in plants. When CDPK2 under 
stress-inducible promoter was over-expressed in barley, 
the responses of transgenic plants to cold, salt and ABA 
were different from those of wild plants (Sheen 1996). 
Besides, transgenic rice with over-expression of 
OsCDPK7 exhibited enhanced tolerance to cold, salt and 
drought (Saijo et al. 2000). Transgenic plants with gene 
encoding other kinds of sensors can also exhibit increased 
abiotic stress tolerance. These sensors include salt sensor 
(Shi et al. 2002, Qiu et al. 2004) and osmosensor (Urao  
et al. 1999, Langridge et al. 2006).  
 Protein kinases participate in the transduction of 
signals in the whole regulation network (Koornneef and 
Pieterse 2008, Mohanpuria et al. 2008, Pandey et al. 2008). 
Mitogen activated protein kinase (MAPK) is generally 

considered as an important multifunctional gene involved 
in the cascade consisting of MAPK, MAPKK, MAPKKK 
The corresponding genes are activated in sequence after 
plant cells received the signals (Chinnusamy et al. 2004, 
Ren et al. 2008). After MAPK is activated, it further 
activates transcription factors in nucleus, or phospholipid- 
cleaving enzymes in cytoplasm. At least, some kinds of 
physiological and biochemical reactions are activated to 
acclimatize the plant to environmental stresses (Cheong  
et al. 2002, Chinnusamy et al. 2004, Xu et al. 2003, Wu 
et al. 2004, Hu et al. 2006, ). It should be noted that one 
environmental stress can activate various kinases, and in 
turn, a single kinase gene can affect various kinds of stress 
resistance. For example, when maize was transformed 
with the tobacco MAPKKK/NPK1, an oxidative signal 
cascade was activated, leading to the improvement of cold, 
heat, and salt tolerance (Shou et al. 2004).  
 Moreover, these genes can regulate not only stress 
resistance but also normal development. For example, 
kinase with extracellular leucine-rich repeats is known for 
its effects on inflorescence development, leaf pleiotropy. 
ERECTA can affect the resistance to bacterial wilt, or 
regulate transpiration under water stress through manipu- 
lating stomata density, epidermal cell expansion, meso- 
phyll cell proliferation and cell-to-cell contact in 
Arabidopsis (Torii et al. 1996, Lease et al. 2001, Douglas 
et al. 2002, Godiard et al. 2003, Xu et al. 2003, Masle et al. 
2005).  

 
 
Multifunctional genes involved in regulation of transcription 
 
Regulation of transcription often works through binding of 
transcription factors (TFs) and cis-elements in the 
upstream of functional genes. There are a lot of TFs and 
most of them fall into gene families like AP2/EREBPs 
(APETALA2 and ethylene-responsive element binding 
proteins), DREB/CBF (dehydration-responsive element/ 
C-repeat-binding), bZIP (basic-domain leucine zipper), 
NAC, MYB/MYC, Cys2/His2 zinc-finger and WRKY 
(Umezawa et al. 2006, Tran et al. 2007). TFs are the 
members of multifunctional gene family (Shen et al. 2003, 
Shao et al. 2007). Under both cold and drought stresses, 
DREB2, bZIP, CBFs, Cys2/His2 zinc-finger, MYB/MYC 
and other TFs are induced (Chinnusamy et al. 2004, 
Shinozaki and Yamaguchi-Shinozaki 2007). 
 Over-expression of TFs can induce stress-responsive 
gene expression and increase the abiotic stress tolerance 

(Xiong and Zhu 2001). For example, over-expression of 
HRD gene (an AP2/ERF-like TF from Arabidopsis) in rice 
increased leaf biomass, photosynthesis and WUE (Karaba 
et al. 2007). Similarly, over-expression of OsMYB3R-2, a 
rice R1R2R3 MYB gene in transgenic Arabidopsis, can 
increase its tolerance to freezing, drought, and salt stresses 
(Dai et al. 2007). WRKY proteins are other important 
transcription factors responding to drought, cold, heat, 
hurt and ABA treatments (Ross et al. 2007). In our group, 
eight TaWRKY genes (1, 2, 13, 14, 16, 17, 19 and 27) were 
cloned from wheat, and the level of transcription increased 
under dehydration and other abiotic stresses but at 
different levels in different cultivars. Recently, TaWRKY 
genes have been cloned and their functions were studied 
(Niu et al. 2006).  

 
 
Activation of multifunctional genes 
 
Stress resistance can be achieved through functional gene 
activation (Xiong and Zhu 2001, Cheong et al. 2002, 
Chinnusamy et al. 2004). The induction of genes related to 
osmotic adjustment, ROS scavenging, chaperone 
production as well as water and ion transport channels 
participates in the rebuilding of cellular homeostasis, 
reestablishing proteins structure and membranes during 

stresses (Xiong and Zhu 2002, Bhatnagar-Mathur et al. 
2008). In addition, the genes involved in changes in 
structure of epidermis can be important for abiotic stress 
tolerance (Zhang et al. 2005b). Only when all these genes 
are translated normally, the plants survive from 
unfavourable environmental conditions (Bhatnagar- 
Mathur et al. 2008). 
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Multifunctional genes involved in osmotic regulation: 
Proline, betaine, free amino acids, sugars, sugar alcohols, 
alkaloids, etc., are osmotically active compounds (Sharma 
and Dietz 2006, Sokhansanj et al. 2006). Their 
physiological functions include keeping cell pressure 
potential, stabilizing proteins and cell structures and 
scavenging of reactive oxygen species (Wang et al. 2003). 
The increase of their accumulation is achieved by 
over-expression of enzymes involved in their biosynthesis 
or suppression of enzymes causing their degradation 
(Chen and Murata 2002). Strategies for the genetic 
manipulation require precise understanding of bio- 
synthetic pathways including up and down regulations of 
key regulatory enzymes, feedback inhibition, etc. 
(Vendruscolo et al. 2007).  
 Over-expression of pyrroline-5-carboxylate synthetase 
(P5CS) gene results in the overproduction of this enzyme 
as well as proline accumulation (Zhu et al. 1998, Sharma 
and Dietz 2006). Transgenic rice plants over-expressing 
P5CS showed increased amount of proline and, at least in 
part, enhanced biomass production under water stress or 
salinity (Zhu et al. 1998, Hong et al. 2000, Su and Wu 
2004, Sokhansanj et al. 2006). Similarly, transgenic 
soybean with P5CS showed improved drought and heat 
resistance (De Ronde et al. 2001, 2004), transgenic 
tobacco showed improved salt resistance (Parvanova et al. 
2004a,b) and transgenic wheat showed improved drought 
resistance (Vendruscolo et al. 2007). 
 Mt1D encodes mannitol-1-phosphate dehydrogenase, 
which catalyzes the reversible conversion of fructose-6- 
phosphate to mannitol-1-phosphate and mannitol-1- 
phosphate is converted to mannitol via nonspecific phos- 
phatases. Mannitol exists in numerous plant species, but 
not in wheat (Abebe et al. 2003). Transgenic wheat with 
Mt1D accumulates mannitol from 0.6 to 2.0 mol g-1(f.m.) 
in the mature leaves and showed drought and salt 
resistance but some abnormalities (Abebe et al. 2003). 
Furthermore, transgenic Petunia expressing Mt1D showed 
improved cold tolerance (Chiang et al. 2005) and 
transgenic loblolly pine (Tang et al. 2005) and Populus 
tomentosa (Hu et al. 2005) improved salt tolerance. 
 Glycine betaine (GB) plays an important role in stabi- 
lization of oxygen-evolving complex of photosystem 2, 
Rubisco activity and membrane integrity (Chen and 
Murata 2002, Sakamoto and Murata 2002, Park et al. 
2007). CodA encoding choline oxidase is an important 
multifunctional gene regulating the biosynthesis of GB. 
Transgenic rice over-expressing  CodA showed better 
tolerance to salt and cold (Sakamoto and Murata 1998, 
Mohanty et al. 2002), transgenic tobacco showed reduced 
oxidative damage under freezing stress (Parvanova et al. 
2004a,b) and transgenic tomato showed improved cold 
and oxidative stress tolerance (Park et al. 2004, 2007).  
 From the above-mentioned survey, it is obvious that 
the stress resistance can be improved in transgenic plants 
with increased accumulation of osmotically active 
compounds. These compounds can be also exogenously 
applied and they can affect gene expression. For example, 
the exogenous trehalose alters the expression of 

transcription factors and genes related to cell wall 
modification, nitrogen metabolism, and fatty acid 
biosynthesis (Bae et al. 2005). 
 
Multifunctional genes involved in ROS scavenging: 
When plants are under stress conditions, reactive oxygen 
species are produced, which disturb oxidation-reduction 
balance and might damage proteins, lipids and nucleic 
acids (Xiong and Zhu 2001, Mittler et al. 2006, Shamsi  
et al. 2008, Silva et al. 2008). Plants protect themselves by 
increased activities of antioxidative enzymes, such as 
ascorbate peroxidase (APX), superoxide dismutase (SOD), 
peroxidase (POD), catalase (CAT), glutathione reductase 
(GR) and production of low molecular mass antioxidants 
(Río et al. 2006, Wang et al. 2007b, Rana et al. 2008, 
Serrot et al. 2008).  
 When compared with wild type plants, the transgenic 
ones over-expressing genes encoding ROS-scavenging 
enzymes had higher cold, drought, and salinity resistance 
(Chen et al. 2005, Tarantino et al. 2005, Shen et al. 2006, 
Eltayeb et al. 2007, Lee et al. 2007). For example, 
transgenic alfalfa plants over-expressing SOD showed 
tolerance to cold and drought (Samis et al. 2002, Rubio  
et al. 2002), similarly, transgenic rice (Badawi et al. 2004, 
Gupta et al. 2005), Arabidopsis (Wang et al. 2004), and 
cabbage (Tseng et al. 2007) to drought and salinity. 
Transgenic tobacco plants over-expressing APX, GST 
(coding glutathione S-transferase) and GPX (coding 
glutathione peroxidase) were studied under oxidative 
stress induced by herbicides or ozone, and under chilling 
and salinity (Roxas et al. 2000, Kwon et al. 2002, Eltayeb 
et al. 2007, Lee et al. 2007). It is interesting that a 
ROS-scavenging genes suppressed in transgenic plant can 
be activated by abiotic stress (Tarantino et al. 2005). For 
instance, expression of Cu/Zn-SOD decreased in the 
transgenic tobacco under normal conditions and it 
increased under salt and PEG stresses (Chen et al. 2005).  
 
Multifunctional genes involved in the protection of 
proteins: Multifunctional genes involved in stabilizing 
the structures of proteins and cell membranes play 
important roles for abiotic and biotic stress resistance  
(Cho and Hong 2006). Late embryogenesis abundant 
(LEA) proteins and molecular chaperones often have 
conservative sequence and polar amino acids, so they are 
stable (Fu et al. 2007, Jyothsnakumari et al. 2009). LEA 
proteins, molecular chaperones such as HAV1, heat shock 
proteins (HSP) and cold regulated proteins (COR) are also 
required during normal development of plants (Manfre  
et al. 2006). Under abiotic stresses, LEA and molecular 
chaperones are produced in a variety of plant organs to 
stabilize protein structures, cell membranes and ion 
homeostasis (Vij and Tyagi 2007).  
 Transgenic plants over-expressing genes encoding 
LEA proteins and molecular chaperone can increase the 
resistance to drought, salt, cold and other stresses (Cho and 
Hong 2006, Jyothsnakumari et al. 2009). For example, 
HAV1 gene from barley over-expressed in transgenic rice, 
led to drought and salt resistance (Xu et al. 1996) due to 
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the cell membrane protection and osmotic adjustment 
(Babu et al. 2004, Fu et al. 2007). Transgenic wheat and 
oat over-exressing HAV1 also showed improved drought 
and salt stress resistance (Sivamani et al. 2000, Maqbool  
et al. 2002, Bahieldin et al. 2005, Oraby et al. 2005).  
 Transgenic tobacco with sense NtHSP70-1 exhibited 
slower decrease in water content under progressive 
drought than the wild type or the transgenic anti-sense 
plants. Moreover, the expression of CaERD15 (early 
responsive to dehydration) is considerably reduced in 
tobacco plants that over-expressed NtHSP70-1 (Cho and 
Hong 2006, Vij and Tyagi 2007).  
 
Multifunctional genes coding ion and water 
transporters: Aquaporins (AQP) are important membrane 
transporters of water and other small molecules and ions 
(Hachez et al. 2006). Ion channels transport ions more 
specifically than AQP. Both respond to different abiotic 
stresses (Galmés et al. 2007, Wang et al. 2007a). For 
example, the transcript level of plasma membrane intrinsic 
protein (PIP) gene decreased in olive plants submitted to 
drought stress (Secchi et al. 2007). On the other hand, 
expression of TaTPC1 gene (coding Ca2+-channel protein) 
increased under high salinity, polyethylene glycol, low 
temperature (4 °C), and ABA treatment (Wang et al. 2005). 
Over-expression of a Panax ginseng gene coding AQP 
alters the salt tolerance, drought tolerance and cold 
acclimation ability of transgenic Arabidopsis  (Peng et al. 
2007). Increased activity of vacuolar Na+/H+ antiporter in 
transgenic rice (Zhao et al. 2006), wheat (Xue et al. 2004) 
and cotton (Wu et al. 2004) increased their salt tolerance.  
 
Multifunctional genes related to cuticular wax 
formation: Plant cuticle is the first protective barrier 
against many biotic and abiotic stresses (Leide et al. 2007). 
It is generally accepted that abiotic stresses induce the 
expression of genes related to the biosynthesis and 
accumulation of cuticular wax, which in turn affect the 

stress resistance (Shepherd and Griffiths 2006). For 
example, nonspecific lipid-transfer protein (nsLTP) can 
transport several classes of phospholipids and glycolipids. 
The expression of nsLTP was induced by cold (in barley), 
drought (in barley and sunflower), and salinity (in tomato) 
(Salcedo et al. 2007). Another case in point is that the 
transcript level of Cer6 encoding β-ketoacyl-coenzyme A, 
an important synthase for cuticular wax production, which 
is increased in Arabidopsis under drought, salinity and 
ABA treatment (Hooker et al. 2002). In transgenic alfalfa 
or Arabidopsis with Wxp1, a putative Medicago truncatula 
AP2 domain-containing transcription factor gene, 
cuticular wax was accumulated and thus drought tolerance 
was increased (Zhang et al. 2005a, 2007a). Transgenic rice 
plants over-expressing Shn2 and Cer6 also showed 
increase in WUE and drought resistance (Karaba 2007).  
 In addition, the Arabidopsis mutants such as Cer1 
(Aarts et al. 1995) and Cer6 (Hooker et al. 2002) were 
male-sterile. Aharoni (2004) identified an Arabidopsis 
mutant shn that displays a brilliant, shiny green leaf 
surface with increased cuticular wax compared with 
wild-type plants. In contrast, over-expression of the Shn 
genes increased cuticle permeability, alters leaf and petal 
epidermal cell structures, trichome number, branching, 
and the stomatal index. Recently, we focused on the 
functions of wheat cuticular wax and the relationships 
between the wax and stresses. We found that the wax 
content of wheat flag leaf during grain filing has positive 
correlation to photosynthetic rate, leaf temperature, leaf 
WUE and the yield (Zhang and Shan 1998, Huang et al. 
2003). Currently, three complete sequences and some 
partial sequences of genes related to cuticular wax have 
been cloned and the expression patterns were analyzed 
under abiotic stresses. It is found that the genes related to 
wax biosynthesis can respond to different stresses. 
However, the reason of expression responses and the 
relationship between wax components and WUE under 
different stresses require further studies. 

 
 
Summary and outlook 
 
When a plant is under unfavourable conditions, ROS can 
be produced, the ion homeostasis disturbed, and the 
structures and functions of proteins and cell membranes 
damaged. Meanwhile, compatible solutes, ROS-scavenging 
enzymes, LEA proteins, molecular chaperones, and stress 
regulating factors are induced to rebuild the cell. It is clear 
that the signalling pathways of abiotic stresses have 
cross-talk. There is cross-talk among the signalling 
pathways of individual abiotic stresses and connections 
with normal metabolism and development (Kosová et al. 
2008). 
 Plant abiotic stress resistance is a multidisciplinary 
area ranging from physiology to molecular biology. Take 
the drought resistance as an example. It depends on the 
water absorption, which depends on the root morpho- 
logical characteristics (length, density, distribution, hair 
development) and physiological adaptations (osmotic 

adjustments, hydraulic conductance) (Yadav et al. 1997, 
Dubrovsky et al. 1998, Ma et al. 2001). On the other hand, 
water transport can be affected by AQP activity (Jang et al. 
2004, 2007, Yu et al. 2005). No less important is 
regulation of transpiration by stomata and the relationship 
between photosynthesis and transpiration (WUE) 
(Buckley et al. 2005, Zhang et al. 2007b).  
 Previously, the research focused on plant abiotic stress 
resistance has been mainly concentrated on mono- 
functional genes or the specific function of multifunctional 
genes. To endow a plant with multiple stress resistance, 
co-transformation of several genes is possible, however, it 
is complicated and troublesome to design plasmid and 
transform plant (Komari et al. 1996). Moreover, most 
transgenic plants are model species such as Arabidopsis 
thaliana and tobacco. Nowadays, the production of 
transgenic plants in some crops such as rice, wheat, potato, 
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and sugar beet, have gained various degrees of success. 
Transformation of multifunctional genes to crops might be 
useful. Some regulating factors, especially TFs, are 

transformed because the corresponding transgenic plants 
possess multiple ability of abiotic stress resistance.  
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