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Abstract

Unfavourable environment brings many kinds of stresses to plants. To survive such stresses, efficient resistance is
required for the plants. Multifunctional genes enable the cross-talk among the various abiotic stress resistance systems.
This paper reviews the action mechanisms of multifunctional genes. These genes can be classified into three groups:
genes encoding diverse proteins through mRNA splicing (e.g. AOX in rice); genes like BADH, P5CS and HAV that control
drought, salinity, osmotic and heat stress resistance; and a gene family, for example AQP, controlling transport of many
compounds including water and nutrients. These genes participate in signal sensing and transduction, transcriptional
regulation and functional gene activation during stress resistance induction. Furthermore, it should be noted that, under
abiotic stresses, the regulation cascades are mutually interdependent and there also exists a close correlation between
those cascades and normal plant growth and development.

Additional key words: abscisic acid, aquaporins, cuticular wax, detoxification, osmotic adjustment, reactive oxygen species, signal
transduction, transcriptional regulation.

Introduction

The increasing deterioration of the world environment has
great influence on the plant abiotic stress resistance and
has becoming one of the most important causes for crop
yield reduction (Bhatnagar-Mathur et al 2008,
Mazzucotelli et al. 2008). Initially, researchers mainly
focused attention on the morphological and physiological
traits in plants under stresses (Zhang and Shan 1998,
Zhang et al. 2007b). For example, plant leaves curl and
shrink and wax load increases under water or salt stress
(Zhang and Shan 1998). The development of molecular
biology, genetic mapping and transgenic techniques opens
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a new route to understanding the mechanism underlying
the above mentioned morphological changes. For example,
it was found that osmoregulatory and antioxidant genes
play important roles in biotic or abiotic stress resistance
(Zhang et al. 2002).

Different abiotic stresses such as drought, cold, salinity
and heavy metal pollution have similar effects on plants
(Mittler 2006, Shen et al. 2006, Quresh et al. 2007, Shao
et al. 2007, Zhuang et al. 2008). Generally, they cause
disruption of osmotic and ionic homeostasis, and damage
of proteins and cell membrane structure (Xiong and Zhu
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2002, Vinocur and Altman 2005, Racz et al. 2008). Once
these disorders appear, the plants produce stress signals,
which can combine to relevant sensors and transduce
stress information by protein kinase networks till the
activation of functional genes (Xiong and Zhu 2001,
Chinnusamy ef al. 2004, Goodwin and Sutter 2009, Ying
et al. 2009). Finally, cellular homeostasis, proteins and cell
membranes will be rebuilt. In these processes, partici-
pation of multifunctional genes enables the cross-talk
among the gene regulation networks. As the regulation
cascades of various abiotic stresses are mutually
interdependent, the plants often show different stress
resistance (Cheong et al. 2002). Up to now, some genes
have been found to be multifunctional genes. For example,
BADH encodes betain aldehyde dehydrogenase, and it is
involved in the biosynthesis of glycine betaine (GB). GB
is an amphoteric quaternary amine, acting as a compatible

Definition and classification of multifunctional genes

Multifunctional gene is a gene or a gene family that can
regulate several kinds of traits and manifest several kinds
of functions. According to the published papers, it can be
classified into three groups as follows:

The first class are genes that encode diverse proteins
through mRNA splicing. For example, ASY, a multi-
functional gene that may suppress tumor development,
produces three protein variants from the cognate mRNAs
by alternative splicing (Watari and Yutsudo 2003).
Alternative oxidase (4AOX) gene in soybean manifests
different isoforms during cotyledon development, and
each of them correlates with the increase of capacity of the
alternative pathway (McCabe et al. 1998, Ferreira et al.
2008). Liu et al. (2005) isolated a cDNA clone encoding
two novel heat-shock factors OsHSF6 and OsHSFI2 in
rice, and found that OsHSF6 can regulate the early
expression of stress genes in response to heat shock,
whereas OsHSF12 can act as a synergistic factor to
regulate the expression of the down-stream genes. The
first group of multifunctional genes is mainly found in
animals and microorganisms. The other two groups are
often observed in plants under abiotic stress conditions.

solute in plants. Transgenic plants with BADH not only
manifested osmoregulation ability but also increased salt
and heat tolerance (Moghaieb et al. 2000, Kumar et al.
2004, Yang et al. 2005b, 2008, Wu et al. 2008).

For plants growing in increasingly deteriorated
environment, studies of the genomics, proteomics, signal
transport network, metabolic network, and multifunctional
genes are important for the understanding of the stress
resistance (Xiong and Zhu 2001, Chinnusamy et al. 2004).
Although multifunctional genes have been widely studied,
as far as we know, the recent research progress has not
been reviewed. Therefore, in this review, we propose the
definition and classification of multifunctional genes, and
summarize the progress from three aspects including
signal sensing and transduction, transcription regulation
and functional gene activation.

The second class includes genes like BADH, P5CS and
HAV that control drought, salt, osmotic and heat stress
resistance. For example, Apetala is a multifunctional gene
involved in inflorescence, flower, and ovule development
regulation in Arabidopsis (Byzova et al. 1999). DREB, a
gene encoding transcription factor in plant, can improve
the drought, salt and cold tolerance of rice as confirmed by
transgenic researches (Ito ef al. 2006). Similar results were
found in Arabidopsis (Kasuga et al. 1999, Sakuma et al.
20006), tobacco (Kasuga et al. 2004, Cong et al. 2008),
wheat (Pellegrineschi et al. 2004) and other plants.

The third class are gene families. For example, the
genes encoding membrane aquaporins (AQP), controlling
transport of many compounds including water and
nutrients, play an important role in plant abiotic stress
resistance, including drought, cold and high salt stress
resistance (Jang et al. 2004, 2007, Yu et al. 2005). In
addition, AQP can modulate water use efficiency (WUE)
and nutrition use efficiency (NUE), and thus play an
important role in increasing crop yield under unfavourable
conditions (Porcel et al. 2006, Jang et al. 2007).

Multifunctional genes involved in signal sensing and transduction

Hormones, Ca*", carbamide, NO, H,0,, phospholipase
(PL), polyphosphatidylinositol phosphate (PIP,), inositol
triphosphate (IP;), diacylglycerol (DAG), efc. are signals
during plant development and stress resistance process
(Bhattacharjee 2008, Caeiro et al. 2008, Chang et al. 2008,

Courtois ef al. 2008, Lopez-Carrion ef al. 2008, Quan ef al.

2008). Among them ABA is one of the best researched
messengers. Transgenic researches on genes regulating
ABA sensitivity, such as ABA27, HABI group, LLA23, and
AtMYB44, indicate that ABA is important in the cold,
drought and salt resistance and stomata opening regulation
(Kume et al. 2005, Larkindale et al. 2005, Lin et al. 2007,
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Yang et al. 2005a, Saez et al. 2006, Jung et al. 2008).
9-cis-epoxycarotenoid dioxygenase (NCED) is a pivotal
enzyme in the biosynthesis of ABA. Over-expression of
NCED leads to the accumulation of ABA under stress
conditions (Qin et al. 1999). For example, in detached
leaves, NCED mRNA responds rapidly to small reduction
in water content (Thompson et al. 2000). Transpiration
rate in transgenic Arabidopsis with AtNECD3 was reduced
and drought resistance improved (Lefebvre et al. 2006).
Over-expression of VuNCED in transgenic creeping bent
grass induced accumulation of ABA under drought and
NacCl stresses (Aswath et al. 2005). Similar results were



reported on EIN2 (a gene related to ABA signalling
pathway) (Wang et al. 2007¢), and Sp12 and Sp5 in tomato
(Thompson et al. 2007).

Sensors can perceive stress signals through the
combination reactions of signals (Wang et al. 2007¢c, Luan
et al. 2002). Genes encoding sensors have been
extensively studied (Taylor et al. 2005, Hu et al. 2006).
For example, over-expression of a calcium sensor
calcineurin B-like protein 1 (CBL1) in Arabidopsis,
induces the expression of early stress-responsive
transcription factors and stress adaptation genes in
non-stressed plants (Albrecht et al. 2003, Cheong et al.
2003). Calcium dependent protein kinases (CDPKs) are
unique Ca®* sensors in plants. When CDPK2 under
stress-inducible promoter was over-expressed in barley,
the responses of transgenic plants to cold, salt and ABA
were different from those of wild plants (Sheen 1996).
Besides, transgenic rice with over-expression of
OsCDPK?7 exhibited enhanced tolerance to cold, salt and
drought (Saijo ef al. 2000). Transgenic plants with gene
encoding other kinds of sensors can also exhibit increased
abiotic stress tolerance. These sensors include salt sensor
(Shi ef al. 2002, Qiu et al. 2004) and osmosensor (Urao
et al. 1999, Langridge et al. 2006).

Protein kinases participate in the transduction of
signals in the whole regulation network (Koornneef and

Pieterse 2008, Mohanpuria ef al. 2008, Pandey et al. 2008).

Mitogen activated protein kinase (MAPK) is generally
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considered as an important multifunctional gene involved
in the cascade consisting of MAPK, MAPKK, MAPKKK
The corresponding genes are activated in sequence after
plant cells received the signals (Chinnusamy et al. 2004,
Ren et al. 2008). After MAPK is activated, it further
activates transcription factors in nucleus, or phospholipid-
cleaving enzymes in cytoplasm. At least, some kinds of
physiological and biochemical reactions are activated to
acclimatize the plant to environmental stresses (Cheong
et al. 2002, Chinnusamy et al. 2004, Xu et al. 2003, Wu
et al. 2004, Hu et al. 2006, ). It should be noted that one
environmental stress can activate various kinases, and in
turn, a single kinase gene can affect various kinds of stress
resistance. For example, when maize was transformed
with the tobacco MAPKKK/NPKI, an oxidative signal
cascade was activated, leading to the improvement of cold,
heat, and salt tolerance (Shou et al. 2004).

Moreover, these genes can regulate not only stress
resistance but also normal development. For example,
kinase with extracellular leucine-rich repeats is known for
its effects on inflorescence development, leaf pleiotropy.
ERECTA can affect the resistance to bacterial wilt, or
regulate transpiration under water stress through manipu-
lating stomata density, epidermal cell expansion, meso-
phyll cell proliferation and cell-to-cell contact in
Arabidopsis (Torii et al. 1996, Lease et al. 2001, Douglas
et al. 2002, Godiard et al. 2003, Xu et al. 2003, Masle et al.
2005).

Multifunctional genes involved in regulation of transcription

Regulation of transcription often works through binding of
transcription factors (TFs) and cis-elements in the
upstream of functional genes. There are a lot of TFs and
most of them fall into gene families like AP2/EREBPs
(APETALA2 and ethylene-responsive element binding
proteins), DREB/CBF (dehydration-responsive element/
C-repeat-binding), bZIP (basic-domain leucine zipper),
NAC, MYB/MYC, Cys2/His2 zinc-finger and WRKY
(Umezawa et al. 2006, Tran et al. 2007). TFs are the
members of multifunctional gene family (Shen ez al. 2003,
Shao et al. 2007). Under both cold and drought stresses,
DREB2, bZIP, CBFs, Cysy/His, zinc-finger, MYB/MYC
and other TFs are induced (Chinnusamy et al. 2004,
Shinozaki and Yamaguchi-Shinozaki 2007).
Over-expression of TFs can induce stress-responsive
gene expression and increase the abiotic stress tolerance

Activation of multifunctional genes

Stress resistance can be achieved through functional gene
activation (Xiong and Zhu 2001, Cheong et al. 2002,
Chinnusamy et al. 2004). The induction of genes related to
osmotic adjustment, ROS scavenging, chaperone
production as well as water and ion transport channels
participates in the rebuilding of cellular homeostasis,
reestablishing proteins structure and membranes during

(Xiong and Zhu 2001). For example, over-expression of
HRD gene (an AP2/ERF-like TF from Arabidopsis) in rice
increased leaf biomass, photosynthesis and WUE (Karaba
et al. 2007). Similarly, over-expression of OsMYB3R-2, a
rice RIR2R3 MYB gene in transgenic Arabidopsis, can
increase its tolerance to freezing, drought, and salt stresses
(Dai et al. 2007). WRKY proteins are other important
transcription factors responding to drought, cold, heat,
hurt and ABA treatments (Ross et al. 2007). In our group,
eight TaWRKY genes (1,2, 13, 14,16, 17, 19 and 27) were
cloned from wheat, and the level of transcription increased
under dehydration and other abiotic stresses but at
different levels in different cultivars. Recently, TaWRKY
genes have been cloned and their functions were studied
(Niu et al. 2000).

stresses (Xiong and Zhu 2002, Bhatnagar-Mathur et al.
2008). In addition, the genes involved in changes in
structure of epidermis can be important for abiotic stress
tolerance (Zhang et al. 2005b). Only when all these genes
are translated normally, the plants survive from
unfavourable environmental conditions (Bhatnagar-
Mathur et al. 2008).
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Multifunctional genes involved in osmotic regulation:
Proline, betaine, free amino acids, sugars, sugar alcohols,
alkaloids, etc., are osmotically active compounds (Sharma
and Dietz 2006, Sokhansanj et al. 2006). Their
physiological functions include keeping cell pressure
potential, stabilizing proteins and cell structures and
scavenging of reactive oxygen species (Wang et al. 2003).
The increase of their accumulation is achieved by
over-expression of enzymes involved in their biosynthesis
or suppression of enzymes causing their degradation
(Chen and Murata 2002). Strategies for the genetic
manipulation require precise understanding of bio-
synthetic pathways including up and down regulations of
key regulatory enzymes, feedback inhibition, etc.
(Vendruscolo ef al. 2007).

Over-expression of pyrroline-5-carboxylate synthetase
(P5CS) gene results in the overproduction of this enzyme
as well as proline accumulation (Zhu et al. 1998, Sharma
and Dietz 2006). Transgenic rice plants over-expressing
P5CS showed increased amount of proline and, at least in
part, enhanced biomass production under water stress or
salinity (Zhu et al. 1998, Hong et al. 2000, Su and Wu
2004, Sokhansanj et al. 2006). Similarly, transgenic
soybean with P5CS showed improved drought and heat
resistance (De Ronde et al. 2001, 2004), transgenic
tobacco showed improved salt resistance (Parvanova et al.
2004a,b) and transgenic wheat showed improved drought
resistance (Vendruscolo ef al. 2007).

Mt1D encodes mannitol-1-phosphate dehydrogenase,
which catalyzes the reversible conversion of fructose-6-
phosphate to mannitol-1-phosphate and mannitol-1-
phosphate is converted to mannitol via nonspecific phos-
phatases. Mannitol exists in numerous plant species, but
not in wheat (Abebe et al. 2003). Transgenic wheat with
Mt1D accumulates mannitol from 0.6 to 2.0 mol g™'(f.m.)
in the mature leaves and showed drought and salt
resistance but some abnormalities (Abebe et al. 2003).
Furthermore, transgenic Petunia expressing Mt1D showed
improved cold tolerance (Chiang et al. 2005) and
transgenic loblolly pine (Tang et al. 2005) and Populus
tomentosa (Hu et al. 2005) improved salt tolerance.

Glycine betaine (GB) plays an important role in stabi-
lization of oxygen-evolving complex of photosystem 2,
Rubisco activity and membrane integrity (Chen and
Murata 2002, Sakamoto and Murata 2002, Park et al.
2007). CodA encoding choline oxidase is an important
multifunctional gene regulating the biosynthesis of GB.
Transgenic rice over-expressing CodA showed better
tolerance to salt and cold (Sakamoto and Murata 1998,
Mohanty et al. 2002), transgenic tobacco showed reduced
oxidative damage under freezing stress (Parvanova et al.
2004a,b) and transgenic tomato showed improved cold
and oxidative stress tolerance (Park et al. 2004, 2007).

From the above-mentioned survey, it is obvious that
the stress resistance can be improved in transgenic plants
with increased accumulation of osmotically active
compounds. These compounds can be also exogenously
applied and they can affect gene expression. For example,
the exogenous trehalose alters the expression of
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transcription factors and genes related to cell wall
modification, nitrogen metabolism, and fatty acid
biosynthesis (Bae et al. 2005).

Multifunctional genes involved in ROS scavenging:
When plants are under stress conditions, reactive oxygen
species are produced, which disturb oxidation-reduction
balance and might damage proteins, lipids and nucleic
acids (Xiong and Zhu 2001, Mittler et al. 2006, Shamsi
et al. 2008, Silva et al. 2008). Plants protect themselves by
increased activities of antioxidative enzymes, such as
ascorbate peroxidase (APX), superoxide dismutase (SOD),
peroxidase (POD), catalase (CAT), glutathione reductase
(GR) and production of low molecular mass antioxidants
(Rio et al. 2006, Wang et al. 2007b, Rana et al. 2008,
Serrot et al. 2008).

When compared with wild type plants, the transgenic
ones over-expressing genes encoding ROS-scavenging
enzymes had higher cold, drought, and salinity resistance
(Chen et al. 2005, Tarantino et al. 2005, Shen et al. 2006,
Eltayeb et al. 2007, Lee et al. 2007). For example,
transgenic alfalfa plants over-expressing SOD showed
tolerance to cold and drought (Samis et al. 2002, Rubio
et al. 2002), similarly, transgenic rice (Badawi ef al. 2004,
Gupta et al. 2005), Arabidopsis (Wang et al. 2004), and
cabbage (Tseng et al. 2007) to drought and salinity.
Transgenic tobacco plants over-expressing APX, GST
(coding glutathione S-transferase) and GPX (coding
glutathione peroxidase) were studied under oxidative
stress induced by herbicides or ozone, and under chilling
and salinity (Roxas et al. 2000, Kwon et al. 2002, Eltayeb
et al. 2007, Lee et al. 2007). It is interesting that a
ROS-scavenging genes suppressed in transgenic plant can
be activated by abiotic stress (Tarantino et al. 2005). For
instance, expression of Cu/Zn-SOD decreased in the
transgenic tobacco under normal conditions and it
increased under salt and PEG stresses (Chen ef al. 2005).

Multifunctional genes involved in the protection of
proteins: Multifunctional genes involved in stabilizing
the structures of proteins and cell membranes play
important roles for abiotic and biotic stress resistance
(Cho and Hong 2006). Late embryogenesis abundant
(LEA) proteins and molecular chaperones often have
conservative sequence and polar amino acids, so they are
stable (Fu et al. 2007, Jyothsnakumari et al. 2009). LEA
proteins, molecular chaperones such as HAV 1, heat shock
proteins (HSP) and cold regulated proteins (COR) are also
required during normal development of plants (Manfre
et al. 2006). Under abiotic stresses, LEA and molecular
chaperones are produced in a variety of plant organs to
stabilize protein structures, cell membranes and ion
homeostasis (Vij and Tyagi 2007).

Transgenic plants over-expressing genes encoding
LEA proteins and molecular chaperone can increase the
resistance to drought, salt, cold and other stresses (Cho and
Hong 2006, Jyothsnakumari et al. 2009). For example,
HAV1 gene from barley over-expressed in transgenic rice,
led to drought and salt resistance (Xu et al. 1996) due to



the cell membrane protection and osmotic adjustment
(Babu et al. 2004, Fu et al. 2007). Transgenic wheat and
oat over-exressing HAVI also showed improved drought
and salt stress resistance (Sivamani et al. 2000, Magbool
et al. 2002, Bahieldin et al. 2005, Oraby et al. 2005).

Transgenic tobacco with sense NtHSP70-1 exhibited
slower decrease in water content under progressive
drought than the wild type or the transgenic anti-sense
plants. Moreover, the expression of CaERDI5 (early
responsive to dehydration) is considerably reduced in
tobacco plants that over-expressed NtHSP70-1 (Cho and
Hong 2006, Vij and Tyagi 2007).

Multifunctional genes coding ion and water
transporters: Aquaporins (AQP) are important membrane
transporters of water and other small molecules and ions
(Hachez et al. 2006). Ion channels transport ions more
specifically than AQP. Both respond to different abiotic
stresses (Galmés et al. 2007, Wang et al. 2007a). For
example, the transcript level of plasma membrane intrinsic
protein (PIP) gene decreased in olive plants submitted to
drought stress (Secchi et al. 2007). On the other hand,
expression of TaTPCI gene (coding Ca**-channel protein)
increased under high salinity, polyethylene glycol, low

temperature (4 °C), and ABA treatment (Wang et al. 2005).

Over-expression of a Panax ginseng gene coding AQP
alters the salt tolerance, drought tolerance and cold
acclimation ability of transgenic Arabidopsis (Peng et al.
2007). Increased activity of vacuolar Na'/H" antiporter in
transgenic rice (Zhao et al. 2006), wheat (Xue et al. 2004)
and cotton (Wu et al. 2004) increased their salt tolerance.

Multifunctional genes related to cuticular wax
formation: Plant cuticle is the first protective barrier

against many biotic and abiotic stresses (Leide et al. 2007).

It is generally accepted that abiotic stresses induce the
expression of genes related to the biosynthesis and
accumulation of cuticular wax, which in turn affect the

Summary and outlook

When a plant is under unfavourable conditions, ROS can
be produced, the ion homeostasis disturbed, and the
structures and functions of proteins and cell membranes
damaged. Meanwhile, compatible solutes, ROS-scavenging
enzymes, LEA proteins, molecular chaperones, and stress
regulating factors are induced to rebuild the cell. It is clear
that the signalling pathways of abiotic stresses have
cross-talk. There is cross-talk among the signalling
pathways of individual abiotic stresses and connections
with normal metabolism and development (Kosova et al.
2008).

Plant abiotic stress resistance is a multidisciplinary
area ranging from physiology to molecular biology. Take
the drought resistance as an example. It depends on the
water absorption, which depends on the root morpho-
logical characteristics (length, density, distribution, hair
development) and physiological adaptations (osmotic

MULTIFUNCTIONAL GENES

stress resistance (Shepherd and Griffiths 2006). For
example, nonspecific lipid-transfer protein (nsLTP) can
transport several classes of phospholipids and glycolipids.
The expression of nsLTP was induced by cold (in barley),
drought (in barley and sunflower), and salinity (in tomato)
(Salcedo et al. 2007). Another case in point is that the
transcript level of Cer6 encoding B-ketoacyl-coenzyme A,
an important synthase for cuticular wax production, which
is increased in Arabidopsis under drought, salinity and
ABA treatment (Hooker et al. 2002). In transgenic alfalfa
or Arabidopsis with Wxp1, a putative Medicago truncatula
AP2 domain-containing transcription factor gene,
cuticular wax was accumulated and thus drought tolerance
was increased (Zhang et al. 2005a, 2007a). Transgenic rice
plants over-expressing Shn2 and Cer6 also showed
increase in WUE and drought resistance (Karaba 2007).

In addition, the Arabidopsis mutants such as Cerl
(Aarts et al. 1995) and Cer6 (Hooker et al. 2002) were
male-sterile. Aharoni (2004) identified an Arabidopsis
mutant shn that displays a brilliant, shiny green leaf
surface with increased cuticular wax compared with
wild-type plants. In contrast, over-expression of the Shn
genes increased cuticle permeability, alters leaf and petal
epidermal cell structures, trichome number, branching,
and the stomatal index. Recently, we focused on the
functions of wheat cuticular wax and the relationships
between the wax and stresses. We found that the wax
content of wheat flag leaf during grain filing has positive
correlation to photosynthetic rate, leaf temperature, leaf
WUE and the yield (Zhang and Shan 1998, Huang et al.
2003). Currently, three complete sequences and some
partial sequences of genes related to cuticular wax have
been cloned and the expression patterns were analyzed
under abiotic stresses. It is found that the genes related to
wax biosynthesis can respond to different stresses.
However, the reason of expression responses and the
relationship between wax components and WUE under
different stresses require further studies.

adjustments, hydraulic conductance) (Yadav ef al. 1997,
Dubrovsky ef al. 1998, Ma et al. 2001). On the other hand,
water transport can be affected by AQP activity (Jang ef al.
2004, 2007, Yu et al. 2005). No less important is
regulation of transpiration by stomata and the relationship
between photosynthesis and transpiration (WUE)
(Buckley et al. 2005, Zhang et al. 2007b).

Previously, the research focused on plant abiotic stress
resistance has been mainly concentrated on mono-
functional genes or the specific function of multifunctional
genes. To endow a plant with multiple stress resistance,
co-transformation of several genes is possible, however, it
is complicated and troublesome to design plasmid and
transform plant (Komari et al. 1996). Moreover, most
transgenic plants are model species such as Arabidopsis
thaliana and tobacco. Nowadays, the production of
transgenic plants in some crops such as rice, wheat, potato,
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and sugar beet, have gained various degrees of success.
Transformation of multifunctional genes to crops might be
useful. Some regulating factors, especially TFs, are
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