

Singlet oxygen as a signaling transducer for modulating artemisinin biosynthetic genes in *Artemisia annua*

Q.-P. ZENG*, X.-M. ZENG**, R.-Y. YANG** and X.-Q. YANG

Laboratory of Biotechnology, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, 510405 Guangzhou, P.R. China

Abstract

Although crosstalk between cytosolic and plastidic terpenoid pathways has been validated in many plant species, we report here for the first time a striking elevation of the nucleus-encoded artemisinin biosynthesis relevant *DBR2* mRNA following the incubation of plants with fosmidomycin (FM). FM decreased singlet oxygen ($^1\text{O}_2$) scavengers such as β -carotene and α -tocopherol and subsequently invoked $^1\text{O}_2$ burst. The treatment of plants with fluridone (FD) neither decreased α -tocopherol content nor triggered $^1\text{O}_2$ emission. In conclusion, FM can up-regulate $^1\text{O}_2$ -sensitive nuclear genes responsible for artemisinin biogenesis by mitigating the accumulation of plastidic scavenging terpenoids, thereby eliciting $^1\text{O}_2$ generation and initiating $^1\text{O}_2$ retrograde signaling.

Additional key words: fosmidomycin, fluridone, gene expression, reactive oxygen species, upregulation.

Introduction

Terpenoids, also known as terpenes or isoprenes, are a huge cluster of natural products, which serve as pollinator attractants, phytoalexins, gibberellins, brassinosteroids, cytokinins, abscisic acid, carotenoids and chlorophylls (Wu *et al.* 2006). With the subcellular compartmentation, terpenoids are separately synthesized in the cytosol, plastids and mitochondria (Rodríguez-Concepción *et al.* 2004). It has been evident that sesquiterpenoids (C_{15}), triterpenoids (C_{30}) and polyterpenoids ($>\text{C}_{40}$) are derived from the cytosolic mevalonic acid (MVA) pathway beginning with acetyl-coenzyme A and proceeding *via* MVA, while monoterpenoids (C_{10}), diterpenoids (C_{20}) and tetraterpenoids (C_{40}) are stemmed from the plastidic non-MVA pathway involving deoxyxylulose-5-phosphate and methyl-4-erythritol phosphate as upstream precursors (Chappell 2002).

Artemisinin, a sesquiterpene lactone endoperoxide, uniquely exists in *Artemisia annua* and is an effective antimalarial agent. Artemisinin biogenesis *in planta* has

been suggested to comprise both enzymatic and non-enzymatic reactions (Bertea *et al.* 2005, 2006). Amorpha-4,11-diene synthase (ADS) initially catalyzes the cyclization of farnesyl pyrophosphate (FPP) to generate amorpha-4,11-diene, which is subsequently converted to artemisinic alcohol, aldehyde and acid derivatives sequentially through three consecutive redox reactions by cytochrome P_{450} monooxygenase (CYP71AV1) in cooperation with cytochrome P_{450} reductase (CPR). Following catalysis by $\Delta^{11(13)}$ -double-bond reductase 2 (DBR2), artemisinic aldehyde is reduced to dihydroartemisinic aldehyde, which is then oxidized to dihydroartemisinic acid (DHAA) by a trichome-specific aldehyde dehydrogenase, ALDH1 (Covello 2008). Finally, DHAA transiently forms DHAA hydroperoxide non-enzymatically in the presence of singlet oxygen ($^1\text{O}_2$), and DHAA hydroperoxide is spontaneously oxidized to artemisinin in the air (Sy and Brown 2002, Covello *et al.* 2007). Due to involving $^1\text{O}_2$, *A. annua* becomes the best model plant for

Received 18 December 2009, accepted 12 November 2010.

Abbreviations: ADS - amorpha-4,11-dienesynthase; CPR - cytochrome P_{450} reductase; CYP71AV1 - cytochrome P_{450} monooxygenase; DBR2 - $\Delta^{11(13)}$ -double-bond reductase 2; DHAA - dihydroartemisinic acid; DXP - 1-deoxy-*O*-xylulose-5-phosphate; DXR - DXP reductoisomerase; DXS - DXP synthase; FD - fluridone; FM - fosmidomycin; FPP - farnesyl pyrophosphate; MVA - mevalonic acid.

Acknowledgements: We thank Li-Xiang Zeng, Xiao-Xia Guo and Ping-Zu Zhang for their helpful assistance. This work is financially supported by the National Natural Science Foundation of China (NSFC) (No. 30271591) and Guangdong Provincial Scientific Development Project of China (No. 2007B031404008). ** Authors contributing equally to this work.

* Corresponding author; fax: (+86) 20 8637 3516, e-mail: qpzeng@gzhtcm.edu.cn

elucidating the mechanism of endogenous ${}^1\text{O}_2$ signaling and retrograde gene activation in plants.

Since 1995, artemisinin biosynthetic genes including *ADS* (Wallaart *et al.* 1999), *CYP71AV1* (Teoh *et al.* 2006), *CPR* (Ro *et al.* 2006), and *DBR2* (Zhang *et al.* 2008) have been cloned from *A. annua* and functionally expressed in microorganisms, as reviewed by Zeng *et al.* (2008a). Evidence on the regulatory mechanism behind artemisinin biosynthesis has been also documented in recent years (Covello *et al.* 2007, Covello 2008, Zeng *et al.* 2008b). For example, it is known that the promoter of *ADS* gene is tissue-specific and development-modulated (Kim *et al.* 2008), and that *CYP71AV1* gene is differentially expressed with a high level in glandular trichomes, with a moderate level in flower buds, and with a low level in leaves and roots (Teoh *et al.* 2006). We have reported that *ADS* and *CYP71AV1* genes are inducible by low temperature and UV radiation, which is mediated by Ca^{2+} -involving signaling (Yin *et al.* 2008). Most recently, we have further demonstrated that senescence leads to potent ${}^1\text{O}_2$ burst from leaves of *A. annua*, which up-regulates *ADS*, *CYP71AV1* and *DBR2* genes and enhances artemisinin production (Yang *et al.* 2010). As indicated by others, the primary function of ${}^1\text{O}_2$ in plants is to activate a stress-related signaling cascade that encompasses numerous signaling pathways known to respond to pathogen attack, wounding, irradiance

and drought stress (Xu *et al.* 2005, Laloi *et al.* 2006).

Until recently, however, it is still unknown the exact source of ${}^1\text{O}_2$ and how ${}^1\text{O}_2$ induces artemisinin biosynthetic genes in *A. annua*. Considering facts that fosmidomycin (FM) specifically inhibits plastidic terpenoid biosynthesis and impedes carotenoid biosynthesis (Laule *et al.* 2003), carotenoids are ${}^1\text{O}_2$ scavengers (Hirayama *et al.* 1994), and ${}^1\text{O}_2$ enhances artemisinin production (Zeng *et al.* 2008c), we suggest a hypothesis of the ${}^1\text{O}_2$ -driven activation of nuclear genes to account for how FM enables temporal and spatial modulation on artemisinin biosynthesis. We assume that FM may lead to decrease of ${}^1\text{O}_2$ quenchers, such as carotenoids and tocopherols, emission of excess ${}^1\text{O}_2$, initiation of ${}^1\text{O}_2$ -mediated retrograde signaling, and up-regulation of ${}^1\text{O}_2$ -hypersensitive nuclear genes.

Here, we present evidence that supports our proposition of ${}^1\text{O}_2$ as a candidate transducer involving in a retrograde signaling pathway from plastids to the nucleus and up-regulating artemisinin biosynthetic genes. Meanwhile, we also try to demonstrate the relationship between the decrease of carotenoids and/or tocopherols and a quantitative profile of ${}^1\text{O}_2$ -activated artemisinin biosynthetic genes. These findings should be beneficial to advance our understanding of the mechanistic pattern regarding the homeostatic regulation of artemisinin biosynthesis in *A. annua*.

Materials and methods

Artemisia annua L. cv. Huayang 2, was originally cultivated in Youyang of Sichuan, China, and transplanted to Fengshun of Guangdong, China. Seeds of *A. annua* were surface-sterilized in 70 % ethanol for 30 s and in 3 % sodium hypochlorite for 30 min, and then rinsed with sterile double distilled water for 4 - 5 times. For germination, disinfected seeds were sown on filter paper (*Whatman*) saturated with Murashige and Skoog (MS) liquid medium in Petri dishes. All seedlings were cultured on the phytohormones-free 1/2 MS medium supplemented with MS vitamins and solidified by 0.8 % agar at 25 °C, irradiance of 250 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (PAR) and a 16-h photoperiod.

Seedlings (30 d-old) were transferred to 1/2 MS liquid medium containing filter sterilized inhibitors 200 μM fosmidomycin (FM; *Invitrogen*, Carlsbad, USA) or 100 μM fluridone (FD; *Aladdin*, Shanghai, China) and kept for 3 - 48 h or 7 d under the same conditions. After the treatment, seedlings were collected and immediately frozen in liquid nitrogen for further analysis.

RNA isolation and mRNA quantification were performed as described (Yang *et al.* 2008, 2010). The relative mRNA level = (specific mRNA copy numbers)/(18S rRNA copy numbers). Preparation of recombinant antigens in *Escherichia coli*, induction of

polyclonal antibodies against recombinant antigens in rabbits, plotting of standard curves, and immune-quantification were conducted as described (Zeng *et al.* 2009).

Leaf samples (100 mg) were ground to powder in liquid nitrogen. For extraction of β -carotene, the frozen powder was mixed with 2 - 3 cm^3 of the solution chloroform + methanol (2:1, v/v) and vortexed for 2 min. The extract was filtered through a layer of the filter paper, subsequently covered by 1 g of sodium sulfate and rinsed repeatedly by the extracting solution until sodium sulfate was whitening again. The filtrate was collected and adjusted to 25 cm^3 of a total volume with the extracting solution for measurement of the absorbance at 450 nm. The concentration of β -carotene was determined from the standard curve of β -carotene (National Institute for the Control of Pharmaceutical and Biological Products in China). For extraction of α -tocopherol, the frozen powder was mixed with 1 cm^3 of *n*-hexane and vortexed for 2 min. After extraction for 2 h in 60 °C bath and centrifuged, the supernatant was collected for quantification of α -tocopherol content by a commercial vitamin E assay kit (*Nanjing Jiancheng*, Nanjing, China).

Measurement of ${}^1\text{O}_2$ emitted from leaves of *A. annua* was carried out by a modified spectrophotometric method

(Feng *et al.* 2009), in which N,N-dimethyl-*p*-nitrosoaniline (*Sigma*, St. Louis, USA) was used as a selective acceptor of $^1\text{O}_2$ and bleaching of N,N-dimethyl-*p*-nitrosoaniline was spectrophotometrically monitored.

Results

Artemisinin biosynthesis relevant *DBR2* mRNA was substantially elevated in *A. annua* by incubation with 200 μM FM, but the elevated level of *DBR2* mRNA declines dramatically after maximum at 3 h and even drops to a baseline level after 12 h-incubation (Table 1). As compared with the control (0 h treatment), the elevation of *DBR2* mRNA in maximum was 250-fold (in plants 1, 2 and 3) or 20-fold (in plants 4, 5 and 6), demonstrating a huge variation among different plant samples. After incubation of *A. annua* with 200 μM FM, artemisinin biosynthesis responsible *ADS*, *CYP71AV1* and *CPR* mRNAs also elevated. Maximum *ADS* and *CYP71AV1* mRNAs occurred after 3 h, whereas a high level of *CPR* mRNA emerged after 12 h (Table 2). These results indicate that FM eventually led to the decline of

All data were represented as the means \pm SD and the statistical analysis of the independent sample tests was performed with the *SPSS 11.5* for *Windows* software package (*Statistica*, San Jose, CA, USA).

artemisinin biosynthetic mRNA although transiently upregulated the corresponding genes.

Table 1. The relative content of mRNA of *DBR2* gene expressed as *DBR2* mRNA/18S rRNA ($\times 10^{-5}$) in leaves of different *A. annua* plants incubated with 200 μM FM for 3, 12 and 48 h.

Time [h]	Plant 1	Plant 2	Plant 3	Plant 4	Plant 5	Plant 6
0	0.26	0.34	0.32	0.74	0.73	0.78
3	245.83	194.66	313.38	17.72	22.15	18.58
12	2.88	2.79	2.72	3.09	2.18	2.13
48	0.19	1.68	1.89	0.46	0.60	0.20

Table 2. The relative contents of mRNA of artemisinin biosynthetic genes expressed as *DBR2* mRNA/18S rRNA in leaves of *A. annua* incubated with 200 μM FM or 100 μM FD. Means \pm SD, $n = 6 - 9$, * ** - values significantly different from the control at $P < 0.05$ and $P < 0.01$, respectively.

Treatments	<i>ADS</i> ($\times 10^{-8}$)	<i>CYP71AV1</i> ($\times 10^{-8}$)	<i>CPR</i> ($\times 10^{-5}$)	<i>DBR2</i> ($\times 10^{-5}$)
Control	0.19 ± 0.01	0.09 ± 0.03	0.58 ± 0.19	5.58 ± 2.50
FM 3 h	$0.70 \pm 0.13^{**}$	$0.27 \pm 0.03^{**}$	$0.31 \pm 0.11^{**}$	20.91 ± 6.98
FM 12 h	0.09 ± 0.02	$0.02 \pm 0.002^{**}$	$1.09 \pm 0.10^{**}$	$135.39 \pm 132.4^{**}$
FM 48 h	$0.50 \pm 0.18^{**}$	0.11 ± 0.03	0.47 ± 0.13	2.63 ± 0.39
Control	7.22 ± 1.57	1.73 ± 0.23	4.96 ± 3.77	12.80 ± 10.50
FD 3 h	12.30 ± 3.27	1.97 ± 0.26	5.66 ± 2.07	10.80 ± 1.08
FD 6 h	$31.60 \pm 42.50^{*}$	2.70 ± 2.02	5.09 ± 2.82	16.80 ± 7.36
FD 6 h+ 42 h FD-free	17.80 ± 20.54	2.63 ± 2.27	10.80 ± 0.87	17.10 ± 4.15

Table 3. The relative strength of $^1\text{O}_2$ burst from leaves of *A. annua* incubated with 200 μM FM or 100 μM FD for 0.5 - 2.5 h. The relative strength of $^1\text{O}_2$ burst [%] = [(A₄₄₀ of blank - A₄₄₀ of sample) / A₄₄₀ of blank] $\times 100$.

Treatments	0.5 h	1 h	1.5 h	2 h	2.5 h
Control, uncut leaves	8.72	13.05	17.37	23.61	27.46
Control, cut leaves	7.18	18.29	24.92	34.12	38.03
FM 7 d, uncut leaves	20.82	35.66	46.33	57.22	64.87
FM 7 d, cut leaves	29.85	49.95	62.98	73.40	81.45
FD 7 d, cut leaves	19.91	19.25	44.50	57.14	64.73

After incubation of *A. annua* with 100 μM FD for 6 h, *ADS* mRNA elevates for more than 4 folds, whereas other artemisinin biosynthetic mRNAs including *CYP71AV1*,

CPR and *DBR2* mRNAs keep homeostasis during an entire period of incubation (Table 2). This result demonstrates that the extent of FD affecting artemisinin biosynthesis is different from FM.

The $^1\text{O}_2$ burst from *A. annua* seedlings that were incubated with FM or FD was monitored in a time-course manner (Table 3). $^1\text{O}_2$ burst occurs from leaves of plants that were treated by 200 μM FM for 7 d, in which cut leaves release more $^1\text{O}_2$ than uncut leaves of FM-treated or untreated plants, suggesting that $^1\text{O}_2$ may emit from the internal space of cells. However, no sign indicating enhanced $^1\text{O}_2$ release appears in 100 μM FD-treated plants. Comparison of the relative strength of $^1\text{O}_2$ burst shows that 200 μM FM leads to a highest $^1\text{O}_2$ burst (80 % at 2.5 h of assay), but 100 μM FD hardly release $^1\text{O}_2$. These results suggest that FM affects terpenoid

metabolism probably *via* impacting on *DBR2* gene, in which FM extremely up-regulates *DBR2* gene due to potent $^1\text{O}_2$ burst. In contrary, FD hardly induces *DBR2* gene because of only stimulating slight $^1\text{O}_2$ liberation.

Table 4. Immunoquantification of ADS, CYP71AV1 and CPR enzymes [$\mu\text{g mg}^{-1}$ (protein)] in *A. annua* incubated with 100 μM FD. Means \pm SD, $n = 3$, *, ** - values significantly different from the control at $P < 0.05$ and $P < 0.01$, respectively.

Organ	Treatments	ADS	CYP71AV1	CPR
Whole plant	control	78.50 \pm 10.98	72.64 \pm 7.48	45.10 \pm 5.96
	FD 0.5 h	109.14 \pm 11.94*	97.26 \pm 10.57*	50.63 \pm 4.84
	FD 3 h	79.81 \pm 14.55	62.50 \pm 6.04*	39.52 \pm 4.26
	FD 6 h	74.51 \pm 25.55*	47.28 \pm 5.64*	27.63 \pm 2.11
	FD 6 h + 42 h	60.31 \pm 3.06*	42.10 \pm 10.29*	30.27 \pm 2.21
	FD-free			
Root	control	40.71 \pm 1.19	71.28 \pm 2.07	22.05 \pm 7.02
	FD 7 d	37.79 \pm 2.37	52.06 \pm 1.95*	15.81 \pm 1.14
Stem	control	32.04 \pm 2.89	85.25 \pm 4.20	17.39 \pm 2.09
	FD 7 d	50.82 \pm 0.65*	88.18 \pm 3.21	23.21 \pm 1.05
Leaf	control	35.11 \pm 2.49	62.41 \pm 2.98	17.13 \pm 0.86
	FD 7 d	61.84 \pm 2.43*	94.63 \pm 2.08*	16.01 \pm 1.15

Similarly as its corresponding mRNA, ADS activity rapidly elevated (2.5-folds) due to exposure to FD for a short time (0.5 h), but gradually declined thereafter in different treatment schemes (3 h FD, 6 h FD, 6 h FD + 42 h FD-free). Also, CYP71AV1 slightly increased (1.3-folds) shortly after treatment by FD and rapidly declined until recovery to an original level. At the same time, CPR demonstrated only a minor variation (Table 4). However, after exposure to FD for 7 d, ADS again

increased in stems and leaves, CYP71AV1 recovered in stems but increased in leaves, and CPR increased in stems (Table 4).

Table 5. The amounts of β -carotene and α -tocopherol in leaves of *A. annua* incubated with 200 μM FM or 100 μM FD. Means \pm SD, $n = 9$, ** - values very significantly different from the control at $P < 0.01$.

Treatments	β -Carotene [$\mu\text{g mg}^{-1}$ (f.m.)]	α -Tocopherol [$\mu\text{g mg}^{-1}$ (f.m.)]
Control	4.725 \pm 0.540	0.1113 \pm 0.0085
FM 3 h	3.692 \pm 0.038**	0.0840 \pm 0.0096**
FM 12 h	1.498 \pm 0.165**	0.0603 \pm 0.0015**
FM 48 h	1.378 \pm 0.080**	0.0693 \pm 0.0032**
FD 3 h	2.986 \pm 0.133**	0.1042 \pm 0.0077
FD 12 h	1.103 \pm 0.035**	0.1370 \pm 0.0171
FD 48 h	1.150 \pm 0.095**	0.0967 \pm 0.0096

Much lower amounts of β -carotene and α -tocopherol were measured in *A. annua* treated by 200 μM FM for 3, 12 and 48 h. Only β -carotene but not α -tocopherol decreased in 100 μM FD-treated plants. From comparison of the content of terpenoids, it was obviously that FM represented a potent $^1\text{O}_2$ -generator because it strongly inhibited the biosynthesis of both β -carotene and α -tocopherol. In contrast, FD only decreased β -carotene but not α -tocopherol, so it served as a weaker $^1\text{O}_2$ generator. Additionally, the finding that *DBR2* gene was highly up-regulated by FM, but not affected by FD suggested a possibility of *DBR2* gene being induced by a higher threshold level of $^1\text{O}_2$.

Discussion

Although reduced artemisinin production in *A. annua* after exposure to FM was noticed (Towler and Weathers 2007), no suppressed transcriptomic and proteomic profiles regarding artemisinin biosynthesis have been described in *A. annua*. In the present investigation, we observed for the first time that *DBR2* gene was extremely up-regulated by FM although the elevation of *DBR2* mRNA as well as other MVA mRNAs were transient, not longer than 3 h, and gradually declined to a level lower than that in the control. On the other hand, we found that FM constantly down-regulated non-MVA genes during the entire period of incubation. This result seems to be supported by a previous conclusion that chlorophyll and carotenoid contents in *A. thaliana* are substantially lower after addition of FM than in controls (Laule *et al.* 2003). Most recently, we recognized the relevance of chilling-evoked $^1\text{O}_2$ burst to artemisinin overproduction (Feng *et al.* 2009), and addressed an implication of the inducible endogenous $^1\text{O}_2$ in enhancing artemisinin production

(Guo *et al.* 2010).

Interestingly, the analytical data available from the present experiments can be fairly interpreted by our proposed hypothesis for $^1\text{O}_2$ -driven retrograde gene activation. According to the hypothesis, any inhibitors capable of decreasing amounts of $^1\text{O}_2$ -scavengers within chloroplasts can activate $^1\text{O}_2$ -sensitive nuclear genes. Given that FM leads to a dramatic decrease of β -carotene and α -tocopherol contents, it can be concluded that FM is able to up-regulate the $^1\text{O}_2$ -sensitive *DBR2* gene. As a major class of $^1\text{O}_2$ scavengers residing in chloroplasts, carotenoids are responsible for quenching the excited $^1\text{O}_2$ in the chlorophyll antenna (Hirayama *et al.* 1994), while tocopherols accumulate in chloroplasts to protect membranes from $^1\text{O}_2$ -mediated lipid peroxidation (Maeda *et al.* 2005). It seems that *DBR2* gene may simply sense the chloroplast-originating $^1\text{O}_2$ signal and be fine-tuned by a threshold level of $^1\text{O}_2$ burst within chloroplasts. In such context, it can be concluded that FM induced

abundant *DBR2* mRNA due to invoking stronger $^1\text{O}_2$ burst.

A photo-bleaching herbicide FD was chosen to validate this tentative conclusion as it only decreases β -carotene (Bartels and Watson 1978). Due to the presence of α -tocopherol, it is predicted that FD-treated plants may keep a slightly elevated $^1\text{O}_2$ level or remain an unchanged $^1\text{O}_2$ level, thereby not inducing *DBR* gene. Indeed, FD-treated plants exhibit no induction of *DBR2* gene, which is in contrast to the abundant *DBR2* mRNA induced by the FM treatment. Importantly, the $^1\text{O}_2$ burst is much higher after FM treatment than after FD treatment, which also seems to suggest that the induction of *DBR2* gene is likely controlled by a threshold level of $^1\text{O}_2$. However, other $^1\text{O}_2$ scavengers including pyridoxine, ascorbic acid, plastoquinones and wide arrays of flavonoids (Benderliev *et al.* 2003, Triantaphylides and Havaux 2009) may add complexity to account for the relevance of $^1\text{O}_2$.

Although no elevated *DBR* mRNA was detected in FD-treated plants, *ADS* mRNA was observed to elevate up to 10 folds following treatment by FD. Accordingly, *ADS* activity was higher after exposure to FD although it gradually declined in a time-dependent manner. After 7 d incubation with FD, however, *ADS* activity increased

again to the level above the control. This result implies that *ADS* gene may be activated by a mechanism different from *DBR2* gene, which is consistent with our recent findings that cold, heat shock and UV radiation activate *ADS* gene but not *DBR2* gene (Yang *et al.* 2010). Therefore, it can be concluded that potent $^1\text{O}_2$ burst may bear importance in the activation of nuclear genes including those for artemisinin biosynthesis in *A. annua*. In regard to how plastid-generating $^1\text{O}_2$ is transmitted to nuclei, Laloi *et al.* (2007) and Lee *et al.* (2007) have indicated that $^1\text{O}_2$ signaling can be transduced by EXECUTER1 (EXE-1) and EXE-2, through which the transcription of $^1\text{O}_2$ -responsive nuclear genes is initiated.

In conclusion, we demonstrated that $^1\text{O}_2$ is likely a modulator of the nucleus-encoded $^1\text{O}_2$ -sensitive *DBR2* as well as other artemisinin biosynthetic genes of *A. annua*, in response to the insufficient content of β -carotene and α -tocopherol. We also conclude that $^1\text{O}_2$ -driven activation of *DBR2* gene is likely fine-tuned by a threshold level of $^1\text{O}_2$, which can be invoked potently by FM but not by FD. Our future endeavors will focus on the finding of a $^1\text{O}_2$ -inducible EXE-like candidate gene from *A. annua* for expediting the organization and operation of a detailed $^1\text{O}_2$ -involving signaling pathway.

References

Bartels, P.G., Watson, C.W.: Inhibition of carotenoid synthesis by fluridone and norflurazon. - *Weed Sci.* **26**: 198-203, 1978.

Benderliev, K.M., Ivanova, N.I., Pilarski, P.S.: Singlet oxygen and other reactive oxygen species are involved in regulation of release of iron-binding chelators from *Scenedesmus* cells. - *Biol. Plant.* **47**: 523-526, 2003.

Bertea, C.M., Freije, J.R., Van der Woude, H., Verstappen, F.W., Perk, L., Marquez, V., De Kraker, J.W., Posthumus, M.A., Jansen, B.J., De Groot, A., Franssen, M.C., Bouwmeester, H.J.: Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in *Artemisia annua*. - *Planta med.* **71**: 40-47, 2005.

Bertea, C.M., Voster, A., Verstappen, F.W., Maffei, M., Beekwilder, J., Bouwmeester, H.J.: Isoprenoid biosynthesis in *Artemisia annua*: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. - *Arch. Biochem. Biophys.* **448**: 3-12, 2006.

Chappell, J.: The genetics and molecular genetics of terpene and sterol origami. - *Curr. Opin. Plant Biol.* **5**: 151-157, 2002.

Covello, P. S.: Making artemisinin. - *Phytochemistry* **69**: 2881-2885, 2008.

Covello, P.S., Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G.: Functional genomics and the biosynthesis of artemisinin. - *Phytochemistry* **68**: 1864-1871, 2007.

Feng, L.L., Yang, R.Y., Yang, X.Q., Zeng, X.M., Lu, W.J., Zeng, Q.P.: Synergistic re-channeling of mevalonate pathway for artemisinin overproduction in transgenic *Artemisia annua*. - *Plant Sci.* **177**: 57-67, 2009.

Guo, X.X., Yang, X.Q., Yang, R.Y., Zeng, Q.P.: Salicylic acid and methyl jasmonate but not Rose Bengal up-regulate artemisinin biosynthetic genes through invoking burst of endogenous singlet oxygen. - *Plant Sci.* **178**: 390-397, 2010.

Hirayama, O., Nakamura, K., Hamada, S., Kobayashi, Y.: Singlet oxygen quenching ability of naturally occurring carotenoids. - *Lipids* **29**: 149-150, 1994.

Kim, S.H., Chang, Y.J., Kim, S.U.: Tissue specificity and developmental pattern of amorph-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, *Arabidopsis thaliana*. - *Planta med.* **74**: 188-193, 2008.

Laloi, C., Przybyla, D., Apel, K.: A genetic approach towards elucidating the biological activity of different reactive oxygen species in *Arabidopsis thaliana*. - *J. exp. Bot.* **57**: 1719-1724, 2006.

Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, I.M., Apel, K.: Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signalling of stress responses in *Arabidopsis thaliana*. - *Proc. nat. Acad. Sci. USA* **104**: 672-677, 2007.

Laule, O., Furholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W., Lange, M.: Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in *Arabidopsis thaliana*. - *Proc. nat. Acad. Sci. USA* **100**: 6866-6871, 2003.

Lee, K.P., Kim, C., Landgraf, F., Apel, K.: EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of *Arabidopsis thaliana*. - *Proc. nat. Acad. Sci. USA* **104**: 10270-10275, 2007.

Maeda, H., Sakuragi, Y., Bryant, D.A., Della Penna, D.: Tocopherols protect *Synechocystis* sp. strain PCC 6803

from lipid peroxidation. - *Plant Physiol.* **138**: 1422-1435, 2005.

Ro, D.K., Paradise, E.M., Ouelle, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C., Withers, S.T., Shiba, Y., Sarpong, R., Keasling, J.D.: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. - *Nature* **440**: 940-943, 2006.

Rodriguez-Concepcion, M., Fores, O., Martinez-Garcia, J.F., Gonzalez, V., Phillips, M.A., Ferrer, A., Boronat, A.: Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during *Arabidopsis* seedling development. - *Plant Cell* **16**: 144-156, 2004.

Sy, L.K., Brown, G.D.: The mechanism of the spontaneous autoxidation of dihydroartemisinic acid. - *Tetrahedron* **58**: 897-908, 2002.

Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G., Covello, P.S.: *Artemisia annua* L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. - *FEBS Lett.* **580**: 1411-1416, 2006.

Towler, M.J., Weathers, P.J.: Evidence of artemisinin production from IPP stemming from both the mevalonate and the non-mevalonate pathways. - *Plant Cell Rep.* **26**: 2129-2136, 2007.

Triantaphylides, C., Havaux, M.: Singlet oxygen in plants: production, detoxification and signaling. - *Trends Plant Sci.* **14**: 219-228, 2009.

Wallaart, T.E., Van Uden, W., Lubberink, H.G.M., Woerdenbag, H.J., Pras, N., Quax, W.J.: Isolation and identification of dihydroartemisinic acid from *Artemisia annua* and its possible role in the biosynthesis of artemisinin. - *J. natur. Prod.* **62**: 430-433, 1999.

Wu, S., Schalk, M., Clark, A., Miles, R.B., Coates, R., Chappell, J.: Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. - *Nat. Biotechnol.* **24**: 1441-1447, 2006.

Xu, X., Hu, X., Neill, S.J., Fang, J., Cai, W.: Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of *Panax ginseng* C.A. Meyer. - *Plant Cell Physiol.* **46**: 947-954, 2005.

Yang, R.Y., Feng, L.L., Yang, X.Q., Yin, L.L., Xu, X.L., Zeng, Q.P.: Quantitative transcript profiling reveals down-regulation of a steroid pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic *Artemisia annua* plants. - *Planta med.* **74**: 1510-1516, 2008.

Yang, R.Y., Zeng, X.M., Lu, Y.Y., Lu, W.J., Feng, L.L., Yang, X.Q., Zeng, Q.P.: Senescent leaves of *Artemisia annua* are one of the most active organs for overexpression of artemisinin biosynthesis responsible genes upon burst of singlet oxygen. - *Planta med.* **76**: 734-742, 2010.

Yin, L.L., Zhao, C., Huang, Y., Yang, R.Y.: Abiotic stress-induced expression of artemisinin biosynthesis genes in *Artemisia annua* L. - *Chin. appl. environ. Biol.* **14**: 1-5, 2008.

Zeng, Q.P., Qiu, F., Yuan, L.: Production of artemisinin by genetically modified microbes. - *Biotechnol. Lett.* **30**: 581-592, 2008a.

Zeng, Q.P., Yang, R.Y., Feng, L.L., Yang, X.Q.: Genetic and environmental regulation and artificial metabolic manipulation for artemisinin biosynthesis. - In: Richter, F.W. (ed.): *Biotechnology: Research, Technology and Applications*. Pp. 159-210. Nova Science Publishers, New York 2008b.

Zeng, Q.P., Zeng, X.M., Feng, L.L., Yin, L.L., Yang, X.Q., Yang, R.Y.: Quantification of three key enzymes involved in artemisinin biosynthesis in *Artemisia annua* by polyclonal antisera-based ELISA. - *Plant mol. Biol. Rep.* **27**: 50-57, 2009.

Zeng, Q.P., Zhao, C., Yin, L.L., Yang, R.Y., Zeng, X.M., Huang, Y., Feng, L.L., Yang, X.Q.: Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression. - *Sci. China Ser. C* **51**: 232-244, 2008c.

Zhang, Y.S., Teoh, K.H., Reed, D.W., Maes, L., Goossens, A., Olson, D.J.H., Ross, A.R.S., Covello, P.S.: The molecular cloning of artemisinic aldehyde $\Delta^{11(13)}$ reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in *Artemisia annua*. - *J. biol. Chem.* **283**: 21501-21508, 2008.