

Effects of elevated CO₂ applied to potato roots on the anatomy and ultrastructure of leaves

Z.-P. SUN^{1,2}, T.-L. LI^{1,2*} and Y.-L. LIU^{1,2}

Key Laboratory of Protected Horticulture, Ministry of Education¹ and College of Horticulture, Shenyang Agricultural University², Shenyang 110866, P.R. China

Abstract

The root system of potato (*Solanum tuberosum* L. cv. Favorita) plants was treated with different O₂ and CO₂ concentrations for 35 d in aeroponic culture. Under 21 or 5 % O₂ in the root zones, the thickness of leaves and palisade parenchyma significantly increased at 3 600 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ in the root zone, compared with CO₂ concentration 380 $\mu\text{mol mol}^{-1}$ or low CO₂ concentration (100 $\mu\text{mol mol}^{-1}$). In addition, smaller cells of palisade tissue, more intercellular air spaces and partially two layers of palisade cells were observed in the leaves with root-zone CO₂ enrichment. Furthermore, there was a significant increase in the size of chloroplasts and starch grains, and the number of starch grains per chloroplast due to elevated CO₂ only under 21 % O₂. In addition, a significant decline in the thickness of grana and the number of lamellae, but no significant differences in the number of grana per chloroplast were observed under elevated CO₂ concentration. The accumulation of starch grains in the chloroplast under elevated CO₂ concentration could change the arrangement of grana thylakoids and consequently inhibited the absorption of sun radiation and photosynthesis of potato plants.

Additional key words: aeroponics, chloroplast grana ultrastructure, palisade parenchyma, *Solanum tuberosum*, starch grains.

Introduction

At the present, the atmospheric CO₂ concentration is about 380 $\mu\text{mol mol}^{-1}$ and by the end of this century might be doubled (Pearson and Palmer 2000, Li *et al.* 2009). It is rather surprising that elevated atmospheric CO₂ usually stimulates soil respiration (Janssens and Ceulemans 2000). Kimball *et al.* (2002) found in average 24 % stimulation in soil respiration for a variety of crops grown in elevated CO₂. Luo *et al.* (1996) observed a 42 % stimulation of soil respiration under elevated CO₂ in natural Mediterranean grasslands, Ball and Drake (1998) reported 15 % stimulation in natural marsh vegetation. In experiments using tree species, Körner and Arnone (1992) reported that soil respiration doubled in artificial tropical ecosystems developing in mesocosms in CO₂-enriched environments. Longer term exposures also stimulated soil respiration in *Pinus ponderosa* (Johnson *et al.* 1994, Vose *et al.* 1997), *Acer rubrum* and *Acer saccharum* (Edwards and Norby 1999), and *Pinus*

sylvestris (Janssens *et al.* 1998). Using FACE technology on natural soils, King *et al.* (2004) showed increased soil respiration (39 %) for *Populus tremuloides* and *Betula papyrifera*. As a result, the rising soil respiration leads to an increased CO₂ concentration in the root zones (Ineson *et al.* 1998, Diao *et al.* 2002, Kimball *et al.* 2002, Gonzalez-Meler *et al.* 2004), which, in turn, would have impact on the plant growth.

On the other hand, CO₂ is the primary substrate for photosynthesis in the green plants and the photosynthetic capacity of C₃ plants is limited by the CO₂ concentration in the present atmosphere. Various researchers have shown that the root system of some plants such as potato, barley, onion, citrus and soybean can absorb CO₂ (Overstreet 1940, Graf 1955, Coker 1981, Cramer and Richards 1999, Hibberd and Quick 2002). Artega and Poovaiah (1982) and McGuire *et al.* (2009) further confirmed that the leaf photosynthesis of potato plant

Received 23 November 2009, accepted 5 January 2011.

Abbreviations: ACES - the aeroponic culture experiment system; TEM - transmission electron microscopy.

Acknowledgments: This work was supported by the National Key Technology R&D Program of China (2001BA503B02). We were grateful to Ms. Wei-Zhi Chen for her technical assistance in the TEM. The authors thank Dr. Tom Langendoen and Prof. De-Hui Zeng for their help in revision of the manuscript.

* Corresponding author; fax: (+86) 24 88487166, e-mail: tianlaili@126.com

could use of the CO₂ absorbed by root system. In addition, Artega and Poovaiah (1979) reported the effects of 12 h CO₂ enrichment (45 % CO₂ + 21 % O₂ + 34 % N₂) in root zone on the growth of potato plant and the result showed significantly increased dry mass and tuberization

compared with control (ambient air treatment). Therefore, we studied the effects of different CO₂ concentrations in the root zone in combination with different O₂ concentrations on the anatomy and ultrastructure of potato leaves.

Materials and methods

Potato (*Solanum tuberosum* L. cv. Favorita) virus-free plantlets grown in the test tubes were firstly planted in peat:Vermiculite mixture (1:1/ v:v). After 21 d, twelve uniform single plantlets with height approximately 15 cm were transplanted on the culture barrel heads at equal spacing around the circumference of circle (30 cm diameter) in the aeroponic culture experiment system (ACES). The roots of each plantlet were inserted through holes (2 cm diameter). The stems were wrapped with asbestos and the lacuna of holes was filled with asbestos in order to prevent CO₂ leakage. The root zones of potato plants were continuously aerated with a gas stream at the flow rate of 3 - 10 dm³ min⁻¹.

The ACES system, developed by the Protected Horticulture Lab, Shenyang Agricultural University, included a plastic barrel for cultivation, a spray nozzle, a pump, an electronic timer, an electromagnetic valve, a control valve, a manometer, a solution strainer, a PVC pipe and reservoir (150 dm³). The nutrient solution, which contained [mg dm⁻³] 527 NO₃⁻, 16.2 NH₄⁺, 240 H₂PO₄⁻, 220 K⁺, 80 Ca²⁺, 28 Mg²⁺, 93 SO₄²⁻, 2 Fe²⁺, 1 Mn²⁺, 0.4 Zn²⁺, 2.1 H₂BO₄⁻, 0.03 Cu²⁺, and 0.1 MoO₄²⁻, was supplied for half min every 5 min by pump to the root zone of potato plants at a flow rate of 1 dm³ min⁻¹ and a pressure of 0.2 MPa. The solution in the reservoir (pH 6.0) was replaced biweekly and solution temperature was kept at 17 - 20 °C.

Four CO₂ treatments of root zone were used: 380 μmol(CO₂) mol⁻¹ + 21 % O₂, 3 600 μmol(CO₂) mol⁻¹ + 21 % O₂, 100 μmol(CO₂) mol⁻¹ + 5 % O₂ and 3 600 μmol(CO₂) mol⁻¹ + 5 % O₂). The first treatment corresponded to the ambient atmosphere level and the air was supplied by a compressor outside the greenhouse. The combination 3600 μmol mol⁻¹ (CO₂) + 21 % O₂ was a mixture of pure CO₂ and ambient air; 100 μmol mol⁻¹

(CO₂) + 5 % O₂ was made from a mixture of pure N₂ and current atmosphere; 3600 μmol mol⁻¹ (CO₂) + 5 % O₂ was a mixture of pure CO₂, pure N₂ and ambient air. CO₂ concentration of every treatment was monitored by a portable photosynthesis system *Li-Cor 6400* (Lincoln, NE, USA) twice a week.

In the greenhouse, the CO₂ concentrations varied from 380 μmol mol⁻¹ (day) to 920 μmol mol⁻¹ (night). A photosynthetic photon flux was 600 - 870 μmol m⁻² s⁻¹ at noon of a sunny day, at the same time there was ventilation from 9:30 to 14:30. Photoperiod was 10 - 12 h and day/night temperature 20 - 27/13 - 16 °C.

After 35-d treatment, samples from the tip leaflet of the fourth fully expanded leaf from the top were collected, immediately fixed in 3 % glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2), thoroughly washed with 0.1 M cacodylate buffer and postfixed in 2 % osmium tetroxide in the same buffer, dehydrated in a graded series of ethanol, and embedded in *Epon 812*. For light microscopy, thin sections (2 - 4 μm) were made with a *AO-820* (*Scientific instruments*, USA) rotary microtome and then observed and photographed using an *Olympus BH-2* (Tokyo, Japan) microscope. Quantitative data were based on 9 - 21 measurements per item. For electron microscopy, ultrathin sections collected on *Formvar*-coated copper grids were stained with uranyl acetate and lead citrate. Observations and photographs were taken using a *JEM-100CX/II* (*JEOL*, Japan) transmission electron microscope (TEM). Quantitative data were based on 50 - 180 measurements per item.

Experiments were conducted twice from October 2004 to June 2005. *ANOVA* was used to analyze the results and the means were compared by Duncan's multiple range test.

Results

The root-zone CO₂ enrichment had a significant influence on the leaf structure of potato plants (Table 1). Under a 21 % (normal) O₂ concentration in the root zone, plants treated by 3 600 μmol(CO₂) mol⁻¹ showed 10.6 % increase in the thickness of leaves and 5.7 % increase in the thickness of palisade parenchyma compared with the leaves of plants treated with ambient CO₂ concentration (380 μmol mol⁻¹). Under a 5 % O₂, the thickness of leaves

and palisade parenchyma increased by 21.4 and 11.4 %, respectively, under elevated CO₂ concentration compared with the 100 μmol(CO₂) mol⁻¹.

Under elevated CO₂ concentration (3 600 μmol mol⁻¹) together with 21 or 5 % O₂, smaller cells of palisade parenchyma, more intercellular air spaces and two partial layers of palisade cells were observed in the leaves (Fig. 1C,D). At 100 or 380 μmol(CO₂) mol⁻¹, the palisade

parenchyma consisted of one layers of long, uniform and tightly arranged cells (Fig. 1A,B).

Further, the CO₂ enrichment caused a significant decrease in the number of chloroplasts per palisade parenchyma cell, significant increase in the length of chloroplasts and no significant difference in the width. Under a 5 % O₂ concentration, the CO₂ enrichment led to increase in the length of chloroplasts, but no significant difference in the width and number of chloroplasts. In addition, under 3 600 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ and 21 % O₂, a highly significant decrease in the number of starch grains per palisade cell, but an increase in the number, length and width of starch grains per chloroplast were observed. Under the same CO₂ enrichment and 5 % O₂, there was a

significant increase in the number, length and width of starch grains per palisade tissue cell but no significant difference in the number of starch grains per chloroplast. The root-zone CO₂ enrichment caused a significant decline in the number of lamella per granum, and the thickness of grana per chloroplast, but there was no significant difference in the number of grana per chloroplast whether under 21 or 5 % O₂. Electron micrographs of chloroplast from 3 600 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ treated plants (Fig. 2D-F) showed increase in the size of starch grains per chloroplast, resulting in a distorted and swelled chloroplasts. In addition, the lamellar structure grana and the disk-structure grana were coexistent in a transverse section of chloroplast.

Table 1. Effects of 35-d CO₂ treatments in root zones on the leaf anatomy and chloroplast ultrastructure of potato plants. Means of three plants (50 -180 measurements per item). * - significantly different at $P \leq 0.05$ according to Duncan's multiple range test.

Leaf and chloroplast feature	21 % (O ₂)	5 % (O ₂)		
	380 $\mu\text{mol mol}^{-1}(\text{CO}_2)$	3600 $\mu\text{mol mol}^{-1}(\text{CO}_2)$	100 $\mu\text{mol mol}^{-1}(\text{CO}_2)$	3600 $\mu\text{mol mol}^{-1}(\text{CO}_2)$
Leaf thickness [μm]	243.40	269.20*	241.00	292.60*
Palisade layer thickness [μm]	110.60	116.40*	108.80	121.20*
Palisade/leaf thickness ratio	0.45	0.43	0.45	0.41
Number of chloroplasts [cell ⁻¹]	26.80	23.00*	21.33	23.00
Chloroplast length [μm]	3.23	3.40*	2.67	3.60*
Chloroplast width [μm]	1.67	1.84	1.50	1.57
Number of starch grains [cell ⁻¹]	44.20	40.40*	36.67	39.33*
Number of starch grains [chlp. ⁻¹]	1.65	1.76*	1.72	1.71
Starch grain length [μm]	1.30	1.51*	1.01	1.30*
Starch grain width [μm]	0.87	1.02*	0.60	0.84*
Number of grana [chlp. ⁻¹]	20.00	18.33	14.00	16.33
Thickness per granum [μm]	0.11	0.09*	0.09	0.07*
Number of lamellae [granum ⁻¹]	18.00	11.33*	11.00	8.96*

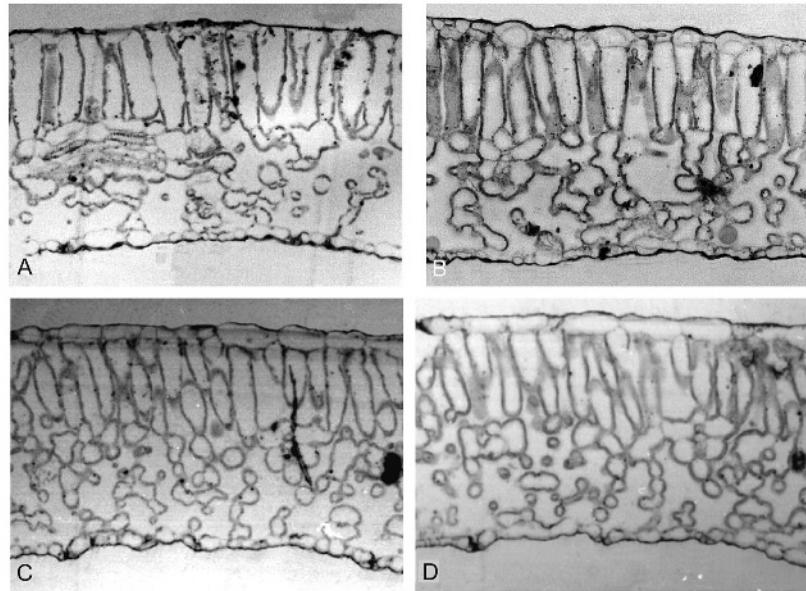


Fig. 1 Light micrographs of transverse sections of leaf tissues from 35-d potato plants grown under 380 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} + 21 \% \text{ O}_2$ (A), 100 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} + 5 \% \text{ O}_2$ (B), 3 600 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} + 21 \% \text{ O}_2$ (C) and 3 600 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} \text{ CO}_2 + 5 \% \text{ O}_2$ (D) in the root zone.

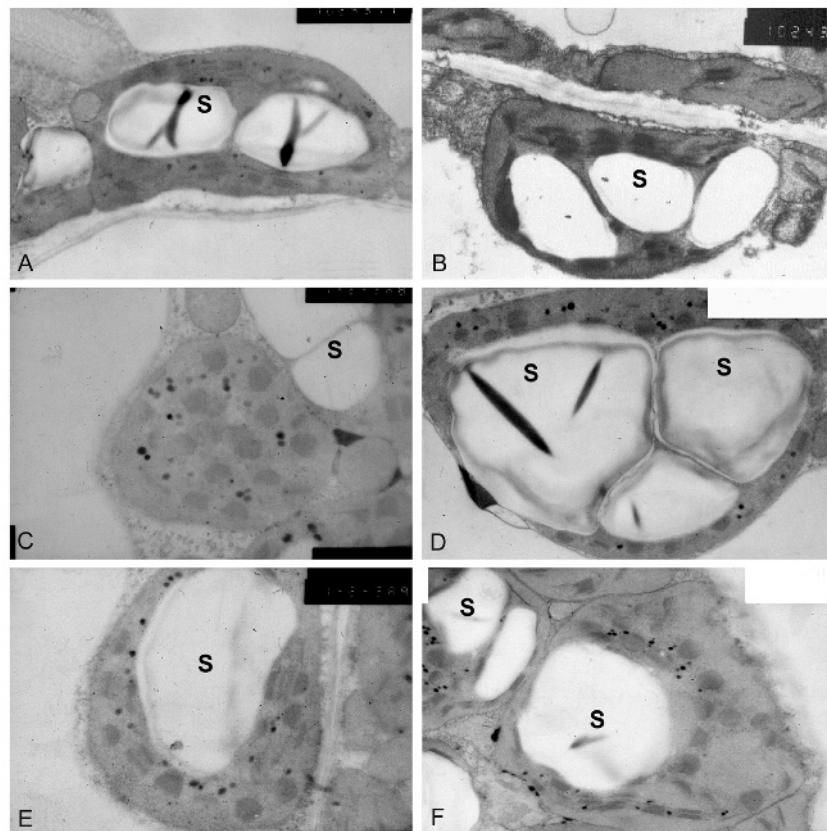


Fig. 2. Electron micrographs ($\times 10\,000$) of transverse sections of chloroplast from 35-d potato plants grown under $380 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} + 21\% \text{ O}_2$ (A,C), $3\,600 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} + 21\% \text{ O}_2$ (D,E), $100 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} + 5\% \text{ O}_2$ (B) and $3\,600 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1} \text{ CO}_2 + 5\% \text{ O}_2$ (F) in the root zone (S - starch grain; chloroplasts located in the side of palisade parenchyma cell (A,B,D,E), chloroplast located in the bottom of palisade layer (C,F).

Discussion

Potato plants exhibited a significant increase in the total leaf thickness following the root-zone CO_2 enrichment. This is consistent with studies with various crops such as common bean, soybean, and cucumber grown at the CO_2 enrichment in root atmosphere. However, the causes of increased leaf thickness are not all consistent. Radoglou and Jarvis (1992) found that the increased thickness of the *Phaseolus vulgaris* leaf was particularly due to increase in the spongy parenchyma thickness. However there were no significant differences in the ratio of palisade to spongy parenchyma, the number of layers of palisade cells and the stomatal density. Wei *et al.* (2002) observed simultaneous increase in the thickness of leaf, epidermis and palisade tissue with longer and more tightly arranged palisade cells, and a slight increase in the ratio of palisade tissue to leaf thickness in the CO_2 -enriched plants. Also, CO_2 enrichment around soybean roots (Vu *et al.* 1989, Lin and Hu 1996) caused an increase in leaf thickness, due to an increased number of palisade cells. In this study with the root-zone CO_2 enrichment, the thickness of potato leaves largely resulted

from a simultaneous increase of palisade and spongy tissue, but the rate of spongy tissue thickening was greater than that of palisade tissue. There were also smaller and loosely arranged cells of palisade tissue and more intercellular air spaces in the leaves. Furthermore, two partial layers of palisade parenchyma cells were also observed under CO_2 enrichment (Fig. 1D). These results suggest that different plant species respond differently to the CO_2 enrichment.

Although there are some differences in the acclimation of the leaf chloroplast ultrastructure of various plants to CO_2 enrichment either around the aboveground plant parts or the underground plant parts, starch grain accumulation in the leaf chloroplast was always found. In this study, the CO_2 enrichment in root zone significantly increased the size of chloroplast and number of starch grains per palisade parenchyma cell, and the number of starch grains per chloroplast. In addition, there was a significant decline in the thickness of grana, and the number of lamellae per granum. This was consistent with Zuo *et al.* (1996), who found that

under doubled root zone CO₂ concentration both the size and number of chloroplast in *Medicago sativa* increased, the grana became smaller and were infrequently dispersed among starch grains within the chloroplast. An accumulation of starch grains in the chloroplast of tomato leaves was also observed by Yelle *et al.* (1989). Many studies in potato also showed an increased leaf starch content following long-term exposure of roots to elevated CO₂ (Miglietta *et al.* 1998, Finnman *et al.* 2005). However, Wei *et al.* (2002) found in cucumber not only increased number and size of chloroplasts and starch grains in the palisade Parenchyma cells, but also the number of grana per chloroplast and lamella per granum under CO₂ enrichment.

According Gunning and Steer (1975), the grana of a mature chloroplast in higher plants consist of the flattened and disk-shaped thylakoids, which are typically stacked one on the top of the other in columns. Often these grana are erectly arranged along the long axis of chloroplast and interconnected by the stromal thylakoids. Such arrangement could significantly enlarge the effective area capturing sun radiation (Bunchanan *et al.* 2000, Perter and Johnson 2002). When observing the micrographs of transverse sections of chloroplast from TEM, the lamellar structure can be observed at the lateral view of the grana and the disk-shaped structure of grana at the top or bottom view of the grana. The lamellar structure of grana in the ultrathin sections of chloroplast was easily observed, but the disk-shaped-structure of grana was only seldom observed. In fact, under the ambient atmosphere of the root zone, the grana within the chloroplast in the palisade parenchyma cells had lamellar structure (Fig. 2A), and the disk-shaped-structure grana were occasionally observed only within the chloroplast located in the bottom of palisade layer (Fig. 2C). Under the CO₂

enrichment, coexistence of the lamellar-structure and the disk-shaped-structure grana was often observed. There were few in the chloroplast of the spongy parenchyma cells and in the bottom of palisade parenchyma layer (Fig. 2D-F). These results suggest that the accumulation and swelling of starch grains within the chloroplasts could influence the system of thylakoid membranes, change the grana position, and so reduce the capability of the thylakoid membranes for absorption and transformation of sun radiation.

The effect of starch accumulation on the depression of photosynthesis at CO₂ enrichment is not yet totally understood. Madsen (1975) demonstrated that tomato plants grown under high CO₂ concentrations in the root zone accumulated starch and had deformed thylakoids. Vu *et al.* (1989) and Zuo *et al.* (1996) also reported that the accumulated starch within the chloroplast damaged the thylakoids and grana, which consequently caused a long-term decline of photosynthesis at CO₂ enrichment. Yelle *et al.* (1989) also found the distorted thylakoids in the chloroplast of tomato plants grown at high CO₂ concentrations but they concluded the decrease of activated Rubisco was the main cause of the loss of photosynthetic efficiency and starch accumulation appeared to be a symptom. Based on the current study, we propose that the accumulation of starch grains in the chloroplast of potato leaves under long-term CO₂ enrichment in the root zone could alter the arrangement of grana thylakoids, which maybe result in an inhibition of sun radiation absorption and a decline of plant photosynthesis. However, the direct molecular, biochemical and physiological changes between starch accumulation and the depression of photosynthesis under long-term CO₂ enrichment still need a further research.

References

Arteca, R.N., Poovaiah, B.W., Smith, O.E: Changes in carbon fixation, tuberization and growth induced by CO₂ application to the root zone of potato plants. - *Science* **205**: 1279-1280, 1979.

Arteca, R.N., Poovaiah, B.W.: Absorption of ¹⁴CO₂ by potato roots and its subsequent translocation. - *J. amer. Soc. hort. Sci.* **107**: 398-401, 1982.

Ball, A.S., Drake, B.G.: Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation. - *Soil Biol. Biochem.* **30**: 1203-1205, 1998.

Bunchanan, B.B., Grussem, W., Jones, R.L.: Biochemistry and Moleculer Biology of Plants. - Courier Companies, Rockville 2000.

Coker, G.T., Shubert, K.R.: Carbon dioxide fixation in soybean root and nodules. I. Characterization and comparison with N₂ fixation and composition of xylem exudates during early nodule development. - *Plant Physiol.* **67**: 691-696, 1981.

Cramer, M.D., Richards, M.D.: The effect of rhizosphere dissolved inorganic carbon on gas exchange characteristics and growth rates of tomato seedlings. - *J. exp. Bot.* **50**: 79-87, 1999.

Diao, Y.W., Zheng, X.H., Wang, Y.S., Xu, Z.J., Han, S.H., Zhu, J.G.: [Measurement of CO₂ profiles in non-waterlogged soil in a FACE study.] - *Chin. J. appl. Ecol.* **13**: 1249-1252, 2002.[In Chin.]

Edwards, N.T., Norby, R.J.: Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO₂ enrichment and elevated air temperature. - *Plant Soil* **206**: 85-97, 1999.

Finnan, J.M., Donnelly, A., Jones, M.B., Burke, J.I.: The effect of elevated levels of carbon dioxide on potato crops, - *J. Crop Improvement* **13**: 91-111, 2005.

Gonzalez-Meler, M.A., Taneva, L., Trueman, R.J.: Plant respiration and elevated atmospheric CO₂ concentration: cellular responses and global significance. - *Ann. Bot.* **94**: 647-656, 2004.

Graf, G.E., Aronoff, S.: Carbon dioxide fixation in roots. - *Science* **121**: 211-212, 1955.

Gunning, B.E., Steer, M.W.: Plant Cell Biology, an Ultrastructural Approach. - Edward Arnold, London 1975.

Hibberd, J.M., Quick, W.P.: Characteristics of C₄ photosynthesis in stems and petioles of C₃ flowering plants. - *Nature* **415**: 451-454, 2002.

Ineson, P., Coward, P.A., Hartwig, U.A.: Soil gas fluxes of N₂O, CH₄ and CO₂ beneath *Lolium perenne* under elevated CO₂: the Swiss free air carbon dioxide enrichment experiment. - *Plant Soil* **198**: 89-95, 1998.

Janssens, I.A., Ceulemans, R.: The response of soil CO₂-efflux under trees grown in elevated atmospheric CO₂: a literature review. - *Phyton* **40**: 97-101, 2000.

Janssens, I.A., Crookshanks, M., Taylor, G., Ceulemans, R.: Elevated atmospheric CO₂ increases fine root production, respiration, rhizosphere respiration and soil CO₂ efflux in Scots pine seedlings. - *Global Change Biol.* **4**: 871-878, 1998.

Johnson, D., Geisinger, D., Walker, R., Newman, J., Vose, J., Elliot, K., Ball, T.: Soil pCO₂, soil respiration, and root activity in CO₂-fumigated and nitrogen fertilized ponderosa pine. - *Plant Soil* **165**: 129-138, 1994.

Kimball, B.A., LaMorte, R.L., Pinter, P.J., Wall, G.W., Hunsaker, D.J., Adamsen, F.J., Leavitt, S.W., Thompson, T.L., Matthias, A.D., Brooks, T.J.: Free-air CO₂ enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat. - *Water Resources Res.* **35**: 1179-1190, 1999.

Kimball, B.A., Zhu, J.G., Cheng, L., Kobayashi, K., Bindi, M.: [Responses of agricultural crops to free-air CO₂ enrichment.] - *Chin. J. appl. Ecol.* **13**: 1323-1338, 2002. [In Chin.]

King, J.S., Hanson, P.J., Bernhardt, E., DeAngelis, P., Norby, R.J., Pregitzer, K.S.: A multiyear synthesis of soil respiration responses to elevated atmospheric CO₂ from four forest FACE experiments. - *Global Change Biol.* **10**: 1027-1042, 2004

Körner, C., Arnone, J.A.: Responses to elevated carbon dioxide in artificial tropical ecosystems. - *Science* **257**: 1672-1675, 1992.

Lin, J.X., Hu, Y.X.: [Structural response of soybean leaf to elevated CO₂ concentration.] - *Acta bot. sin.* **38**: 31-34, 1996. [In Chin.]

Li, X.M., He, X.Y., Zhang, L.H., Chen, W., Chen, Q.: Influence of elevated CO₂ and O₃ on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. - *Biol. Plant.* **53**: 339-342, 2009

Luo, Y., Jackson, R.B., Field, C.B., Mooney, H.A.: Elevated CO₂ increases belowground respiration in California grasslands. - *Oecologia* **108**: 130-137, 1996.

Madsen, E.: Effect of CO₂ environment on growth, development, fruit production and fruit quality of tomato from a physiological viewpoint. - In: Chouard, P., De Belderling, N. (ed.): *Phytotronics in Agricultural and Horticultural Research*. Pp. 318-330. Bordas, Paris 1975.

McGuire, M.A., Marshall, J.D., Teskey, R.O.: Assimilation of xylem-transported ¹³C-labelled CO₂ in leaves and branches of sycamore (*Platanus occidentalis* L.). - *J. exp. Bot.* **60**: 3809-3817, 2009.

Miglietta, F., Magliulo, V., Bindi, M., Cerio, L., Vaccari, F.P., Loduca, V., Peressottis, A.: Free air CO₂ enrichment of potato (*Solanum tuberosum* L.): development, growth and yield. - *Global Change Biol.* **4**: 163-172, 1998.

Overstreet, R., Ruben, S., Broyer, T.C.: The absorption of bicarbonate ions by barley plants as indicated by studies with radioactive carbon. - *Proc. nat. Acad. Sci. USA* **26**: 688-695, 1940.

Pearson, P.N., Palmer, M.R.: Atmospheric carbon dioxide concentrations over the past 60 million years. - *Nature* **406**: 695-699, 2000.

Perter, P.H., Johnson, G.B.: *Biology*. 6th Ed. - McGraw-Hill Companies, New York 2002.

Radoglou, K.M., Jarvis, P.G.: The effects of CO₂ enrichment and nutrient supply on growth, morphology and anatomy of *Phaseolus vulgaris* L. seedlings. - *Ann. Bot.* **70**: 245-256, 1992.

Vose, J.M., Elliot, K.J., Johnson, D.W., Tingey, D.T., Johnson, M.G.: Soil respiration response to three years of elevated CO₂ and N fertilization in ponderosa pine (*Pinus ponderosa* Doug ex. Laws.). - *Plant Soil* **190**: 19-28, 1997.

Vu, J.C.V., Allen, L.H., Jr., Bowes, G.: Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO₂ enrichment. - *Environ. exp. Bot.* **29**: 141-147, 1989.

Wei, M., Xing, Y.X., Wang, X.F., Ma, H.: [Effects of CO₂ enrichment on the microstructure and ultrastructure of leaves in cucumber.] - *Acta hort. sin.* **29**: 31-34, 2002. [In Chin.]

Yelle, S., Beeson, R.C., Jr., Trudel, M.J., Gosselin, A.: Acclimation of two tomato species to high atmospheric CO₂. - *Plant Physiol.* **90**: 1465-1472, 1989.

Zuo, B.Y., Jiang, G.Z., Bai, K.Z., Kuang, T.Y.: [Effects of doubled-CO₂ concentration on the ultrastructure of chloroplasts from *Medicago sativa* and *Setaria italica*.] - *Acta bot. sin.* **38**: 72-76, 1996. [In Chin.]