

Development of thirty new polymorphic microsatellite primers for *Paeonia suffruticosa*

X.-G. HOU¹, D.-L. GUO^{2*}, S.-P. CHENG¹ and J.-Y. ZHANG²

College of Agriculture¹ and College of Forestry², Henan University of Science and Technology, 70 Tianjin Road, Jianxi District, Luoyang 471003, Henan Province, P.R. China

Abstract

Four new microsatellite primer pairs were developed in tree peony (*Paeonia suffruticosa*) based on the database mining and other twenty-six primer pairs by fast isolation by AFLP of sequences containing repeats (FIASCO) method. The polymorphism of each locus was further evaluated in 40 individuals of one population plus 5 tree peony related species. The number of alleles per locus ranged from 3 to 7 and the expected (H_e) and observed (H_o) heterozygosity at each locus ranged from 0.42 to 0.78 and 0.28 to 0.59, respectively. These microsatellite markers will be useful for investigating genetic diversity and studies of population genetic structure of tree peony.

Additional key words: database mining, FIASCO, SSR, tree peony.

Tree peony (*Paeonia suffruticosa*) is one of the famous horticultural plants in the world. In order to protect the valuable wild species and better understanding and sustainable use of the genetic resources of tree peonies, it is crucial to use suitable molecular markers. Several recent studies have documented genetic diversity and constructed genetic relationships among cultivars using DNA molecular markers, such as amplified fragment length polymorphism (AFLP; Hou *et al.* 2006), inter-simple sequence repeat (ISSR; Suo *et al.* 2005), random amplified polymorphic DNA (RAPD; Hosoki *et al.* 1997) and sequence-related amplified polymorphism (SRAP; Han *et al.* 2008, Guo *et al.* 2009).

Microsatellites, also described as polymorphic simple sequence repeats (SSRs), are widely distributed, short, tandemly repeated sequences of 1 - 6 nucleotides. Microsatellites have become the markers of choice for genetic mapping, genotyping, fingerprinting and genetic diversity studies in plants (Akkak *et al.* 2009, Akratidis *et al.* 2009). At present, a lot of methods were available

to develop microsatellite markers, among which a time and cost effective method is fast isolation by AFLP of sequences containing repeats (FIASCO) presented by Zane *et al.* (2002). Where abundant sequence data is already available, it is more efficient to use computation tools to identify SSR loci.

Two methods were employed to develop microsatellite primers. First, the tree peony sequences data were exploited using the software of SSR primer (Jewell *et al.* 2006) in January 2007. There were 362 sequences altogether and 24 sequences were identified, which contained the SSR motifs. Twenty-four primer pairs were designed and used to amplify in 40 individuals of tree peony from one population in Song County, Henan Province, China and 5 tree peony related species, *i.e.*, *P. jishanensis*, *P. qium*, *P. ostii*, *P. rockii* and *P. ludlowii* which were collected from Luoyang Chinese National Genbank of Tree Peony. Only four primer pairs produced clear, stable and polymorphic bands (PSMP1, PSMP2, PSMP3, PSMP7; Table 1).

Received 11 November 2009, accepted 15 April 2010.

Abbreviations: AFLP - amplified fragment length polymorphism; CTAB - cetyltrimethylammonium bromide; FIASCO - fast isolation by AFLP of sequences containing repeats; ISSR - inter-simple sequence repeat; RAPD - random amplified polymorphic DNA; SRAP - sequence-related amplified polymorphism; SSR - microsatellite or simple sequence repeat.

Acknowledgements: This work was supported by Natural Science Foundation of China (NSFC: 30800742 and 31070620), Program for Science and Technology Innovation Talents in Universities of Henan Province (2010HASTIT002) and Young Teacher Funding Program of Henan Higher school (2010GGJS-072).

* Corresponding author; fax: (+86) 0379 64282345, e-mail: guodalong@mail.haust.edu.cn

Table 1. Primers sequence and characteristics of microsatellite loci in tree peony. Annealing temperature (Ta,°), size range of fragments, number of alleles (N_A) in *P. suffruticosa* (*P.s.*) and including relative species (r.s.), observed (H_o) and expected (H_e) heterozygosities are based on a sample of 40 individuals of one tree peony population.

Locus	Repeat motif	Primer sequences (5'-3')	Ta [°C]	Size [bp]	N _A (<i>P.s.</i>)	N _A (r.s.)	H _o	H _e	GenBank No.
PAC38	(TG) ₈	F:GATGGGTATGATTGTGAGCA R:GTCCTGTGGTTGACTTTC	55 55	373	5	7	0.46	0.65	GQ480167
PAC36	(AC) ₁₅	F:CTGCAGGTGACGATTAC R:ATCGTGTATGTGTGATGGGT	57 55	389	3	4	0.55	0.71	GQ480168
PAC28	(AC) ₁₇	F:CTGCAGGTGACGATTAC R:ATCCTGAGTAACATTGCCT	57 55	247	5	7	0.32	0.67	GQ480169
PAC37	(CA) ₁₂ ,(AC) ₁₁	F:GAGATTGATGAGTCCTGAGTAA R:TGAAATCCCCAGTGAGTTGA	56 55	252	3	5	0.43	0.50	GQ480170
PC1	(AG) ₇	F:CTACCCACGACCCCTTTGAG R:AGCACTCTCACAACATTTCATAC	59 56	243	5	5	0.56	0.71	GQ480171
PC2	(TC) ₁₆	F:AAATACAACACTCCTCACC R:CTTCTCCAGCGTAATCCATA	55 55	318	3	4	0.43	0.55	GQ480172
PC15	(GA) ₉	F:TAGAGATTGATGAGTCCTGAGT R:AACTCCAGATGATGTTGAATA	56 52	357	6	6	0.40	0.58	GQ480173
PC4	(AC) ₆	F:GAGATTGATGAGTCCTGAGTAA R:TGAGAAAAGTGGGAGTTG	52 56	276	4	4	0.38	0.59	GQ480174
PC6	(TC) ₁₉	F:TCTTCCATTTCATAGATTTC R:CAAATAAACCAACACCAATAAGA	48 52	313	4	5	0.45	0.59	GQ480175
PC7	(GA) ₈	F:TTTTCTGGAGGGCTACGG R:TATCCAGATTATCCTCTCACC	55 56	241	4	6	0.58	0.73	GQ480176
PC8	(CT) ₆	F:GATTGATGAGTCCTGAGTAACC R:GAAGAAAACGGAGAAAAGGT	55 57	285	5	7	0.49	0.72	GQ480177
PC9	(AG) ₁₆	F:GAAATACTCGGGACGCGAC R:TTCTCCAAGCAAAGGT	57 52	317	4	6	0.35	0.57	GQ480178
PC11	(CT) ₁₄ ,(TC) ₁₆	F:GAGTCCTGAGTAACCCAACA R:CAAACACCCAAGACCGAAT	57 52	382	5	6	0.55	0.75	GQ480179
PC13	(AG) ₁₃ ,(GA) ₁₀	F:AGCAAAAAGGGAGAAGTAAG R:ATTATGGCGAGTTATTGGA	53 51	369	5	5	0.49	0.67	GQ480180
PAC51	(AT) ₅ , (CA) ₁₆	F:AGAGATTGATGAGTCCTGAGTA R:TAGGAGTTGTAAAGTAGGAGA	56 54	298	5	6	0.57	0.73	GQ480181
PAC52	(TA) ₅	F:CCAAACCCAAACAGAAC R:CCGATACACCCATCCTCA	54 56	327	6	6	0.58	0.62	GQ480182
PAC54	(GT) ₁₉ ,(TG) ₁₄	F:GATACTTAGTCCAACCTGTGA R:TGGCGATAAACTGAGTGAAA	56 53	375	3	5	0.32	0.60	GQ480183
PAC55	(AC) ₁₆ ,(AC) ₁₄	F:ACTACCCAGGCAGTGTGC R:AAGGTGGTGGAGGAAGAT	59 55	257	3	3	0.28	0.47	GQ480184
PAC58	(AC) ₅	F:TAGAGATTGATGAGTCCTGAG R:GTAAGTCCCGCTTGCCTC	57 55	276	4	6	0.35	0.62	GQ480185
PAC62	(CA) ₇	F:ATCTCACTATACCCAAACG R:CCATAAGGGTGTGATTG	55 55	219	5	7	0.59	0.78	GQ480186
PAC63	(TG) ₅	F:GTGTGATTGATGCTTGGTT R:AATATCTCACAAACACTCAGGT	56 53	286	4	6	0.36	0.51	GQ480187
PAC64	(GT) ₁₅	F:CTGAGGACATTGTTGTTGAT R:AACTCTTCTCTGTTACACGAT	52 56	327	4	7	0.41	0.62	GQ480188
PAC65	(AG) ₂₀	F:TAGTGGGTCTGAATAGTCTGG R:GCTAAAATAAACACGGCATAAG	58 54	298	5	7	0.31	0.40	GQ480189
PAC66	(GT) ₁₅	F:TGAGGACATTGTTGTTGA R:TGAAACCCAAACCCCTCT	49 52	278	3	3	0.41	0.53	GQ480190
PAC67	(GGT) ₄	F:TGAGTAATCACAGGCGGTAG R:TCGGAAACAAATGAAACAGG	57 53	327	5	7	0.52	0.72	GQ480191
PAC78	(CA) ₆	F:CATCTTCACTACTATCCAGGTC R:TTACCCATAAGGATGATGATTCT	56 54	324	4	4	0.31	0.52	GQ480192
PSMP1	(CTCAA) ₃	F:AAATCAAGAATGAGACACGG R:AGAGAAGAGGGTAAATAAAG	55 58	243	5	5	0.40	0.51	DQ479363.1
PSMP2	(ATTT) ₇	F:GACTATTTGGCCCAAGACAT R:AAGATACAAGCAGTTCACGC	52 56	357	3	4	0.38	0.47	AY016279.1
PSMP3	(ATTT) ₅	F:GTCATAAGCGTGTCCCAAGC R:AATCAAAGACGGTTCGGCAG	54 57	329	5	5	0.35	0.42	AY016281.1
PSMP7	(AG) ₈	F:CATTCCCACCTCCAACCT R:GGCAACACGCTTATGACACA	58 53	372	4	7	0.36	0.56	AY016265.1

Microsatellite loci were isolated from widely cultivated tree peony genotype Luoyanghong using FIASCO method (Zane *et al.* 2002). A modified version of the cetyltrimethyl ammonium bromide (CTAB) method was used to extract genomic DNA (Han *et al.* 2008). An enriched and partial genomic library was constructed following the FIASCO protocol (Zane *et al.* 2002). Enrichment was performed using the *Streptavidin MagneSphere Paramagnetic Particles* kit (Promega, Madison, USA) with biotinylated probes Bio-(GA)₁₅ and Bio-(AC)₁₅. Recovered DNA was amplified *via* polymerase chain reaction (PCR) using adapter primer. The amplified products were purified with EZ-10 spin column DNA gel extraction kit (Sangon Biological Engineering Technology and Services Co., Shanghai, China), then ligated into the pMD-18T vector (TaKaRa, Dalian, China). The ligation products were transformed into DH5 α competent cell and positive clones were sequenced by Sun-Biotech Co. (Beijing, China). Positive clones were selected randomly to be sequenced and specific primers were designed to flank microsatellite rich regions.

Then, 53 sequences were obtained from 59 randomly selected clones, which were sequenced by Beijing Sunbiotech Limited Company. Among those, 30 positive clones were shown to contain SSR motifs when screened with SSRprimer software. Twenty-six primer pairs were designed using Primer Premier 5.0 software (<http://www.premierbiosoft.com/primerdesign/>). Microsatellite-PCR was conducted with a PCR mixture containing

30 ng of tree peony DNA extracted from leaves, 1× PCR buffer, 2.5 mM MgCl₂, 0.2 mM dNTPs, 1 U *Taq* DNA polymerase (TaKaRa), 0.3 μ M each primer and water to a final volume of 20 cm³. Cycling conditions were: denaturation step at 94 °C for 4 min followed by 35 cycles at 94 °C for 1 min, 55 °C for 1 min, 72 °C for 1 min and a final extension at 72 °C for 10 min. PCR products were resolved on 6 % denaturing polyacrylamide gels and visualized by silver staining with *Silver Sequence* DNA sequencing system (Promega).

All 26 primers showed high polymorphisms (Table 1). The observed number of alleles ranged between 3 and 7. The observed and expected heterozygosities for each locus were calculated using GENALEX 6.2 (Peakall and Smouse 2006). Expected (H_e) and observed (H_o) heterozygosity at each locus ranged from 0.42 to 0.78 and 0.28 to 0.59, respectively (Table 1). Tests for linkage disequilibrium and estimate deviations from Hardy-Weinberg equilibrium (HWE) within one population were performed using Arlequin version 3.1 (Excoffier *et al.* 2005). No significant deviation from Hardy-Weinberg equilibrium after Bonferroni sequential correction for multiple comparisons was observed. No significant linkage disequilibrium was observed between any pair of loci ($P < 0.05$ for all comparisons). The obtained high levels of polymorphism primers combined with which were isolated by Wang *et al.* (2009) will be useful for investigating genetic diversity and studies of population genetic structure in tree peony.

References

Akkak, A., Scariot V., Torello Marinoni, D., Boccacci, P., Beltramo, C., Botta, R.: Development and evaluation of microsatellite markers in *Phoenix dactylifera* L. and their transferability to other *Phoenix* species. - Biol. Plant. **53**: 164-166, 2009.

Akritidis, P., Mylona, P.V., Tsaftaris, A.S., Polidoros, A.N.: Genetic diversity assessment in Greek *Medicago truncatula* genotypes using microsatellite markers. - Biol. Plant. **53**: 343-346, 2009.

Excoffier, L., Laval, G., Schneider, S.: Arlequin ver. 3.0: an integrated software package for population genetics data analysis. - Evol. Bioinform. Online **1**: 47-50, 2005.

Guo, D.L., Hou, X.G., Zhang, J.: Sequence-related amplified polymorphism analysis of tree peony (*Paeonia suffruticosa* Andrews.) cultivars with different flower colours. - J. Hort. Sci. Biotechnol. **84**: 131-136, 2009.

Han, X.Y., Wang, L.S., Shu, Q.Y.: Molecular Characterization of tree peony germplasm using sequence-related amplified polymorphism markers. - Biochem. Genet. **46**: 162-179, 2008.

Hosoki, T., Kimura, D., Hasegawa, R., Nagasake, T., Nishimoto, K., Ohta, K., Sugiyama, M., Haruki, K.: Comparative study of Chinese tree peony cultivars by random amplified polymorphic DNA (RAPD) analysis. - Sci. Hort. **70**: 67-72, 1997.

Hou, X.G., Yin, W.L., Li, J.J., Wang, H.F.: AFLP Analysis of genetic diversity of 30 tree peony (*Paeonia suffruticosa* Andr.) cultivars. - Sci. Agr. sin. **39**: 1709-1715, 2006.

Jewell, E., Robinson, A., Savage, D., Erwin, T., Love, C.G., Lim, G.A., Li, X., Batley, J., Spangenberg, G.C., Edwards, D.: SSR primer and SSR taxonomy tree: biome SSR discovery. - Nucl. Acids Res. **34**: 656-659, 2006.

Peakall, R., Smouse, P.E.: GENALEX 6: genetic analysis in excel population genetic software for teaching and research. - Mol. Ecol. Notes **6**: 288-295, 2006.

Suo, Z.L., Li, W.Y., Yao, J., Zhang, H.J., Zhang, Z.M., Zhao, D.X.: Applicability of leaf morphology and intersimple sequence repeat markers in classification of tree peony (*Peoniaceae*) cultivars. - HortScience **40**: 329-334, 2005.

Wang, J.X., Xia, T., Zhang, J.M., Zhou, S.L.: Isolation and characterization of fourteen microsatellites from a tree peony (*Paeonia suffruticosa*). - Conserv. Genet. **10**: 1029-1031, 2009.

Zane, L., Bargelloni, L., Patarnello, T.: Strategies for microsatellite isolation: a review. - Mol. Ecol. **11**: 1-16, 2002.