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Isolation and characterization of cold inducible genes in carrot
by suppression subtractive hybridization
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Abstract

Daucus carota is cultivated widely but grows best in cool climates. Suppression subtractive hybridization (SSH) is a
PCR based method used to selectively amplify differentially expressed cDNAs and simultaneously suppress non-target
cDNA. A subtraction forward library was constructed using RNA isolated from the leaves of unstressed and cold
stressed carrot plants to determine the genes upregulated during cold stress. Out of the hundreds of clones obtained,
sequences of 41 promising clones were submitted to the NCBI EST database. Sequence analyses revealed that these
genes have significant roles in signal transduction, osmolyte synthesis and transport, regulation of transcription,
translation, and protein folding. Semiquantitative real-time polymerase chain reaction analysis (sqRT-PCR) of Dc cyclin,
Dc WD, and Dc profilin shows that the first two genes were upregulated whereas Dc profilin was constitutively
expressed, but the analyses of the same with SSH, a much more sensitive technique, showed an upregulation of all three

genes.
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Introduction

Low temperature is one of the major abiotic stresses,
which limit growth, geographical distribution, and
productivity of various crop plants (Thapa et al. 2011).
Plants that grow in high altitude as well as in arctic
climates are adapted to very low or even freezing
temperatures by modifications in their metabolism. The
change in adaptability of plants is mainly due to the
difference in gene expression patterns. The cold
responsive genes encode proteins involved in plant
metabolism or membrane integrity, several stress-
protective proteins (dehydrins, antifreeze proteins, etc.),
and low molecular mass compounds (sugars, proline,
mannitol, etc.), which act as osmolytes.

Daucus carota L. (carrot) is tolerant to cold stress and
it can withstand cold weather and mild frost. Also, the
plant flowers only after vernalization (Samuoliene et al.
2008). This gives indirect support that the low
temperature tolerance may be due to the expression of
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various cold-responsive genes in plant. The traditional
breeding strategy for improvement of abiotic stress
tolerance is limited (Rodrigues ef al. 2006). A wide range
of modern molecular techniques and strategies such as
serial analysis of gene expression (SAGE), suppression
subtractive hybridization (SSH), microarray, quantitative
real-time PCR (qRT-PCR), and cDNA microarray enables
identification of different genes having high potential to
achieve tolerant phenotypes (Sreenivasulu et al. 2007).
SSH is one of the popular methods for generating cDNA
libraries to study differential gene expression (Lukyanov
et al. 1994), especially to characterize differentially
expressed genes in response to various stresses (Kang
et al. 2010).

In this study, we used SSH to isolate cold responsive
genes from leaves of cold-treated carrot plants. Several
potential genes were identified and the putative functions
were correlated.

Abbreviations: DREBs - dehydration-responsive element-binding proteins; EST - expressed sequence tag; MS - Murashige and
Skoog; qRT-PCR - quantitative real-time polymerase chain reaction; RACE - rapid amplification of cDNA ends; SAGE - serial
analysis of gene expression; SSH - suppression subtractive hybridization, SUMO - small ubiquitin like modifier.
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Materials and methods

Daucus carota L. cv. Kuroda seeds were germinated in
commercially available soil mix supplemented with 1/10
strength sterile Murashige and Skoog (MS) medium and
the plants were maintained in controlled conditions in
greenhouse (temperature of 23 °C, 16-h photoperiod,
irradiance of 200 + 20 pmol m? s, air humidity of
70 - 75 %). One month old plants were exposed to cold
stress at 4 °C for 24 h in a plant growth chamber. Plants
maintained at 23 °C were used as controls.

Young leaves from the control and cold stressed
plants were harvested at the same time and immediately
frozen in liquid nitrogen untill further use. Total RNA
was isolated from control and test samples using Qiagen
(Valencia, CA, USA) RNeasy RNA isolation kit and on
column DNase digestion was performed as per the
manufacturer’s instruction. The mRNA was purified from
the total RNA using PolyATtract® mRNA isolation
system I (Promega, Madison, USA).

SSH was carried out using PCR-select ¢cDNA
subtraction kit (Clontech Laboratories, Palo Alto, CA,
USA) according to the manufacturer’s instructions.
Double stranded cDNA (ds cDNA) was synthesized from
4 pg of poly A" purified mRNA. The cDNA of control
sample (driver population) and the stressed sample (tester
population) were quantified and digested with Rsal
(Fermentas, Maryland, USA). The tester cDNA was
ligated to adapter 1 and adapter 2R separately in 2 ligation
reactions at 16 °C overnight. The first hybridization
reaction was carried out at 68 °C for 8 h after adding
excess of driver cDNA (4 - 5 times) to the adapter ligated
tester cDNA 1 and 2R separately. The second hybridi-
zation reaction was carried out at 68 °C for 12 h after
mixing the products of first hybridization reaction 1 and 2
in presence of excess of fresh driver cDNA (4 - 5 times).

The resultant subtractive product was amplified by
PCR wusing primers which were complementary to
sequence of adapters 1 and 2R. The PCR was carried out
in Mycycler™ (Bio-Rad, Hercules, CA, USA) using the
following conditions: initial denaturation at 94 °C for
5 min followed by 27 cycles of 94 °C for 30 s, 66 °C for
30 s, and 72 °C for 90 s. The first PCR was followed by a
nested PCR of 12 cycles at 94 °C for 30 s, 68 °C for 30 s,
and 72 °C for 90 s. The final PCR product was the
subtracted forward cDNAs which were enriched with
genes over expressed during cold stress in carrot.

The subtracted cDNA library product was purified
using Genei Pure™ quick PCR purification kit
(Bangalore Genei, Bangalore, India). The purified
product was digested with Rsal and ligated in the Smal
site of pBluescript KS (+) vector for blunt end cloning.
The ligated product was transformed to Escherichia coli
DH5a cells. Transformed colonies were selected in Luria
Bertani agar supplemented with ampicillin, isopropyl
B-D-1-thiogalactopyranoside (IPTG), and X-gal.

The putative white recombinant colonies from the
subtracted library were screened for the size of insert by
colony PCR using M13 primers. All the reagents for the
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PCR reaction were from Fermentas. The reaction mix
contained 10 mM Tris HCI (pH 8.8), MgCl, (2.5 mM),
dNTP mix (1 mM each), M13 forward primer and M13
reverse primer (10 pM), Taq DNA polymerase (5 U mm™)
and the volume was made with PCR grade water. PCR
was carried out with an initial denaturation at 95 °C for
5 min, followed by 30 cycles of 95 °C for 30 s, 55 °C for
60 s, 72 °C for 90 s, and a final extension of 5 min at
72 °C. The PCR products were resolved in 2 % (m/v)
agarose gel and stained with ethidium bromide.

Plasmid DNA was isolated from the randomly
selected recombinant clones using Hipura plasmid DNA
isolation kit, (Himedia Laboratories, Mumbai, India).
The plasmid DNA was sequenced in 3730 DNA analyzer
(dApplied Biosystems, Foster City, CA, USA) using M13
forward primer. The vector sequences were removed
from the obtained sequence using the VecScreen online
software (www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html).
The EST sequences were analyzed using BLASTN from
the NCBI database (www.ncbi.nlm.nih.gov/blast/).
Homology searches were performed against non-
redundant nucleotide sequence using BLASTN. The
unique EST sequences were submitted to the NCBI
GenBank EST database.

The transcript accumulation of the 3 genes were
studied after application of cold stress on carrot plants.
One month old carrot plants were exposed to 4 °C for 5 d.
Samples were harvested every day at the same time and
were immediately frozen in liquid nitrogen and stored in
-80 °C until further processing. RNA was isolated from
all the samples using Qiagen RNeasy RNA isolation kit
and on column DNase digestion was performed to

Table 1. Primer used for the semiquantitative RT-PCR analysis.

Gene Primer sequence

Dc WD F: 5’- TGTCAATGGCCTCCACAAATT-3’

R: 5’- TTTACAGCTGAAGTGTGTTCTTCCA-3’
F: 5- AAGCTCTGGTGTTTGGAGT-3’

R: 5’- TAATCTCCAAGCCTCTCAAC-3’

F: 5’- ACAATTCGAGTGCTGTTTCT-3’

R: 5’-CTGTGGGTCATCAAATTTCT-3’

F: 5- TGGTGATGCTGGTTTCGTTAAG -3’

R: 5~ ATGGGAGGGTAGGACATGAAGGT -3’

Dc Profilin 4
Dc Cyclin 2b

Dc EFla

remove the genomic DNA from the RNA sample. The
RNA was quantified in Nanodrop (Thermo Scientific,
Pittsburgh, PA, USA) and the integrity was checked in
formamide gel. RNA (2 pg) was used for the synthesis of
cDNA using RETROscript® kit for RT-PCR (4Ambion,
Austin, TX, USA) according to manufacturer’s instruc-
tions. Primers were designed using Primer Express
software (Applied Biosystems) from the already available
sequence from GenBank for Daucus carota (Dc) WD, Dc
profilin 4 and Dc cyclin 2b. The first strand cDNA was



diluted 10 times using nuclease free water and used as
template for PCR. PCR was performed using Ready to go
PCR beads (GE Healthcare, Little Chalfont, UK). The
primer sequences are given in Table 1. Dc eukaryotic
elongation factor 1 a (eEFla) was used as the internal
control for semiquantitative (sq) RT-PCR. The PCR cycle

Results and discussion

The reliability of the SSH method is dependent on the
quality and quantity of RNA used. The RNA used in this
study was isolated from young rosettes and two clear
bands of 18S and 28S rRNA were observed in the
formamide gel indicating RNA integrity (data not
shown). High quality mRNA was separated from the total
RNA and used for the synthesis of cDNA. The forward
library was constructed using the stress-induced sample
as the tester population and the control sample as the
driver population to determine the genes upregulated
during the cold stress. The cDNA samples, which were
differentially expressed, were obtained after two rounds
of hybridization followed by two rounds of suppression
PCR. These cDNAs were enriched with genes upregu-
lated during cold stress or using the forward cDNA
library.

The PCR product of the second round of PCR,
representing the subtracted cDNA library, was ligated to
pBluescript KS (+) vector and was used to transform
E. coli cells. The white colonies were screened using
M13 primers and selected clones were used for the
sequencing.

Around 75 randomly selected clones were sequenced.
Among that, 62 clones gave readable sequences. After
removing the redundant or vector backbone sequences,
41 sequences were submitted to the EST database
(Table 2).

The sqRT-PCR indicated accumulation of cyclin and
WD repeat protein after stress whereas there was no
change in content of profilin (Fig. 1). Cyclin is one of the
major proteins that regulate different stages of the cell
cycle by its concerted expression and degradation.
Cyclins along with cyclin dependent protein kinases
(CDKs) achieve cell cycle regulation by phosphorylating
different targets. Interaction of Arabidopsis cyclin D2
expressed in transgenic rice with endogenous CDK
enhanced seedling growth (Oh et al. 2008). Cell cycle
activities involved in stress responses are mediated by
transcription factors (Morano et al. 1999). Transgenic
rice expressing OsMYB3R-2 enhanced low temperature
tolerance that has been shown to be mediated by
alteration in cell cycle (Ma et al. 2009). The transcript
level of cyclin D2, cyclin B2-2, and CDK were
upregulated during drought stress in Arabidopsis, wheat,
and rice (Kamal ef al. 2010). In the present study, the
cyclin2b was upregulated in carrot during cold stress.

The proteins with WD repeats play a key role in signal
transduction, cytoskeletal dynamics, ribosomal RNA
biogenesis (Neer et al. 1994, Smith et al. 1999),

COLD INDUCIBLE GENES IN CARROT

consists of 28 cycles with an initial denaturation at 94 °C
for 5 min followed by denaturation at 94 °C for 30 s,
annealing at 60 °C for 30 s and extension at 72 °C for 30
s. A final extension at 72 °C for 10 min was performed.
The sqRT-PCR was repeated twice to verify the results.

cytokinesis, apoptosis, floral development, and meristem
organisation (Nocker and Ludwig 2003). They have been
classified based on sequence similarity (Nocker and
Ludwig 2003). Recently, a WD 40 in Brassica napus
(BnSWDI) was reported to play a major role during salt
stress (Lee et al. 2010). Sucrose non-fermenting 1 (SNF1)
kinase is a key enzyme in plant steroid biosynthesis and it
phosphorylates the 3-hydroxy-3-methyl-glutaryl-CoA
reductase (HMGCR). Its activity is regulated by
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Fig. 1. Expression profile of three genes of D. carota by
sqRT-PCR coding cyclin, WD protein and profilin. C - control
plants, 1 to 5 corresponds to the samples from plants after 1 to
5 d of cold stress.

pleiotropic regulatory locus 1 (PRL1), a conserved
nuclear WD-protein that is implicated in cold tolerance in
Arabidopsis (Bhalerao et al. 1999). It was 2- to 16-fold
repressed in leaves or shoots of cold and high-salinity
stressed chickpea (Mantri ef al. 2010). On the other hand,
it was upregulated in carrot during low temperature stress
suggesting it may have a role in cold stress tolerance.

The expression of profilin was unaffected under cold
stress as seen from the sqRT-PCR results (Fig. 1)
although SSH analyses show upregulation (Table 2). SSH
is a powerful technique that can identify even minute
changes in transcript levels as in the present case.
Profilins are a group of low molecular mass ubiquitous
actin binding proteins which are involved in the
remodelling of actin cytoskeleton (Huang et al. 1996) and
also involved in various signaling cascades in yeast and
plants (Vojtek et al. 1991, Machesky and Poland 1993).
Swoboda et al. (2001) reported that remodelling archi-
tecture of cytoplasm is a normal process in cells to
maintain the membrane integrity during various environ-
mental stresses and in carrot, profilins might also be
contributing to the cold tolerance.
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The unique expressed sequence tags (ESTs) were
annotated based on their similarities with existing
sequences in GenBank using BLAST and categorized in to
six groups according to their functions. They are
cold/salt/drought/UV stress responsive genes, genes
involved in transcription/translation, genes involved in
sugar/protein/lipid metabolism, genes involved in
maintaining structural integrity, genes involved in signal
transduction, and genes of unknown function.

A comparative analysis of the cold upregulated
transcriptome was carried out to correlate and understand
the mechanism of low temperature tolerance in plants.
The upregulation of several genes of varied functions
suggests that the unique ESTs may play role in complex
biological processes. Wang et al. (2007) have reported

Table 2. The cold stress responsive genes isolated from carrot.

that all the upregulated genes may not have a role in
stress tolerance but could be induced in response to
damages caused by the stress. The largest number of
genes belongs to the group that is upregulated during
cold, drought, or salinity stress. Apart from these, the
upregulation of genes of unknown functions and those
involved in transcription or translation suggests that the
responses to cold stress are rather complex and
multigenic as was reported earlier by Sun et al. (2007a),
Zhang et al. (2009), and Kang ef al. (2010).

There are several classes of transcription factors such
as AP2/ERF, DREB, YABBY, and Trihelix families,
which are unique to plants and act as molecular switches
(Xie et al. 2009). Ramamoorthy et al. (2008) have
identified that some of these transcriptional factors are

Acc. No. Predicted gene or protein family Putative function E-value
GW316731 A. thaliana cyclin2b regulator of cyclin-dependent kinases 3e-33
GW342890 R. communis WD protein signal transduction/cell cycle regulation Se-04
GW314857 Dc 4 profilin actin-binding protein 3e-24
GW343024/ Solanum lycopersicum - FAS protein encodes transcription factor 4e-12
GW343026
GW315340 Chrysanthemum vestitum - DREB cold tolerance le-15
GW342888 A. thaliana - Zinc finger CCCH protein cold/salt stress 2e-06
GW343025 Talaromyces stipitatus - Rop GTPase activator cold/salt/drought stress 9e-06
GW316484 Dc RNA polymerase transcription 7e-14
GW316488 Hypochaeris megapotamica - maturase K intron splicing 6e -19
GW316489 Odontorrhynchus variabilis ribosomal rRNA translation le-13
GW342893 Peltandra virginica - tRNA-Lys (trnK) gene translation 2e-14
GW276092 Dc tRNA Leu trL - trnF IGS translation 9e¢ 75
GW342886 Beta macrocarpa - mitochondrial genome DNA synthesis/transcription and translation le-06
GW316482 A. thaliana - sec 61 beta-subunit protein translocation to ER 3e-09
GW342894 Aspergillus clavatus GABA permease translocation of GABA 8e-10
GW276089 O. sativa - E3 ubiquitin ligase UV B response/low temperature tolerance 9e-48
GW343027 Populus trichocarpa - shikimate kinase cold stress 9e-07
GW316730 Candida albicans - choline kinase salinity stress 0.070
GW276087 Bacillus subtilis - levan sucrase osmotic stress 2e-74
GW314859 Chlamydia trachomatis - phosphoglucoisomerase gene involved in synthesis of galactomanan 6e-43
GW276091 Talaromyces stipitatus - sugar transporter protein transport of sugar across the membranes le- 24
GW343023 Cucumis melo - catalase 2 oxidative stress 6e-08
GW342891 A. thaliana - lipid associated protein (fibrillins) cold/photooxidative stress 0.003
GW342892 Neosartorya fischeri - integral membrane protein cell structure maintenance le- 05
GW314854 A. thaliana - 60 o chaperonin subunit CCT family cold tolerance 6e-43
GW316481 Ricinus communis - ATP binding protein osmotic stress le-22
GW342889 Penicillium marneffei cyanate hydratase nitrogen metabolism le-12
GW316732 E.coli - serine deaminase activator gene aminoacid metabolism 2e-21
GW316733 E.coli - BioH gene lipid metabolism 6e-11
GW316485 Brassica cretica S receptor kinases self incompatibility le-18
GW276090 Populus sp - drought stress related protein drought stress tolerance le-38
GW314853 Populus trichocarpa - stress protein stress tolerance 0.002
GW342887 Hydra magnipapillata - putative signal tranduction signal transduction 0.014
GW315344 A. thaliana similar to part of genome unknown
GW316487 B. rapa genomic DNA clone unknown
GW314858 Oryza sativa genomic DNA - chromosome 4, BAC unknown

clone
GW314852 Vitis vinifera clone unknown
GW315342 Populus trichocarpa clone unknown
GW316483 Oryza sativa japonica BAC clone unknown
GW316728 Populus trichocarpa - predicted protein, mRNA unknown
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involved in transcriptional regulation during environ-
mental stresses. Liu ef al. (2011) reported that the low
osmotically responsive gene 2 (LOS2) from Poncirus
trifoliate acts as a transcriptional activator for various
cold-responsive genes. In cold stressed carrot, expression
of fas and DREB were found to be enhanced. Fas is
involved in regulating flowering through YABBY in
tomato (Cong et al. 2008). In carrot, vernalization is
required for flowering and the cold treatment could have
led to the expression of fas which would in turn initiate
flowering. The dehydration-responsive element-binding
proteins (DREBs) have been found to confer tolerance to
cold/drought stress in Arabidopsis (Kasuga et al. 2004),
wheat (Andeani et al. 2009), rice (Dubouzet et al. 2003),
cotton (Shan et al. 2007), and could also be functioning
similarly in carrot. Similarly, the zinc finger CCCH
protein was seen to be enhanced in response to salt stress
in Arabidopsis (Sun et al. 2007a). Other zinc finger
proteins like Zat 12 and Gh ZFP 1 have been found to
confer tolerance to oxidative stress, salinity, and biotic
stress (Guo et al. 2009).

The G proteins function as molecular switches to
regulate numerous cellular responses such as prolife-
ration, differentiation, responding to external environ-
mental signals, efc. Rho-related GTPase of plants (Rop)
play an important role in plant growth and development
as a signaling protein and also confer abiotic stress
tolerance in Arabidopsis (Shin et al. 2009) and cold
tolerance in rice (Hashimoto and Komatsu 2007). The
enhanced levels of similar proteins in carrot may be a
signaling mechanism in response to low temperature
treatment.

Regulation of transcription and translation plays an
important role in stress alleviation (Miranda et al. 2003).
RNA polymerase and maturase K are not only involved
in transcription and post-transcriptional modification but
have also been implicated in regulation of gene
expression through miRNA/siRNA formation in response
to stress in plants (Sunkar et al. 2007b). There are reports
of enhanced levels of RNA polymerases and maturase K
and a corresponding increase in the miRNA levels in
various plants exposed to biotic and abiotic stresses (Lee
et al. 2005, Zhou et al. 2008, Garavaglia et al. 2010).

Translation is regulated at the level of stability of
transcripts and initiation of translation (Prabu et al.
2011). Transcript stability under stress is enhanced by the
formation of polysomes (Arendt and Weidner 2011) and
upregulation of rRNA, as seen in carrot, could contribute
to this stability. Translation initiation factor 4o also
showed upregulation on exposure to cold stress and
similar results were observed in other plants like pea
(Pham et al. 2000, Vashisht et al. 2005), and wheat
(Kamal et al. 2010). Sec p 61, which was also
upregulated in cold stressed carrot, showed a similar
response to wounding stress in Arabidopsis (Pnueli et al.
2003) and is also essential for translocation of proteins to
endoplasmatic reticulum (ER) and also for the cell
viability in many organisms (Leroux and Rokeach 2008).
In carrot, it might also be responsible for the translocation
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of different cold tolerant proteins to ER. The expression
of y-aminobutyric acid (GABA) permeases, that
translocate GABA to combat stresses, was also enhanced
in cold stressed carrot. GABA, a non-protein amino acid,
has been found to increase in response to various stresses
(Cholewa et al. 1997, Serraj et al. 1998, Bouche and
Fromm 2004).

Ubiquitin ligases are the next group whose expression
was enhanced under cold stress in carrot. Similar E3
ubiquitin ligases (SIZ1) result in the accumulation of
small ubiquitin-like modifier (SUMO) protein conjugates
that provide cold tolerance in Arabidopsis (Chinnusamy
et al. 2007). Sumoylation is a post-translational
modification that protects the target protein from
proteosomal degradation by preventing ubiqutination.

Shikimate derived compounds have a major role in
plant response to biotic and abiotic stresses (Hamberger
et al. 2006), mainly shikimate kinase, the first enzyme in
the pathway, is reported to play a role in providing stress
tolerance to Arabidopsis (Fucile et al. 2008) and maize
(Zheng et al. 2006). Thus, the upregulation of shikimate
kinase may probably increase the synthesis of metabolites
which confer tolerance to cold stress in carrot. Cold stress
mimics water deficit similarly to salinity stress. Multiple
mechanisms are known to confer tolerance to osmotic
stress. Choline kinase catalyses the synthesis of
phosphatidylcholine responsible for main-taining the
osmolarity of the plant cell (Tasseva ef al. 2004) and an
upregulation of this gene in carrot may have important
implications for cold tolerance.

Cold stressed carrot showed upregulation of a
transcript that had similarity with the bacterial levan-
sucrase. Levansucrases are hexosyltransferases, mainly
involved in the metabolism of starch and sucrose and
their expression in tobacco enhanced the plant osmotic
tolerance (Park er al. 1999). We presume that the
levansucrase might play similar role during low tempe-
rature stress.

Phosphoglucoisomerase catalyses the biosynthesis of
galactomannans in plants (Lee and Matheson 1984)
which apart from their primary role as storage reserves in
endosperm also provide osmoprotection during legumi-
nous seed germination under drought and low tempe-
rature (Mulimani and Prashanth 2002). Low molecular
mass sugars also play a role as osmolytes and cryo-
protectants and sugar transporters are involved in
distribution of sugars to various cells and tissues
(Williams et al. 2000). In Arabidopsis, a putative sugar
transporter protein ERD6 (Kiyosue et al. 1998) and
tonoplast monosaccharide transport proteins (Eckardt
2006) have been shown to be expressed in response to
water stress.

Low temperature induces the generation of reactive
oxygen species (ROS) which have strong adverse effect
on plants (Chaitanya ef al. 2001). ROS are mitigated by
the antioxidant enzymes like superoxide dismutase,
catalase, and peroxidase (Yong et al. 2008, Mallik et al.
2011). The prominent role of catalase during low
temperature stress has been already reported in wheat
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(Apostolova et al. 2008) and maize (Prasad 1997).
Fibrillins are a group of lipid binding proteins in plastids
which are induced by various abiotic stresses like a
combination of photooxidative and cold stresses in
Arabidopsis (Youssef et al. 2010), or low temperature
stress in rice (Lee et al. 2007).

Maintenance of membrane stability is important for
stress tolerance (Gulen et al. 2008). The low temperature
stress affects the normal functioning of membrane
proteins and the fluidity of the cell membranes. Xv SAPI,
an integral protein isolated from Xerophyta viscosa, show
high homology to WCOR413, a cold responsive protein
from wheat (Garwe et al. 2003). This shows that the
membrane proteins are not only involved in maintaining
the cell structure but they are also associated with low
temperature stress.

Chaperonin 60 and other kind of chaperonins play a
key role in folding proteins. They have been found to be
cold-induced in yeast (Somer et al. 2002) or heat-induced
in rice (Han et al. 2009). In the present study, the
upregulation of chaperonins resulted in the correct
folding of proteins expressed during cold stress in plants
(Zhang and Guy 2006). The proper folding of the
membrane proteins would be of paramount importance.
ATP binding proteins are group of membrane proteins
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