

Effect of water stress on yield and nutrition quality of tomato plant overexpressing *StAPX*

W.-H. SUN^{1*}, X.-Y. LIU², Y. WANG¹, Q. HUA¹, X.-M. SONG¹, Z. GU¹, and D.-Z. PU¹

College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China¹

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, P.R. China²

Abstract

We investigated the effect of water stress on yield and quality of tomato plants overexpressing *Solanum lycopersicum* thylakoid-bound ascorbate peroxidase gene (*StAPX*). APX activity, hydrogen peroxide content, net photosynthetic rate of tomato leaves, and yield and nutrition quality of tomato fruits were measured under soil moisture 70, 60, and 50 % of full field capacity. Results show that the capability of APX for scavenging hydrogen peroxide induced by water stress was higher in the transgenic than the wild type (WT) plants. The yield of fruits of the transgenic tomato plants was higher than that of WT plants under water stress and the fruit nutrition quality was not different. These results indicate that overexpression of *StAPX* might improve water stress tolerance in the transgenic tomato plants.

Additional key words: chlorophyll, H₂O₂ scavenging, net photosynthetic rate, proline, *Solanum lycopersicum*, sugars, thylakoid-bound ascorbate peroxidase

Introduction

Drought stress is one of the serious problems in agriculture (Jacob 2008, Vats *et al.* 2011). Among others, drought stress can cause ion imbalance and production of reactive oxygen species (ROS; *e.g.*, Mittler 2002). Ascorbate peroxidases (APX, EC 1.11.1.11) are directly involved in ROS scavenging by reducing H₂O₂ to water. Several studies found that plants overexpressing *APX* show increase of stress resistance (Murgia *et al.* 2004, Lee *et al.* 2007, Sato *et al.* 2011, Saxena *et al.* 2012).

In order to study the influence of the thylakoid membrane APX (TAPX) in chloroplasts on water stress

resistance, *Solanum lycopersicum* thylakoid-bound ascorbate peroxidase gene (*StAPX*) was introduced into tomato under the control of the cauliflower mosaic virus 35S promoter. The transgenic lines were selected for their ability to grow on medium containing kanamycin and identified by polymerase chain reaction (PCR). Further, transgenic tomato plants overexpressing *StAPX* (T₂ generation) were explored to investigate physiological and biochemical parameters in their leaves and fruits under different irrigation conditions.

Materials and methods

Agrobacterium-mediated transformation of tomato plants: The *StAPX* cDNA was isolated from tomato leaves by reverse transcriptase - polymerase chain reaction

(RT-PCR). The PCR amplification conditions and gene sequence data were reported previously (Sun *et al.* 2010). The full-length *StAPX* cDNA was ligated into the

Submitted 23 August 2012, last revision 14 April 2013, accepted 17 April 2013.

Abbreviations: APX - ascorbate peroxidase; EDTA - ethylenediaminetetraacetic acid; PBS - phosphate buffered saline; PPFD - photosynthetic photon flux density; P_N - net photosynthetic rate; PS II - photosystem II; ROS - reactive oxygen species; SM - soil moisture, *StAPX* - *Solanum lycopersicum* thylakoid-bound ascorbate peroxidase gene; T - transgenic tomato line; TAPX - thylakoid-bound ascorbate peroxidase; WT - wild type plant.

Acknowledgements: This research was supported by the Natural Science Foundation of Jiangsu (BK2010344), the Opening Foundation of State Key Laboratory of Crop Biology (2011KF11), and the Postdoctoral Science Foundation of China (2011M500867).

* Corresponding author; fax: (+86) 0511 88780201, e-mail: weihongsun2009@163.com

expression vector pBI121 (with replacement of the GUS fragment) under the control of the cauliflower mosaic virus 35S (35S-CaMV) promoter. The pBI121-*StAPX* constructs were introduced into *Agrobacterium tumefaciens* LBA4404 by the freezing transformation method. The tomato cotyledons were infected with *A. tumefaciens* by the infiltration method (Horsch 1985) and grown in a growth room at temperature of 25 °C, relative humidity of 75 ± 5 %, a 16-h photoperiod, and photosynthetic photon flux density (PPFD) of 600 - 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Discs of the cotyledons infected with *A. tumefaciens* were incubated on medium to induce shoots. The regenerated shoots were transferred to a root-inducing medium after a few weeks. Both media contained 50 $\mu\text{g cm}^{-3}$ kanamycin and 250 $\mu\text{g cm}^{-3}$ sodium cefotaxime. The transgenic plants were screened using kanamycin selection and PCR identification.

The transgenic T₀ generations were self-pollinated with glassine envelopes resulting in the production of T₁ seeds. The T₁ seeds were screened in Murashige and Skoog (MS) culture medium supplemented with 50 $\mu\text{g cm}^{-3}$ kanamycin. About two-week-old seedlings were transplanted into sterilized soil pots and grown in a greenhouse at day/night temperatures of 25 - 30/15 - 20 °C and the natural photoperiod. Different homozygous lines (T₂) were used for experimental analysis. The transgenic lines were identified by PCR with the 35S-CaMV promoter primer (5'-GTAATCTCCACTGACGTAAG-3') and the gene downstream primer (5'-TTTAGCATATAT GACTACGGC-3').

Plants and stress treatments: The seeds of transgenic lines (T₂-2 and T₂-4) and wild type (WT) tomato (*Solanum lycopersicum* cv. Zhongshu 6) were germinated between pieces of moistened filter paper at 25 °C for 5 d. The germinated seeds were then planted into bed filled with sterilized soil and grown in a greenhouse. After two weeks, three water treatments were applied: 1) normal irrigation - soil moisture (SM) of 70 ± 5 % of full field capacity, 2) mild drought treatment - SM 60 ± 5 %, and 3) moderate drought treatment - SM 50 ± 5 %. These treatments ended when the last flower head bore fruit. The tested plants were irrigated by drip irrigation and soil moisture was determined at 10:00 and 15:00 with HH2 portable apparatus with ML2 detector (*Delta-T Devices*, Cambridge, UK).

Measurements of TAPX activity and H₂O₂ content in tomato leaves: Chloroplasts were isolated according to the method of Robinson *et al.* (1983) from 20 g of fresh leaves of plants treated for 0, 7, 14, 21, 28, and 35 d. The chloroplast pellet was suspended in 0.05 M phosphate buffered saline (PBS) with 5 mM EDTA (pH 7.8) for measurement of APX activity and the other part of the pellet was suspended in acetone for measurement of H₂O₂. APX activity was assayed spectrometrically according to the method of Chen and Asada (1989). The

absorbance was determined at 290 nm and the result was calculated in terms of 1 μmol ascorbic acid (AsA) oxidized per min. H₂O₂ content was determined spectrometrically as well according to the method of Ferguson *et al.* (1983). The absorbance was determined at 415 nm. At least three replicate measurements were used for each treatment.

Measurements of net photosynthetic rate (P_N) and the chlorophyll content: Tomato plants were acclimated at temperature of 25 °C and PPFD of 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for about 30 min, to make the stomata open, and then under PPFD of 800 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for about 15 min. Then, P_N was measured with a portable photosynthetic system (*CIRAS-2, PP Systems*, Norfolk, UK) at 25 °C, PPFD of 800 $\mu\text{mol m}^{-2} \text{s}^{-1}$, ambient CO₂ concentration of 360 $\mu\text{mol mol}^{-1}$ and relative humidity of 75 ± 5 %. The chlorophyll contents in the fresh leaves of tested plants were measured according to the method of Hemavathi *et al.* (2009).

Measurements of content of proteins, free proline, and soluble sugars: Total protein content of fresh tomato leaves or fruits was determined according to the method of Bradford (1976). Coomassie brilliant blue G250 was used for staining and absorbance was determined at 595 nm.

Free proline content was quantified according to the method of Meloni *et al.* (2004). Sulfosalicylic acid was used to dissolve the proline, acidic ninhydrin for staining, and finally, absorbance was determined at 520 nm.

Soluble sugar content was determined according to the method of Zhao *et al.* (2002). Absorbance was determined at 630 nm after the reaction of soluble sugars with anthrone.

Measurement of yield and quality of fruits: The number of tomato fruits in each plant were counted after fruit maturity (about 90 d after planting) and fresh mass was determined. Organic acid content was determined by the titration method. A 10 g of fruits was ground in an ice-bath and distilled water was added to give a constant volume of 100 cm³. The mixture was filtrated and then 2 dribblets of 1 % (m/v) phenolphthalein were added to 20 cm³ of the filtrate. NaOH was used for titration and the end point was determined when the pink colour appeared and was maintained for 0.5 min.

Ascorbic acid (AsA; vitamin C) content was determined spectrophotometrically in UV region. A 10 g of ground tomato fruits was mixed with distilled water to give a constant volume of 1 000 cm³. The liquid mixture was filtrated, centrifuged for 10 min, and then 5 cm³ of Cu(II)-EDTA was added. AsA content was determined at 267 nm. Lycopene content was quantified according to the method of Zhang and Ding (2001). Petroleum ether was used to dissolve out lycopene and absorbance was determined at 502 nm.

Statistical analysis: At least three replicate measurements were used for each treatment. Statistical

significances of differences were analyzed by Student's *t*-test.

Results

The analysis of the predicted amino acid sequence of *StAPX* from other higher plants was described by Sun *et al.* (2010). The kanamycin-resistant lines obtained did not show obvious difference from wild plants in both vegetative and reproductive growth. Each of the transgenic line seemed to represent an independent integration event observed by genomic DNA gel blot analysis. Several T₂ transgenic lines were selected for identification by PCR with the 35S-CaMV promoter primer and the gene downstream primer. There was an intense 1 400 bp band corresponding in size to the *StAPX* product in each transgenic plant but not in the WT plants (Fig. 1). Among them, T₂-2 and T₂-4 were selected for physiological measurement. The measured values of T₂-2 and T₂-4 showed only slight differences and the values of T₂-2 were used to analyses mentioned below.

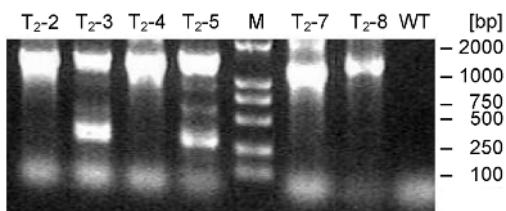


Fig. 1. Identification PCR of transgenic tomato plants by using the genome template. Lane M - DNA marker; lanes T₂-2 to T₂-5, T₂-7, and T₂-8 - different transgenic lines; lane WT - wild type plants.

There were about 3-fold increase in TAPX activity in the transgenic lines comparing with the WT plants on day 0. APX activities in the both types of tested plants firstly increased and then decreased under moderate water stress. However, TAPX activities in the transgenic lines were evidently higher than those in the WT plants. For example, when exposed to 50 % SM for 28 d, the TAPX activities of T₂-2 and WT were about 0.76 and 0.57 of those at day 0, respectively. The TAPX activity in T₂-2 was 3.53 times higher than that of WT on day 28 (Fig. 2A).

H₂O₂ content in all the tested plants constantly increased with the decline of SM and H₂O₂ content in the transgenic lines was lower than that in the WT plants (Fig. 2B).

Chlorophyll content in the transgenic lines was significantly higher than in the WT plants when they were subjected to water stress (Fig. 2C, Table 1). The decrease of P_N was more serious in the WT than in transgenic plants under water stress conditions (Fig. 2D, Table 1). Compared with the control, P_N in the T₂-2 and WT plants decreased by 32.8 and 54.03 %, respectively, under 50 % SM for 28 d (Fig. 2D).

Total protein content of T₂-2 and WT at 50 % SM for 28 d was about 1.19 and 0.93 of the control, respectively (Table 2). Free proline content as well as content of soluble sugars in both types of the tested plants changed little due to the water stress (Table 2).

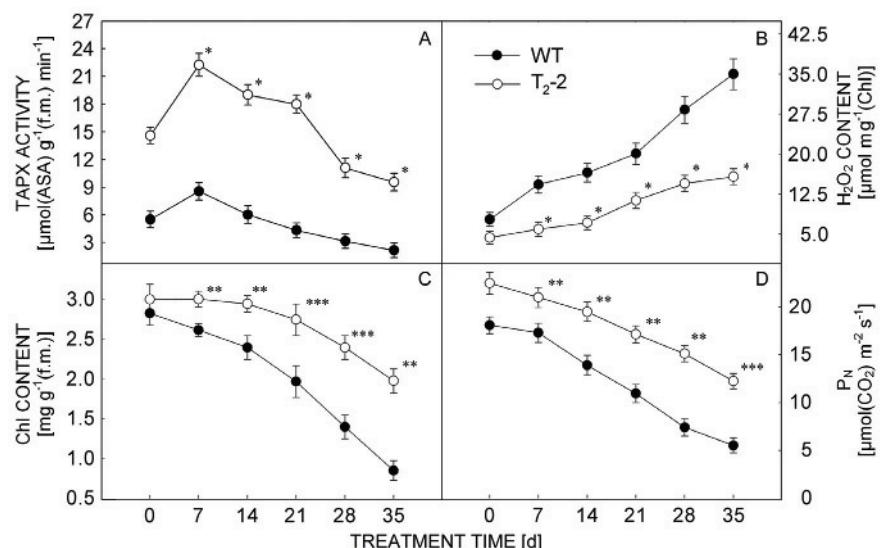


Fig. 2. TAPX activity (A), H₂O₂ content (B), chlorophyll (Chl) content (C), and net photosynthetic rate (P_N) (D) in leaves of WT and transgenic (T₂-2) tomato plants grown at soil moisture of 50 % for 35 d. Means \pm SE, $n \geq 3$, *, **, *** - significant differences between T₂-2 and WT at $P \leq 0.05$, $P \leq 0.01$, and $P \leq 0.001$.

Table 1. The TAPX activity, H₂O₂ content, chlorophyll content, and net photosynthetic rate (P_N) of tomato leaves under different SM for 28 d. Means \pm SE, $n \geq 3$, *; ** - significant differences between T₂-2 and WT at $P \leq 0.05$ and $P \leq 0.01$.

SM [%]	Plants	TAPX activity [$\mu\text{mol}(\text{AsA}) \text{ g}^{-1}(\text{f.m.}) \text{ min}^{-1}$]	H ₂ O ₂ content [$\mu\text{mol mg}^{-1}(\text{Chl})$]	Chl content [$\text{mg g}^{-1}(\text{f.m.})$]	P _N [$\mu\text{mol m}^{-2} \text{ s}^{-1}$]
70	T ₂ -2	13.95 \pm 0.30*	4.95 \pm 0.05**	3.35 \pm 0.14**	22.01 \pm 0.65*
	WT	4.90 \pm 0.06			17.88 \pm 0.44
60	T ₂ -2	13.24 \pm 0.55*	5.93 \pm 0.06*	3.21 \pm 0.12**	18.88 \pm 0.50*
	WT	4.05 \pm 0.03			12.75 \pm 0.41
50	T ₂ -2	11.08 \pm 0.78*	14.51 \pm 0.83*	2.40 \pm 0.10**	15.13 \pm 0.55*
	WT	3.14 \pm 0.08			7.41 \pm 0.43

Table 2. The content of proteins, free proline, and soluble sugars of tomato leaves at 0 d and 28 d under different SM. Means \pm SE, $n \geq 3$, **, *** - significant differences between T₂-2 and WT at $P \leq 0.01$ and $P \leq 0.001$, respectively..

SM [%]	Plants	Soluble proteins [$\text{mg g}^{-1}(\text{f.m.})$]		Free proline [$\mu\text{g g}^{-1}(\text{f.m.})$]		Soluble sugars [$\text{mg g}^{-1}(\text{f.m.})$]	
		0 d	28 d	0 d	28 d	0 d	28 d
70	T ₂ -2	0.41 \pm 0.05***	0.45 \pm 0.05**	0.52 \pm 0.06**	0.59 \pm 0.06**	0.50 \pm 0.04**	0.58 \pm 0.06**
	WT	0.31 \pm 0.05	0.34 \pm 0.04	0.49 \pm 0.04	0.56 \pm 0.04	0.48 \pm 0.05	0.50 \pm 0.04
60	T ₂ -2	0.53 \pm 0.06**	0.82 \pm 0.06**	0.57 \pm 0.04**	0.71 \pm 0.05**	0.66 \pm 0.10***	0.71 \pm 0.10**
	WT	0.41 \pm 0.04	0.49 \pm 0.05	0.56 \pm 0.06	0.65 \pm 0.06	0.53 \pm 0.10	0.60 \pm 0.09
50	T ₂ -2	0.45 \pm 0.03**	0.54 \pm 0.04**	0.60 \pm 0.05***	0.56 \pm 0.05**	0.55 \pm 0.04**	0.59 \pm 0.05**
	WT	0.34 \pm 0.04	0.32 \pm 0.03	0.59 \pm 0.05	0.52 \pm 0.04	0.50 \pm 0.05	0.53 \pm 0.05

The yield of a single plant decreased with the decline of SM. However, single fruit mass and yield of a single plant in the transgenic lines were evidently higher than those in the WT plants under water stress conditions (Table 3). The sugar-acid ratios in the transgenic tomato fruits were 1.02, 0.97, and 1.00 of those in WT under 70, 60, and 50 % SM, respectively, suggesting that quality of the transgenic tomato fruits is almost the same as that of WT (Table 4).

The nutrition quality was affected by SM. Ascorbic acid (vitamin C) content in the tested tomato fruits increased gradually along with the decline of SM whereas soluble protein content changed slightly and lycopene content changed fluctuanty. The vitamin C content in the transgenic tomato fruits was 1.09, 1.18, and 1.23 of that in WT under 70, 60, and 50 % SM, respectively (Table 4). The results indicate that nutrition quality of the

transgenic tomato fruits might be somewhat better to that of WT under water stress conditions.

Table 3. The yield of tomato fruits from plants grown under different SM for 28 d. The fruits were harvested 90 d after planting. Means \pm SE, $n \geq 3$, *, ** - significant differences between T₂-2 and WT at $P \leq 0.05$ and $P \leq 0.01$, respectively.

SM [%]	Plants	Fruit number [plant^{-1}]	Fruit mass [kg]	Fruit yield [kg plant^{-1}]
70	T ₂ -2	10	0.219 \pm 0.01*	2.195 \pm 0.30*
	WT	10	0.202 \pm 0.02	2.018 \pm 0.25
60	T ₂ -2	12	0.167 \pm 0.01**	2.004 \pm 0.33**
	WT	11	0.156 \pm 0.01	1.650 \pm 0.30
50	T ₂ -2	11	0.150 \pm 0.01**	1.655 \pm 0.35*
	WT	10	0.123 \pm 0.005	1.230 \pm 0.28

Discussion

Drought stress induces closure of stomata, leaf wilting, structural and functional damages of cell membrane, and ROS accumulation (Reddy *et al.* 2004). Previous studies show that decrease in non-cyclic electron transport caused by abiotic stresses could be partially compensated by water-water cycle (Shigeoka *et al.* 2002). At the same moment, activities of antioxidant enzymes, including

APX, and content of non-enzymatic antioxidants such as ascorbic acid (vitamin C), increased (Mýtinová *et al.* 2010, Li *et al.* 2012). The increase of APX activity in transgenic plants could decrease the accumulation of H₂O₂ and lighten the damage induced by ROS under drought stress (Fig. 2).

The results show that reduction of P_N was higher in

Table 4. The content of soluble sugars and organic acids, sugar/organic acid ratio, and content of proteins, ascorbic acid, and lycopene of tomato fruits. Plants were grown under different SM for 28 d. The fruits were harvested 90 d after planting. Means \pm SE, $n = 5$, *, **, *** - significant differences between T₂-2 and WT at $P \leq 0.05$, $P \leq 0.01$, and $P \leq 0.001$, respectively.

SM [%]	Plants	Soluble sugars [%]	Organic acids [%]	Sugar/acid ratio	Proteins [mg g ⁻¹ (f.m.)]	Ascorbic acid [mg g ⁻¹ (f.m.)]	Lycopene [μ g g ⁻¹ (f.m.)]
70	T ₂ -2	2.15 \pm 0.20*	0.33 \pm 0.03***	6.57	3.55 \pm 0.25*	0.42 \pm 0.01***	18.00 \pm 0.51**
	WT	2.18 \pm 0.31	0.34 \pm 0.03	6.46	3.20 \pm 0.35	0.39 \pm 0.01	18.05 \pm 0.55
60	T ₂ -2	2.50 \pm 0.33**	0.39 \pm 0.03***	6.34	3.31 \pm 0.30***	0.49 \pm 0.05**	18.45 \pm 1.03*
	WT	2.46 \pm 0.30	0.38 \pm 0.03	6.54	2.85 \pm 0.30	0.42 \pm 0.04	18.70 \pm 0.50
50	T ₂ -2	2.80 \pm 0.29*	0.43 \pm 0.05***	6.51	2.65 \pm 0.25*	0.52 \pm 0.05**	17.51 \pm 1.05*
	WT	2.70 \pm 0.35	0.41 \pm 0.05	6.52	2.06 \pm 0.12	0.42 \pm 0.02	17.56 \pm 1.01

the WT than in the transgenic seedlings (Fig. 2D, Table 1) indicating the crucial importance of TAPX in protection from photo-damage under water stress conditions. At the same time, the transgenic lines maintained the higher chlorophyll content (Fig. 2C, Table 1). The chloroplasts are thought to be the primary source of ROS and TAPX played a key role in protecting photosynthetic apparatus in the transgenic plants from oxidative damage under drought stress. In the same sense as above, other studies reported that suppression of *tAPX* in antisense tobacco lines may be lethal (Yabuta *et al.* 2002) and that *tAPX* antisense wheat lines show lower photosynthetic carbon assimilation (Danna *et al.* 2003).

Osmotic adjustment is thought to be one of adaptive reactions to resist drought stress in plants. However, other crops, such as tomato, accumulate little amount of osmotically active substances under water stress (Reddy *et al.* 2004, Li *et al.* 2010). In the present study, the accumulations of soluble protein, soluble sugars and free

proline in tomato leaves were not outstanding (Table 2), which suggests that osmotic adjustment might not be important for tomato plant resistance to water stress.

Different SMs affect dry matter accumulation and nutrition quality of the tomato fruits. The yield of tomato fruits was the maximum and the quality was the best when SM was 70 - 75 % (Chen *et al.* 2006, as well as this study). The net photosynthetic rate in the transgenic plants was evidently higher than that in the WT plants (Fig. 2D, Table 1), and the yield and the quality of the transgenic tomato fruits tended to be better than those of WT under the stress conditions (Tables 3,4).

In conclusion, the transgenic tomato plants had higher yield than WT and the fruits had similar nutrition quality as WT under the water stress. The transgenic tomato plants with overexpression of *StAPX* had better stress-resistance and could be recommended to drought stress conditions.

References

Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Chen, G.X., Asada, K.: Ascorbate peroxidases in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. - *Plant Cell Physiol.* **30**: 987-998, 1989.

Chen, X.X., Ma, F.Y., Chu, G.X., Xue, L., Li, Y., Wang, J.J.: [Recent advances on processing tomato water relations]. - *Chin. agr. Sci. Bull.* **22**: 206-208, 2006. [In Chin.]

Danna, C.H., Bartoli, C.G., Sacco, F., Ingala, L.R., Santa-Maria, G.E., Guiamet, J.J., Ugalde, R.A.: Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. - *Plant Physiol.* **132**: 2116-2125, 2003.

Ferguson, I.B., Watkins, C.B., Harman, J.E.: Inhibition by calcium of senescence of detached cucumber cotyledons. - *Plant Physiol.* **71**: 182-186, 1983.

Hemavathi, Upadhyaya, C.P., Akula, N., Young, K.E., Chun, S.C., Kim, D.H., Park, S.W.: Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. - *Biotechnol. Lett.* **32**: 321-330, 2010.

Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T.: A simple and general method for transferring genes into plants. - *Science* **227**: 1229-1231, 1985.

Jacob, E.J.: Water: under pressure. - *Nature* **452**: 269, 2008.

Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S., Kwon, S.Y.: Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. - *Plant Cell Rep.* **26**: 591-598, 2007.

Li, G.L., Wu, H.X., Wen, L., Shao, K., Li, Z.Y., Zhang, S.Y.: [Progress in physiological and molecular mechanism of drought resistant in crops.] - *Chin. agr. Sci. Bull.* **26**: 185-191, 2010. [In Chin.]

Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z., Zhang, H.: Effect of 2,4-epibrassinolide on drought stress-induced changes in *Chorispora bungeana*. - *Biol. Plant.* **56**: 192-196, 2012.

Meloni, D.A., Gulotta, M.R., Martínez, C.A., Oliva, M.A. The

effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in *Prosopis alba*. - *Braz. J. Plant Physiol.* **16**: 39-46, 2004.

Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - *Trends Plant Sci.* **7**: 405-410, 2002.

Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Caravagli, S., Soave, C.: *Arabidopsis thaliana* plants over-expressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photo-oxidative stress and to nitric oxide-induced cell death. - *Plant J.* **38**: 940-953, 2004.

Mýtinová, Z., Motyka, V., Haisel, D., Gaudinová, A., Lubovská, Z., Wilhelmová, N.: Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. - *Biol. Plant.* **54**: 461-470, 2010.

Qu, C.X., Shen, S.D., Wang, X.F., Cui, Y.H., Song, W.P.: [Method research of measuring soluble protein contents of plant rough extraction using Coomassie brilliant blue.] - *J. Suzhou Univ.* **22**: 82-85, 2006. [In Chin.]

Reddy, A.R., Chaitanya, K.V., Vivekanandan, M.: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plant. - *J. Plant Physiol.* **161**: 1189-1202, 2004.

Robinson S.P., Downton W.J., Millhouse J.A.: Photosynthesis and ion content of leaves and isolated chloroplasts of salt stressed spinach. - *Plant Physiol.* **73**: 238-242, 1983.

Sato, Y., Masuta, Y., Saito, K., Murayama, S., Ozawa, K.: Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, *OsAPXa*. - *Plant Cell Rep.* **30**: 399-406, 2011.

Saxena, S.C., Joshi, P.K., Grimm, B., Arora, S.: Alleviation of ultraviolet-C-induced oxidative damage through over-expression of cytosolic ascorbate peroxidase. - *Biologia* **66**: 1052-1059, 2012.

Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K.: Regulation and function of ascorbate peroxidase isoenzymes. - *J. exp. Bot.* **53**: 1305-1309, 2002.

Sun, W.H., Duan, M., Shu, D.F., Yang, S., Meng, Q.W.: Over-expression of *StAPX* in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. - *Plant Cell Rep.* **29**: 917-926, 2010.

Vats, S.K., Kumar, S., Ahuja, P.S.: CO₂ sequestration in plants: lesson from divergent strategies. - *Photosynthetica* **49**: 481-496, 2011.

Yabuta, Y., Motoki, T., Yoshimura, K., Takeda, T., Ishikawa, T., Shigeoka, S.: Thylakoid membrane-bound peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. - *Plant J.* **32**: 915-925, 2002.

Zhang, L.F., Ding, X.L.: [Establishment of a new lycopene determination method.] - *Food Ferment. Ind.* **27**: 51-55, 2001. [In Chin.]

Zhao, S.J., Shi, G.A., Dong, X.C.: [Laboratory Procedures in Plant Physiology.] - China Agriculture Science and Technology Press, Beijing 2002. [In Chin.]