

An assessment of *Agropyron cristatum* tolerance to cadmium contaminated soil

Q. GUO, L. MENG*, P.C. MAO, and X.X. TIAN

Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China

Abstract

A pot experiment was conducted in a greenhouse to assess the tolerance of *Agropyron cristatum* plants to cadmium contaminated soils (0, 5, 10, 25, 50, 100, 150, and 200 mg kg⁻¹) for 100 d. Results indicate that Cd in concentrations of 5 - 50 mg kg⁻¹ had no significant impact on growth, relative membrane permeability (RMP), lipid peroxidation measured as malondialdehyde (MDA) content, and chlorophyll (Chl) content relative to the control. Exposure of these plants to high concentrations of Cd (100 - 200 mg kg⁻¹) caused a small reduction in growth and Chl content and a slight enhancement of RMP and MDA content compared with the control. In addition, superoxide dismutase (SOD) and peroxidase (POD) activities show an increasing trend with the increase of Cd content in soil. The Cd content in the roots was 4.7 - 6.1 times higher than that in the shoots under all Cd treatments suggesting that the plant can be classified as a Cd excluder. The translocation factor was low and similar at 25 - 200 mg kg⁻¹ Cd treatments. In summary, *A. cristatum* plants tolerated Cd stress and might have potential for the phytoremediation of Cd contaminated soils.

Additional key words: antioxidant enzyme, chlorophyll, malondialdehyde, membrane permeability, phytoremediation, translocation factor.

Cd pollution of soil has become a serious environmental concern because it is associated with health risks to plants, animals, and humans. Cd-contaminated soils can be remediated by chemical and physical techniques. However, remediation of Cd-contaminated soils is very costly, destructive, and limited to small areas by using traditional physiochemical methods (Padmavathiamma and Li 2007). Therefore, we urgently need other effective methods to clean Cd contaminated soils.

There is evidence that phytoremediation is cost effective and non-invasive technology (Simon 2005). It takes advantage of the remarkable ability of plants to exclude metals from a site by accumulation in roots or by precipitation in root zones (Zhang *et al.* 2010). Some mechanisms of Cd detoxification are recognized, such as phytochelation, intracellular sequestration, active efflux from the roots, and induction of antioxidant machinery and

stress proteins (Cobbett and Goldsborough 2002, Bočová *et al.* 2012). However, different plant species and cultivars show a wide range of plasticity in Cd tolerance, from high sensitivity to the hyper-accumulation (Belkhadi *et al.* 2010, Tian *et al.* 2012). For example, legume plants are less tolerant to Cd toxicity than cereals and grasses (Metwally *et al.* 2003). Previous study shows that perennial rye-grass (*Lolium perenne*), due to accumulating heavy metals, can grow on heavy metal polluted soil and may be suitable for phytostabilisation (Wen and Fu 2008). *Agropyron cristatum*, a perennial monocotyledonous grass found in the semi-arid area of north China, has strong resistance to the drought and cold stresses. However, whether *A. cristatum* has potential for use in Cd contaminated soils remains uncertain.

To assess the potential of *A. cristatum* for phytoremediation of Cd contaminated soils, the physiological and

Submitted 18 December 2012, last revision 29 April 2013, accepted 2 May 2013.

Abbreviations: Chl - chlorophyll; MDA - malondialdehyde; POD - peroxidases; RMP - relative membrane permeability; SOD - superoxide dismutase; TF - translocation factor.

Acknowledgements: This research was financially supported by the Scientific Innovation Ability Construction Project of Beijing Academy of Agriculture and Forestry Sciences (grant No. KJCX201101003) and the International Cooperation and Exchange Project of China (grant No. 2008DFR30200). We are grateful to the anonymous reviewers and editors for their valuable suggestions and comments on the initial version of the manuscript.

* Corresponding author; fax: (+86) 10 515 03297 e-mail: menglin9599@sina.com

biochemical changes, the antioxidant enzymes, and the characteristics of Cd accumulation and tolerance in plants subjected to different concentrations of Cd were investigated in this study.

Pot experiments were conducted in a greenhouse. The soil was collected in the Beijing Academy of Agriculture and Forestry Sciences. It had pH of 6.98, the available N of 119.3 mg kg⁻¹, P of 12.5 mg kg⁻¹, K of 200.5 mg kg⁻¹, the organic matter of 2.8 mg kg⁻¹, and total Cd of 0.83 mg kg⁻¹. After being air-dried, the soil was passed through a 5 mm sieve, and then 3 kg of the sieved soil was placed into the plastic pots (21.5 cm diameter × 18.5 cm height). Cd in the form of CdCl₂·2.5 H₂O was added to the pots at concentrations of 0, 5, 10, 25, 50, 100, 150, and 200 mg kg⁻¹. The seeds of *Agropyron cristatum* (L.) Gaertn. were provided by *Clover Group* in China which collected them from inner Mongolia where this species is less variable than in other regions (Che *et al.* 2008). The 50 seeds of *A. cristatum* with an average germination rate over 95 % were sown into non-Cd-contaminated soil or the Cd-contaminated soil described above. The pots were arranged in completely randomized block design, each treatment consisted of 5 pots containing 40 plants each. To keep soil moisture at 70 % of field water holding capacity, all the pots were irrigated daily with tap-water to a constant mass. The experiments were conducted in the greenhouse under a 12-h photoperiod, natural irradiance, and maximum and minimum temperatures of 30 and 20 °C, respectively. After 100 d of growth, the plants were dug up, washed thoroughly with tap water followed by deionized water, the shoot height was measured, and the leaf samples were frozen in liquid nitrogen for storage at -70 °C until further use for biochemical analyses.

Lipid peroxidation in terms of MDA formation was measured by the method of Dhindsa *et al.* (1981) with slight modifications. Supernatant (1 cm³) was mixed with 4 cm³ of 20 % (m/v) trichloroacetic acid containing 0.5 % (m/v) thiobarbituric acid, and centrifuged at 15 000 g and 4 °C for 30 min. Test-tubes were heated at 95 °C for 30 min, then quickly cooled in an ice bath, and the precipitate was removed by centrifugation. The absorbances at 450, 532, and 600 nm were determined using a UV-T6 spectrophotometer (Persee, Beijing, China). Leaf cell membrane damage was determined as the RMP of leaf cells using a conductivity meter (EC215, Hanna, Rome, Italy) according to the method described by Gibon *et al.* (1997) with slight modifications. Leaf tissue (100 mg) was vibrated for 30 min in deionised water followed by measurement of conductivity of bathing medium (EC₁). Then, the samples were boiled for 15 min and the final conductivity (EC₂) of the medium was measured. Finally, the RMP was calculated by using the formula: EC₁/EC₂.

Chl content was estimated using the modified method of Ma *et al.* (2012). Fresh leaf samples were crushed thoroughly with 80 % (v/v) acetone in the dark and centrifuged at 12 000 g and 4 °C for 10 min. The absorbances of the solution were recorded at 645 and 663 nm by the above mentioned spectrophotometer.

For analysis of antioxidant enzyme activities,

200 mg of fresh leaves was homogenized in 4 cm³ of phosphate buffer (50 mM, pH 7.0) containing 1 % (m/v) soluble polyvinylpyrrolidone and 0.2 mM ascorbic acid. The homogenate was centrifuged at 15 000 g and 4 °C for 10 min and the supernatant was then used for the enzyme assays. Protein content was determined according to the method of Bradford (1976) with bovine serum albumin as a standard. The activity of SOD (EC 1.15.1.1) was determined according to the method described previously (Jiang and Huang 2001). The POD (EC 1.11.1.7) activity was measured at 470 nm as guaiacol oxidation by H₂O₂ (coefficient of absorbance 26.6 mM cm⁻¹) according to Chance and Maehly (1955).

The harvested plants were washed thoroughly with running distilled water, divided into shoots and roots, and oven dried at 80 °C for 3 d till constant mass. The dried plant tissues were weighed, ground, wet digested in H₂SO₄/HNO₃ mixture (1/5, v/v) for 24 h, and then treated with HNO₃/HClO₄ mixture (5/1, v/v). The Cd concentration in the digest was measured by an atomic absorption spectrophotometer (AA6300C, Shimadzu, Kyoto, Japan). The translocation factor (TF) values were estimated according to the following equation described by Shi *et al.* (2009): TF = [Cd in shoot]/[Cd in root].

All the data were subjected to one-way analysis of variance (ANOVA) using SPSS 13.0 (SPSS Inc., Chicago, IL, USA). Duncan's multiple range tests were used to detect significant differences between means at *P* < 0.05.

Plant biomass is an important parameter for assessment of Cd accumulation in phytoremediation. The addition of Cd in the concentrations of 5 - 50 mg kg⁻¹ had no impact on the shoot and root dry mass compared with the control (Table 1). Similar trends were also observed for the shoot height. The shoot and root dry masses and shoot height decreased remarkably at higher Cd concentrations (100 - 200 mg kg⁻¹), however, no significant differences were observed between these Cd treatments (Table 1).

The low Cd treatments (5 - 50 mg kg⁻¹) had no significant impact on the Chl *a* and Chl *b* content, MDA content, and RMP compared to the control (Tables 1, 2). However, the high Cd treatments (100 - 200 mg kg⁻¹) significantly reduced the Chl (*a+b*) content and the maximum reduction (about 37 %) was observed at 200 mg(Cd) kg⁻¹. Both MDA content and RMP showed an increasing trend at high Cd concentrations (Tables 1, 2).

The activity of SOD increased significantly with the increase of the Cd concentrations relative to the control reaching its maximum at 200 mg kg⁻¹. Similar pattern was also observed in the changes of the POD activity (Table 2).

Cd accumulations in the plants increased proportionally to the increase of Cd application (Table 2). Under Cd concentrations from 5 to 200 mg kg⁻¹, the Cd content ranged from 16.56 to 78.68 mg kg⁻¹ in the shoots, and from 78.76 to 443.19 mg kg⁻¹ in the roots. Thus, the Cd content in the roots was about 4.7 - 6.1 fold higher than that in the shoots. Furthermore, the TF values were less than 1 ranging from 0.21 to 0.16. Notably, the increase in Cd concentration from 25 to 200 mg kg⁻¹ had no impact on the TF values (Table 2).

Table 1. Effect of different Cd concentrations in soil on some growth parameters and content of MDA and Chl in *A. cristatum* at 100 d after sowing. Values are means \pm SE, $n = 5$. Different letters in individual columns indicate significant difference at $P < 0.05$.

Cd [mg kg ⁻¹]	Shoot height [cm]	Shoot d.m. [g plant ⁻¹]	Root d.m. [g plant ⁻¹]	MDA [nmol g ⁻¹ (f.m.)]	Chl a [mg g ⁻¹ (f.m.)]	Chl b [mg g ⁻¹ (f.m.)]	Chl (a+b) [mg g ⁻¹ (f.m.)]
0	49.53 \pm 3.21a	0.37 \pm 0.021a	13.05 \pm 0.86b	21.08 \pm 1.06b	0.74 \pm 0.013a	0.38 \pm 0.011a	1.12 \pm 0.021a
5	51.24 \pm 2.83a	0.38 \pm 0.014a	12.83 \pm 1.12b	20.81 \pm 1.32b	0.72 \pm 0.014a	0.35 \pm 0.009a	1.07 \pm 0.018a
10	52.21 \pm 2.58a	0.41 \pm 0.025a	12.53 \pm 1.09b	19.83 \pm 1.19b	0.73 \pm 0.009a	0.36 \pm 0.015a	1.09 \pm 0.023a
25	53.53 \pm 3.65a	0.42 \pm 0.022a	12.68 \pm 0.66b	21.31 \pm 0.83b	0.69 \pm 0.022a	0.34 \pm 0.013a	1.03 \pm 0.031a
50	50.56 \pm 2.62a	0.39 \pm 0.018a	12.12 \pm 1.28b	20.12 \pm 0.98b	0.71 \pm 0.016a	0.37 \pm 0.012a	1.08 \pm 0.042a
100	41.67 \pm 2.18b	0.33 \pm 0.011b	16.32 \pm 1.31a	27.32 \pm 1.63a	0.52 \pm 0.012b	0.29 \pm 0.019b	0.81 \pm 0.026b
150	40.16 \pm 1.89b	0.31 \pm 0.012b	17.92 \pm 0.72a	28.81 \pm 1.02a	0.48 \pm 0.021b	0.27 \pm 0.014b	0.75 \pm 0.033b
200	38.92 \pm 2.37b	0.29 \pm 0.018b	19.16 \pm 1.23a	30.83 \pm 1.41a	0.47 \pm 0.028b	0.26 \pm 0.016b	0.73 \pm 0.039b

Table 2. Effect of different Cd concentrations in soil on RMP, the activities of SOD and POD, Cd content in shoots and roots, and TF values in *A. cristatum* at 100 d after sowing. Values are means \pm SE, $n = 5$. Different letters in individual columns indicate significant difference at $P < 0.05$.

Cd [mg kg ⁻¹]	RMP	SOD [U mg ⁻¹ protein]	POD [μ mol mg ⁻¹ (prot.) min ⁻¹]	Cd content in shoot [mg kg ⁻¹ (d.m.)]	Cd content in root [mg kg ⁻¹ (d.m.)]	TF values
0	0.24 \pm 0.011b	132.95 \pm 5.76f	3.24 \pm 0.16g	-	-	-
5	0.25 \pm 0.008b	162.72 \pm 4.81e	5.27 \pm 0.11f	16.56 \pm 7.85f	78.76 \pm 10.85f	0.21 \pm 0.009a
10	0.27 \pm 0.012b	203.26 \pm 5.52d	6.12 \pm 0.09e	28.37 \pm 8.39e	153.25 \pm 9.39e	0.19 \pm 0.005b
25	0.28 \pm 0.014b	251.86 \pm 6.23c	7.15 \pm 0.07d	31.46 \pm 9.31de	187.58 \pm 9.31de	0.17 \pm 0.007b
50	0.26 \pm 0.013b	263.34 \pm 4.28c	7.21 \pm 0.18d	38.34 \pm 10.21d	218.92 \pm 11.21d	0.18 \pm 0.008b
100	0.47 \pm 0.023a	289.18 \pm 5.28b	7.99 \pm 0.17c	52.18 \pm 11.12c	306.28 \pm 14.12c	0.17 \pm 0.007b
150	0.48 \pm 0.018a	309.41 \pm 6.47b	8.61 \pm 0.14b	63.72 \pm 9.89b	386.63 \pm 15.89b	0.16 \pm 0.009b
200	0.52 \pm 0.015a	332.82 \pm 4.72a	10.63 \pm 0.12a	78.68 \pm 10.06a	443.19 \pm 16.06a	0.18 \pm 0.008b

It has been known that Cd does not generate ROS directly but it induces oxidative stress by interference with the antioxidant defense system (Sanita di Toppi and Gabrielli 1999). Under heavy metal stress, the ROS (O_2^- , OH^- , and H_2O_2) are formed and cause lipid peroxidation in biological membranes (Apel and Hirt 2004). Therefore, the plant cell membranes are generally considered as primary sites of metal injury. RMP and MDA content are the markers of the membrane integrity and lipid peroxidation. Cd-induced increase in RMP and MDA content were reported for some plant species (Lozano-Rodriguez *et al.* 1997, Chien *et al.* 2001). In this study, both the MDA content and RMP show an increasing trend after the Cd application but their values were similar at different Cd concentrations (Table 1). This suggests that the plants suffered only with a small Cd-induced oxidative damage due to enhancement of cell antioxidant systems which counteract oxidative stress (Sgherri *et al.* 2003, Tao *et al.* 2012). SOD is an important ROS-scavenging antioxidant enzyme (Ekmekçi *et al.* 2008) and we found stimulation of the SOD activity with the increasing concentrations of Cd (Table 2). In addition, among the H_2O_2 destroying enzymes, the Cd stress resulted in the enhancement of POD activity (Table 2). POD, which also participates in lignin biosynthesis, may build up a physical

barrier against toxic heavy metals (Krantev *et al.* 2008). When plants are subjected to Cd stress, antioxidant enzymes respond in a coordinated manner to combat the Cd-induced oxidative stress (Podazza *et al.* 2012). The coordinated enhancement of the SOD and POD activities in *A. cristatum* alleviated possible damage to the structure of chloroplast, inhibition of synthesis of Chl, and finally caused a lower rate of Chl degradation.

The mechanism of metal tolerance in plants includes metal exclusion and accumulation (Hall 2002, Martin *et al.* 2012). Shi *et al.* (2009) reported that hemp plants strongly limited translocation of Cd to shoots suggesting that such Cd immobilization in root cells is an exclusion strategy. Our data shows that most Cd absorbed in the *A. cristatum* plants was mainly retained in the roots and only a small amount was transported to the shoots (Table 2). Therefore, *A. cristatum* is a Cd excluder, and Cd may be mainly bound in the roots thus contributing to regulating or minimizing its translocation to the shoots (Kim *et al.* 2007). The low Cd treatments (5 - 50 mg kg⁻¹) had no significant impact on the shoot and root biomasses and the shoot height (Table 1). Only little reduction in the root and shoot biomasses or the shoots height was observed after exposure of these plants to the high concentrations of Cd (100 - 200 mg kg⁻¹). Similar findings were reported by

Brunner *et al.* (2008) and Domínguez *et al.* (2009). Notably, *A. cristatum* plants survived and grew normally in the Cd contaminated soil without showing any toxic symptoms, especially at 200 mg kg⁻¹ Cd (data not shown). Based on these results, *A. cristatum* plants had innate tolerance to the Cd stress. Mendez and Maier (2008) reported that the TF is important for estimating the potential of a plant for the phytoremediation. Plant candidates should possess an extensive root system and a large amount of biomass in the presence of high concentrations of heavy metals although keeping low TF

(Alvarenga *et al.* 2008). Taken together, *A. cristatum* could be regarded as a candidate species for the phytoremediation of Cd contaminated soil.

In conclusion, the exposure of *A. cristatum* to Cd caused little reduction of the biomass and the Chl content but an increase in the activities of SOD and POD. Most of the Cd absorbed by the *A. cristatum* plants was retained in the roots and only a small amount was transported to the shoots. These results suggest that the *A. cristatum* plants are Cd tolerant and suitable for phytoremediation of contaminated soils.

References

Alvarenga, P., Gonçalves, A.P., Fernandes, R.M., Varennes, A.D., Vallini, G., Duarte, E., Cunha-Queda A.C.: Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. - *Sci. Total Environ.* **406**: 43-56, 2008.

Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - *Annu. Rev. Plant Physiol.* **55**: 373-399, 2004.

Belkadi, A., Hedjji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., Djebali, W.: Effects of exogenous salicylic acid pretreatment on cadmium toxicity and leaf lipidcontent in *Linum usitatissimum* L. - *Ecotoxicol. Environ. Safety* **73**: 1004-1011, 2010.

Bočová, B., Huttová, J., Liptáková, L., Mistrík, I., Ollé, M., Tamás, L.: Impact of short-term cadmium treatment on catalase and ascorbate peroxidase activities in barley root tips. - *Biol. Plant.* **56**: 724-728, 2012.

Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Brunner, I., Luster, J., Günthardt-Goerg, M.S., Frey, B.: Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. - *Environ. Pollut.* **152**: 559-568, 2008.

Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. - *Method. Enzymol.* **11**: 764-775, 1955.

Che, Y.H., Li, H.J., Yang, Y.P., Yang, X.M., Li, X.Q., Li, L.H.: On the use of SSR markers for the genetic characterization of the *Agropyron cristatum* (L.) Gaertn. in northern china. - *Genet. Resour. Crop Evol.* **55**: 389-396, 2008.

Chien, H., Wang, J., Lin, C., Kao, C.: Cadmium toxicity of rice leaves is mediated through lipid peroxidation. - *Plant Growth Regul.* **33**: 205-213, 2001.

Cobbett, C., Goldsborough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. - *Annu. Rev. Plant Biol.* **53**: 159-182, 2002.

Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. - *J. exp. Bot.* **32**: 93-101, 1981.

Domínguez, M.T., Madrid, F., Marañón, T., Murillo, J.M.: Cadmium availability in soil and retention in oak roots: potential for phytostabilization. - *Chemosphere* **76**: 480-486, 2009.

Ekmekçi, Y., Tanyolac, D., Ayhan, B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. - *J. Plant Physiol.* **165**: 600-611, 2008.

Gibon, Y., Bessieres, M.A., Larher, F.: Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? - *Plant Cell Environ.* **20**: 329-340, 1997.

Hall, J.J.: Cellular mechanism for heavy metal detoxification and tolerance. - *J. exp. Bot.* **53**: 1-11, 2002.

Jiang, Y., Huang, B.: Effects of calcium and antioxidant metabolism and water relations associated with heat tolerance in two cool-season grasses. - *J. exp. Bot.* **355**: 341-349, 2001.

Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y.S.: The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. - *Plant J.* **50**: 207-218, 2007.

Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. - *J. Plant Physiol.* **165**: 920-931, 2008.

Lozano-Rodriguez, E., Hernandez, L.E., Bonay, P., Carpeta-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. - *J. exp. Bot.* **48**: 123-128, 1997.

Ma, Q., Yue, L.J., Zhang, J.L., Wu, G.Q., Bao, A.K., Wang, S.M.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte *Zygophyllum xanthoxylum*. - *Tree Physiol.* **32**: 4-13, 2012.

Martin, S. R., Llugany, M., Barceló, J., Poschenrieder, C.: Cadmium exclusion a key factor in differential Cd-resistance in *Thlaspi arvense* ecotypes. - *Biol. Plant.* **56**: 729-734, 2012.

Mendez, M.O., Maier, R.M.: Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. - *Environ. Health Perspect.* **116**: 278-283, 2008.

Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. - *Plant Physiol.* **132**: 272-281, 2003.

Padmavathiamma, P.K., Li, L.Y.: Phytoremediation technology: hyper-accumulation of metals in plants. - *Water Air Soil Pollut.* **184**: 105-126, 2007.

Podazza, G., Arias, M., Prado, F.E.: Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. - *J. Hazard. Mater.* **215-216**: 83-89, 2012.

Sanita di Toppi, L., Gabrielli, R.: Response to cadmium in higher plants. - *Environ. exp. Bot.* **41**: 105-130, 1999.

Sgherri, C., Cosi, E., Navari-Izzo, F.: Phenols and antioxidative status of *Raphanus sativus* grown in copper excess. - *Physiol. Plant.* **118**: 21-28, 2003.

Shi, G.R., Cai, Q.S., Liu, Q.Q., Wu, L.: Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to

cadmium uptake, photosynthesis, and antioxidant enzymes. - *Acta Physiol. Plant.* **31**: 969-977, 2009.

Simon, L.: Stabilization of metals in acidic mine soil with amendments and red fescue (*Festuca rubra* L.) growth. - *Environ. Geochem. Health* **27**: 289-300, 2005.

Tao, Y.M., Chen, Y.Z., Tan, T., Liu, X.C., Yang, D.L., Liang, S.C.: Comparison of antioxidant responses to cadmium and lead in *Bruguiera gymnorhiza* seedlings. - *Biol. Plant.* **56**: 149-152, 2012.

Tian, S.K., Lu, L. L., Yang, X.E., Huang, H.G., Wang, K., Brown, P.H.: Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator *Sedum alfredii*. - *Biol. Plant.* **56**: 344-350, 2012.

Wen, L., Fu, D.F.: The phytoremediation of ryegrass on multiple heavy metal soils by two reinforced methods. - *China Environ. Sci.* **28**: 786-790, 2008.

Zhang, X.F., Xia, H.P., Li, Z.A., Zhuang, P., Cao, B.: Potential of four forage grasses in remediation of Cd and Zn contaminated soils. - *Biore sour. Technol.* **101**: 2063-2066, 2010.