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Abstract

The present study was aimed at understanding the effects of long term supplemental UV-B (3.6 kJ m™ d™') on biomass
production, accumulation of reactive oxygen species, lipid peroxidation, and enzymatic antioxidants in leaves and roots
of Withania somnifera (an indigenous medicinal plant). Under the UV-B treatment, a reduction in biomass and an
increased malondialdehyde content (a characteristic of lipid peroxidation) were observed in both the shoots and roots.
Amongst ROS, H,0, content increased under UV-B in the leaves, whereas it decreased in the roots, and superoxide
radical production rate decreased in both the plant parts. The activities of all enzymatic antioxidants tested (ascorbate
peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) increased under
the UV-B treatment, the increase being greater in the roots.

Additional key words: ascorbate peroxidase, catalase, glutathione reductase, malondialdehyde, oxidative stress, peroxidase,
polyphenol oxidase, superoxide dismutase.

Introduction

Ultraviolet radiation is an abiotic factor which influences  (APX), glutathione reductase (GR), catalase (CAT),

various aspects of plant life (Ballaré et al. 2011,
McKenzie ef al. 2011) and its effects are highly variable
(Krupa and Kickert 1989, Jordan 1996). Plants respond to
UV radiation via expression of specific genes involved in
plant growth, development, and secondary metabolism.
Production of biomass, as one of the key parameters, has
been studied extensively under UV-B stress (Kumari
et al. 2009a,b, Ravindran et al. 2010). Another definitive
response of plants to UV-B exposure is the generation of
reactive oxygen species (ROS) like singlet oxygen ('O,),
superoxide radical ('O;), H,O,, and hydroxyl radical
("OH). Their over-accumulations can result in cell death
(Mackerness et al. 2001). To counteract their damaging
effects, plants produce ROS scavengers in the form of
enzymatic and non-enzymatic antioxidants (Agrawal
et al. 2009). The former include various enzymes like
superoxide dismutase (SOD), ascorbate peroxidase

peroxidase (POX), and polyphenol oxidase (PPO) among
others (Mittler et al. 2004). Fig. 1 summarises some of
the effects of UV-B on plant membranes and consequent
plant responses.

Withania somnifera (Solanaceae) is a medicinal plant
used for centuries. Its medicinal properties are primarily
attributed to withanolides present in its roots (Sharma
et al. 2011). The effect of UV-B radiation on ROS
production and antioxidants is not known in this species.
Thus, the present study was aimed at investigating the
effect of supplemental UV-B radiation on biomass
production, ROS (H,O, and ‘O,), and enzymatic
antioxidants (APX, CAT, GR, POX, PPO, and SOD) in
the leaves and roots of the W. somnifera in order to
evaluate the significance of the antioxidant systems in
conferring tolerance of this plant to UV-B stress.
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Materials and methods

Plants and treatments: The experimental site was
located in the Botanical Garden, Department of Botany,
Banaras Hindu University, Varanasi (latitude: 25° 18’ N,
longitude: 82° 03’ E, elevation: 76 m above mean sea
level), situated in the Eastern Gangetic plains of India.
During the experimental period (end of March to mid-
July), the average minimum temperature was 24.4 °C and
the average maximum temperature was 37.8 °C. Relative
humidity ranged from 41.9 to 61.3 %.

One-month-old plants of Withania somnifera (L.)
Dun. were obtained from nursery and transplanted in field
in experimental plots of 1 x 1 m with 12 plants per plot
(3 rows with 4 plants in each row at equal distances). The
plots were prepared in triplicate for each type of
treatment. Spacing between the ridges was 30 cm and the
distance between the ridges and plot border was
15 cm. Spacing between the plants was 20 cm. The plants
were watered regularly as per the requirement.

Supplemental UV-B radiation was provided using
UV-B lamps (Q Panel UV-B 313 40 W fluorescent
lamps, Q panel Inc., Cleveland, OH, USA). Three lamps
(120 cm long) were fitted on steel frames at equal
distances directly above the plant canopy. For a UV-B
treatment, the lamps were covered with a 0.13 mm
cellulose diacetate filter (Cadillac Plastic Co., Baltimore,
MD, USA) which transmits radiation down to 280 nm,
and for control, by a 0.13 mm polyester filter (Cadillac
Plastic Co.) which absorbs radiation below 320 nm. The
control plants received ambient UV-B dose of 9.6 kI m™* d”!
(Caldwell 1971), whereas the treated plants received 9.6
+ 3.6 k] m? d'. Thus, biologically effective UV-B
(UV-Bgg) simulated 10 % ozone depletion at Varanasi.
The filters used in the experiment were changed every
week due to their photo-degradation by UV-B. UV-B was
provided to the plants after their establishment in the field
for 3 h during noon (11:00 to 14:00). The irradiance was
measured using Ultraviolet Intensity Meter (UVP Inc.,
San Gabriel, CA, USA) and UV-Bgg values were
determined using  Spectropower-meter  (Scientech,
Boulder, USA).

The control and treated plants were carefully dug out
in the form of monoliths with roots intact, and thoroughly
washed with running water. The plant parts were
separated and leaves and roots (fresh tissue) were used
for all analyses. The sampling was done at 40, 70, and
100 d after transplantation (DAT). Each parameter was
analyzed using five replicates for each treatment.

Results

A reduction in the leaf as well as root biomass was
observed at all the sampling ages in the UV-B treated
plants and it was more evident in the roots (Fig. 2). The
age and treatment as well as their interaction significantly
affected the biomass in both the plant organs (Table 2).
The MDA content (the measure of degree of LPO)

Analyses: For biomass determination, plants were
collected, their leaves and roots separated, and dried in an
oven at 80 °C till a constant mass was achieved. Lipid
peroxidation (LPO) was determined in terms of a malon-
dialdehyde (MDA) content measured according Heath
and Packer (1968). Hydrogen peroxide content was
determined following the method of Alexieva et al.
(2001) and calculated using a standard curve. Superoxide
radical production rate was measured as per the method
of Elstner and Hupel (1976) and calculated from a
standard graph prepared using potassium nitrite (KNO,).

To analyze enzymatic antioxidants, 400 mg of fresh
tissue was homogenized in 10 cm® of a sodium phosphate
buffer (0.1 M, pH 7.0) containing 0.1 % (m/v) Triton
X-100 and 0.2 g of polyvinylpyrrolidone (PVP) under
ice-cold conditions. The homogenate was centrifuged at
10 000 g for 20 min. The supernatant was collected and
re-centrifuged at 13 500 g and 4 °C for another 15 min.
The supernatant was collected and stored at 4 °C until
analysed.

APX was assayed as per the method of Nakano and
Asada (1981) after supplementing the extraction buffer
with 1 mM ascorbate. A coefficient of absorbance was
2.8 mM" cm”. CAT activity was determined following
the method of Abei (1984) using a coefficient of
absorbance of 0.036 mM™' ¢cm™'. The method of Anderson
(1996) was followed for the determination of a GR acti-
vity using the coefficient of absorbance of 6.22 mM™ cm™.
POX activity was determined using the method described
by Britton and Mehley (1955) and a coefficient of
absorbance was 2.47 mM"' cm”. PPO activity was
measured according to the method of Kumar and Khan
(1982) and one unit was 0.1 change in absorbance per
min. SOD activity was determined according to Fridovich
(1974) by measuring its ability to inhibit photochemical
reduction of nitroblue tetrazolium (NBT), and one unit of
the enzyme activity was defined as the amount of the
enzyme required for 50 % inhibition of the reduction of
NBT.

Statistics: The Student’s #-test was applied to compare
the means between the control and treatment for both the
leaves and the roots. Two-way ANOVA was performed to
test the individual and interactive effects of treatments,
organs, and age. All statistical analyses was performed
using the SPSS software v. 16.

increased in the leaves under the UV-B radiation as
compared to the controls at all the sampling dates (261.2,
120.2, and 329.8 % at 40, 70, and 100 DAT, respectively;
Table 1). In the roots, a similar trend of increment was
observed but the MDA content was lower in the UV-B
treated roots as compared to the leaves. Results of two-
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way ANOVA indicate that the degree of LPO was
significantly affected by the treatment, age, and their
interaction (Table 2).

The UV-B treated leaves recorded an increase in the
H,0, content compared to the control ones at all the
sampling dates, whereas a reduction was observed in the
roots (Table 1). The ‘O, production rate decreased in the
UV-B treated leaves compared to the control ones (Table
1) and a maximum reduction was observed at 40 DAT
(46.3 %, P < 0.001). In the roots, a similar trend of
decrease was observed (43.4, 21.7, and 23.6 % at 40, 70,
and 100 DAT, respectively). When comparing the leaves
and roots of the control and UV-B treated plants, the
'O, production rate was higher in the leaves than in the
roots (Table 1). The ‘O, production was significantly
affected by all individual factors as well as their

Under the UV-B treatment, the APX activity was
higher in the leaves at 40 and 70 DAT and the in roots at
all three ages compared to the control, however, it was
lower in the leaves at 100 DAT. The treated plants
showed a higher APX activity in the roots compared to
the leaves at all three sampling dates (Table 1). The APX
activity varied significantly with the plant age, treatment,
and their interaction (Table 2).

The leaf and root CAT activities were higher under
the UV-B treatment than in the control at all three
sampling dates, though an increase in the leaves was
insignificant at 40 DAT (11.63 %). The CAT activity was
higher in the leaves compared to the roots in the control
plants, but in the UV-B treated plants, roots possessed a
higher CAT activity compared to the leaves at 40 and
70 DAT. At 100 DAT, the CAT activity was higher in the

interactions (Table 2). UV-B exposed leaves as compared to the roots
UVB
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Fig. 1. Under UV-B radiation stress, different ROS are formed by photosystems in the thylakoid membrane of chloroplast and leads
to the activation of complex antioxidant defense system which includes the enzymes of the Haliwell-Asada pathway (Mittler et al.
2004). At PS 11, *0,7, H,0,, '0,, and "OH are produced from molecular oxygen. 10, can also be produced at PS 1. "0, is dismutated
by SOD to H,0,. 'O, is highly reactive and has a short half-life. It causes degradation of D1 protein and loss of PS II activity
(photoinhibition). Unquenched 'O, also causes lipid peroxidation. 'O, and "OH can be scavenged by Asc, Toc, and GSH. H,0, is
scavenged by Asc, GSH, and POXs. Not all chloroplast and membrane damage reactions are shown here. Abbreviations:
APX - ascorbate peroxidase; Asc - ascorbate; CAT - catalase; DHA - dehydroascorbate; DHAR - dehydroascorbate reductase;

GR - glutathione reductase;

GSH - reduced glutathione; GSSG - oxidized glutathione;

LPO - lipid peroxidation;

MDA -malondialdehyde; MDAR - malondialdehyde reductase; 'O, - singlet oxygen; "OH - hydroxyl radical; POXs - peroxidases;
PS I - photosystem I; PS II - photosystem II; SOD - superoxide dismutase; Toc - tocopherol.
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(Table 1). The CAT activity varied significantly with the
plant age, treatment, and their interactions (Table 2).

The GR activity in the UV-B treated plants increased
initially by 110.5 and 155.8 % at 40 and 70 DAT,
respectively, compared to the control ones, but it declined
as the leaves matured (11.7 %), though this reduction was
non-significant (Table 1). In the roots, the GR activity
was higher compared to the control. In the control plants,
the GR activity was higher in the roots at 40 and 70 DAT,
whereas in the UV-B treated plants, the GR activity was
higher in the roots as compared to the leaves at all the
sampling dates (Table 1). The plant age as well as the

treatment affected the GR activity significantly (Table 2).

The POX activity of the UV-B treated plants of all
three ages showed an enhancement in the leaves and
roots. A higher POX activity was always in the roots than
in the leaves (Table 1). The plant age, UV-B treatment
and their interactions significantly affected the POX
activity (Table 2).

The UV-B treated leaves showed enhanced PPO when
compared with the control. A maximum increment was
observed at 100 DAT (431.0 %, P < 0.001). A similar
trend was observed in the roots with the maximum
increase of the PPO activity being at 70 DAT (70.4 %). In

UV-B treated

Control

Control

UV-B treated

|

J

Control UV-B treated

Fig. 2. Control and UV-B treated roots of W. somnifera at 40 (4), 70 (B), and 100 (C) days after transplantation.

Table 1. The effects of UV-B treatment on the biomass [g plant'l], content of MDA [nmol g‘l(f.m.)] and H,O, [umol g'l(f.m.)],
"0, production rate [nmol g™'(f.m.) min"], and activities of APX, CAT, GR [mmol g"(fm.) min™], POX [umol g'(fm.) min™],
PPO, and SOD [U g''(fm.)] in leaves and roots of Withania somnifera at three sampling dates. Means + SE n = 5. Differences
significant at * - P < 0.05, ** - P <0.01, *** - P <0.001. DAT - days after transplantation.

Organs Parameter 40 DAT 70 DAT 100 DAT
control UV-B control UV-B control UV-B

Leaves biomass 1.67 +0.008 0.64 £0.012™  2.03 +0.067 1.23 +0.033™  4.50 +0.058 2.33 +0.033™
MDA 0.32 +0.007 1.14 +0.152" 1.00 +0.006 221 +0.019™  1.05 +0.014 4.50 +0.092""
H,0, 0.49 +0.006 0.58 +0.008™"  0.61 +0.002 0.97 £0.021™  0.94 +0.006 1.03 +0.021""
"0y 0.13 +0.004 0.07 £0.003™"  0.18 +0.001 0.16 £0.001™ 0.27 +0.002 0.20 +0.001"
APX 0.016+0.003 0.01940.004™  0.024+0.002 0.02840.001™"  0.058+0.060 0.03740.024™"
CAT 1.51 +0.029 1.69 +0.036"™ 1.87 +0.040 5.41 +0.029™  3.72 +0.022 438 +0.029™"
GR 0.002+0.000 0.005+0.000" 0.003+0.000 0.006£0.000™  0.014+0.000 0.01310.000™
POX 84.56 +0.165  85.63 +0.218™ 101.76 £0.428 117.41 £0.297"" 154.54 +0.460 193.54 +0.110""
PPO 0.01620.001 0.037+0.006" 0.024+0.002 0.108+0.000""  0.026+0.000 0.140+0.002""
SOD 1.06 +0.006 1.172+0.014" 2.03 +0.006 2.99 +0.008™  2.537+0.004 3.56 +0.007"

Roots  biomass 0.23 +0.067 0.15 +0.029" 1.33 £0.006 0.63 +0.009™  4.22 +0.002 1.81 £0.003™
MDA 0.57 +0.013 0.84 +0.004" 0.91 +0.013 1.62 £0.013  1.25 +0.028 3.56 +0.018"™
H,0, 0.48 +0.006 0.35 £0.014™  0.85 +0.054 0.51 +0.006™ 0.90 +0.026 0.63 +0.017"
0y 0.09 +0.002 0.05 £0.004™  0.15 +0.003 0.12 +£0.002"™ 0.21 +0.002 0.16 £0.001™
APX 0.02 +0.001 0.03 +0.000™  0.03 +0.001 0.04 £0.000™"  0.06 +0.001 0.06 +0.000"
CAT 1.26 +0.080 6.74 +0.048""  1.76 £0.011  10.53 £0.107™ 2.55 +0.030 3.12 +0.017"
GR 0.00620.000 0.015+0.000™  0.008+0.000 0.018£0.000™"  0.009+0.000 0.026£0.001"
POX 91.31 £0.218  94.11 +0.285™ 122.67 +0.218 136.76 +0.359"" 183.98 +0.167 204.27 +0.303"""
PPO 0.021£0.001 0.04340.001""  0.035+0.002 0.1204£0.002™  0.067+0.000 0.203+0.001""
SOD 3.42 +0.008 4.19 +0.009™" 3.8 5+0.011 4.66 +0.012™"  4.15 0.013 5.81 +0.023""
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both the control and treated plants, activity was higher in
the roots than in the leaves (Table 1). Two-way ANOVA
showed significant variations in the PPO activity with
respect to the age, treatment and their interaction
(Table 2).

The UV-B treatment enhanced the SOD activity in the

Discussion

A reduction in biomass under a UV-B stress has been
reported in a majority of studies although in some
instances it remains unchanged or increases (Zhao et al.
2013).

Table 2. Two-way ANOVA test to determine the effects of
the UV-B (T), plant age (A), and their interactions on the
biomass, lipid peroxidation (MDA), ROS, and antioxidant
enzymes in W. somnifera leaves and roots. F ratios and levels of
significance (*** - P <0.001).

Organ Parameter A T AXT

Leaves biomass 952.8"™  890.3" 89.8"""
MDA 391.67° 93227 187.6"
H,0, 134.17 66.5"" 15.97
0y 1863 77 9179 86.9""
APX 46720 77 2562 77 10080 7
CAT 3421 77 3164 7T 1646 7
GR 1211 ™7 70.9"" 81.8""
POX 56180 7 6740 7T 2366
PPO 24267 1157 77 162.9™
SOD 75810 7 27720 T 4881

Roots biomass 4081 ™ 1623 77 699.0°
MDA 5572 77 6681 T 2145 7
H,0, 2909 7 4418 7T 517.077
0y 2550 77 83727 2047
APX 35620 77 8351 7 181.27
CAT 1567 °7 10200 7T 2367 7
GR 188.17° 1459 ™ 733"
POX 56110 7 2552 77 4554
PPO 3391 77 6176 T 1047 T
SOD 5712 77 14490 77 1053 77

A greater decrease in the root biomass compared to the
leaf biomass might be because the roots utilized a great
amount of photosynthates for the production of anti-
oxidative defense enzymes preventing root oxidative
damage. Photosynthates might also be channelized
towards the production of higher quantities of important
secondary metabolites. The plant response to UV-B is
likely dependent on shoot to root signaling which may
involve  phytohormones, ROS, calcium, cyclic
nucleotides, nitric oxide, sugars, abscisic acid,
jasmonates, salicylic acid, and polyamines (Stratmann
2003, Ktitorova et al. 2006, Krasylenko et al. 2012).
Cross-talk between these signaling pathways is a
common plant stress response affecting both its growth
and metabolism. A higher decrease in the root biomass
was also observed previously in wheat exposed to UV-B
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leaves and roots at all three sampling dates. The SOD
activity increased with the age in control as well as in the
UV-B treated leaves and roots (Table 1). Results of two-
way ANOVA showed that there was a significant variation
in the SOD activity at different plant ages, treatments,
and their interactions (Table 2).

(Agrawal et al. 2004). W. somnifera is a medicinal plant
producing a number of pharmaceutically important
secondary metabolites. Under a UV-B stress, a decrease
in the plant biomass is usually accompanied by an
increase in secondary metabolite production (Zhang and
Bjorn 2009). Hence, the economic yield loss might be
less than anticipated based only on biomass reduction.

The lipids in cell membranes were destroyed due to
excessive ROS generation during the UV-B stress
depicted by an increase in the MDA content in the treated
plants of W. somnifera. Lipid peroxidation is a self-
propagating chain reaction, hence initial oxidation of only
a few lipid molecules often results in substantial tissue
damage. Alkoxy- and peroxy-radicals, products of lipid
peroxidation, are known to destroy chlorophyll (Peiser
and Yang 1978) (Fig. 1). The results obtained in this
study are corroborated by several other findings made by
Kumari ef al. (2010) in Acorus calamus, Tripathi et al.
(2011) in Linum usitatissimum, and Hagh et al. (2012) in
sunflower cultivars.

An increase in the H,O, content found in the leaves of
UV-B treated W. somnifera plants has been reported also
in other plants (Rybus Zajac 2005, Kubi§ and Rybus
Zajac 2008). An increase in the SOD activity is one of the
reasons for higher production of H,0; in plants. H,O, is
scavenged by catalase, various peroxidases, and enzymes
of ascorbate-glutathione cycle. The higher activities of
CAT, APX, and GR in the roots might be responsible for
more efficient quenching of H,O, in the roots of the
treated plants. H,O, reacts with 'O, via Fenton reaction
to produce “OH which is the most reactive ROS and may
be responsible for higher lipid peroxidation in the UV-B
exposed leaves compared to the roots.

In our study, the rather low O, production rate might
be primarily due to the high SOD activity. An activation
of SOD in plants under a UV-B treatment has been
reported by Rao and Ormrod (1995). SOD remove "O, by
catalyzing its dismutation to H,O, and O, (Agarwal 2007,
Gill and Tuteja 2010). Also, SOD sprayed Arabidopsis
leaves showed lower production of "O,” than control ones
under a UV-B treatment (Mackerness et al. 2001).

APX plays an important role in scavenging H,O,
produced by SOD. It is required to maintain the redox
state of cells under stress (Asada 1992). Its increased
activity was observed both in the leaves and roots of the
treated plants as compared to the control ones. An
increased APX activity has been also observed in
cucumber (Kataria et al. 2007), kidney bean (Singh et al.
2011), and sunflower (Hagh er al. 2012). However, a
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decline in the APX activity in the treated plants at
100 DAT might probably be due to APX degradation or
repression of APX gene expression under prolonged
UV-B exposure (Casati et al. 2002).

CAT directly dismutates H,0O, into H,O and O, and is
an important ROS scavenging enzyme during stress
conditions (Garg and Manchanda 2009, Gill and Tuteja
2010). In agreement with our experiments, CAT activity
was reported to increase under UV-B by Balakumar ef al.
(1997), and Hagh et al. (2012). Results similar to ours
were also observed by Singh (1996) in UV-B treated
Glycine max, and Kumari et al. (2010) in Acorus
calamus, a medicinal plant. However, this enzyme is
susceptible to photoinactivation and degradation, hence
its activity is reduced under prolonged and high
irradiance. Also, it has poor affinity for H,O, and hence it
is limited in effectiveness (Shim et al. 2003). A decreased
CAT activity could also be due to the destruction of
peroxisomes due to high lipid peroxidation under a UV-B
stress (Ravindran ef al. 2010). POX decomposes H,O, by
oxidation of co-substrates (Gaspar et al. 1991). UV-B
radiation increased POX activity in several plant species
including wheat and mung bean (Agrawal and Rathore
2007), peanut (Tang et al. 2010), and cucumber (Hagh et
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