

Molecular cloning, characterization, and expression analysis of *LeMYB1* from *Lithospermum erythrorhizon*

H. ZHAO^{1,2}, S.K. BALOCH^{1,3}, L.R. KONG¹, W.J. ZHANG¹, A.L. ZOU¹, X.M. WANG¹, J.L. QI^{1,4*}, and Y.H. YANG^{1*}

*State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, P.R. China*¹

*Engineering Technology Research Center of Anti-Aging Chinese Herb, School of Life Sciences, Fuyang Normal College, Fuyang 236032, P.R. China*²

*Department of Biotechnology FCPD, Sindh Agriculture University, Tandojam 71000, Pakistan*³
*Huaian High-Tech Research Institute, Nanjing University, Huaian 223005, P.R. China*⁴

Abstract

MYB transcription factors (TFs) are known to have important functions in regulating the biosynthesis of secondary metabolites in plants. In this study, *LeMYB1*, a member of the *MYB* gene family of *Lithospermum erythrorhizon*, was cloned via the rapid amplification of cDNA ends. The alignment of the predicted translations of *LeMYB1* with other MYB proteins revealed that *LeMYB1* contained an N-terminal R2R3 repeat and a high degree of amino acid identity to *NtMYBJS1* which is involved in jasmonic acid signalling and phenylpropanoid biosynthetic pathway regulation. To determine the expression pattern of *LeMYB1*, its promoter was cloned and the sequence analysis was performed. The results revealed a number of potential regulatory motifs related to tissue-specific gene expression and abiotic and biotic stress responses. Real-time PCR results suggest that *LeMYB1* was induced transiently during the early stage when *L. erythrorhizon* cells were transferred from a B5 growth medium to a M9 production medium for shikonin formation. Exogenous methyl jasmonate (MeJA), an effective inducer of shikonin biosynthesis, induced the rapid *LeMYB1* expression. In contrast, a treatment with ibuprofen (IBU), an inhibitor of jasmonate biosynthesis, significantly inhibited the *LeMYB1* expression. Another inhibitor of shikonin formation, 2,4-dichlorophenoxyacetic acid (2,4-D), also markedly repressed the expression of *LeMYB1*. Tissue-specific expression analysis showed that *LeMYB1* mRNA was predominantly accumulated in roots where shikonin was synthesized. Thus, the *LeMYB1* gene may be a valuable member of the R2R3-MYB family in *L. erythrorhizon* and is possibly involved in the regulation of shikonin biosynthesis.

Additional key words: 2,4-dichlorophenoxyacetic acid, ibuprofen, methyl jasmonate, R2R3 repeat, RACE, real-time PCR, shikonin.

Introduction

Shikonin and its derivatives are a class of naphthoquinone-containing pigments that are only synthesized in

plants of family *Boraginaceae*, such as *Lithospermum erythrorhizon* (Han *et al.* 2008), *Onosma paniculatum*

Submitted 8 May 2013, last revision 28 November 2013, accepted 4 December 2013.

Abbreviations: 2,4-D - 2,4-dichlorophenoxyacetic acid; 4CL - 4-coumarate:CoA-ligase; GAPDH - glyceraldehydepsphosphate dehydrogenase; GPP - geranylpyrophosphate; HMGR - 3-hydroxy-3-methylglutaryl-CoA reductase; HTH - helix-turn-helix; IBU - ibuprofen; MeJA - methyl jasmonate; NJ - neighbor-joining; NCBI - National Center for Biotechnology Information; ORF - open reading frame; PAL - phenylalanine ammonia-lyase; PHB - *p*-hydroxybenzoic acid; PGT - *p*-hydroxybenzoate-3-geranyltransferase; PLACE - plant cis-acting regulatory DNA elements; RACE - rapid amplification of cDNA ends; RT-PCR - reverse transcription polymerase chain reaction; TD-PCR - touch-down PCR; TFs - transcription factors.

Acknowledgements: This research was supported by the grants from the Natural Science Foundation of China (NSFC) (31071082, 31170275, 31171161), the Natural Science Foundations of the Jiangsu Bureau of Science and Technology (BK2010053, BK2011414), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1020), the Project of New Century Excellent Talents in University (NCET-11-0234), and the Foundations of Huaian High-Tech Research Institute of Nanjing University (2011Z2).

* Corresponding authors; fax: (+86) 25 83592705, e-mails: QiJL@nju.edu.cn, YangYH@nju.edu.cn

(Rinner *et al.* 2010), and *Arnebia euchroma* (Damianakos *et al.* 2012). Shikonin and its derivatives can increase pathogen resistance and improve viral defense (Chen *et al.* 2003, Papageorgiou *et al.* 2008), or can be used as natural colorants in food and cosmetic products (Yazaki *et al.* 1999, Papageorgiou *et al.* 2006). A two-stage cell culture system had been successfully established by Mitsui Petrochemical Industries for the production of shikonin and its derivatives at the industrial level. In the first stage, a growth medium, such as B5 growth medium, is used for the proliferation of callus cells. In the second stage, a production medium, such as M9 medium, is used for the production of shikonin and its derivatives (Yazaki *et al.* 1999, Zhang *et al.* 2010a, Zou *et al.* 2011). Shikonin and its derivatives are biosynthetically derived from two key precursors from cultured *L. erythrorhizon* cells, *p*-hydroxybenzoic acid (PHB), which is synthesized from phenylpropanoid metabolites, and geranyl pyrophosphate (GPP), which is derived from the isoprenoid pathway (Heide and Berger 1989a, Yamaga *et al.* 1993, Gaisser and Heide 1996). In the B5 medium, the cultured cells accumulate a large amount of *p*-hydroxybenzoic acid-*O*-glucoside in their vacuoles whose aglycone form is one of the precursors of shikonin biosynthesis (Yazaki *et al.* 1986a, 1995). Upon the transfer of cells from the B5 to M9 medium, glucoside is enzymatically hydrolyzed to produce free hydroxybenzoic acid that is consequently prenylated to form *m*-geranyl-*p*-hydroxybenzoic acid (Yazaki *et al.* 1986a,

Heide *et al.* 1989b), a key intermediate in shikonin formation. Although the biochemistry and enzymology of the shikonin biosynthetic pathway are well understood, the key transcription factor (TF) that may control this pathway is largely unknown.

R2R3-MYB TFs regulate the activity of several branches of phenylpropanoid metabolism. This plant-specific R2R3-MYB TF family is defined by a common DNA-binding domain of two repeats of about 50 amino acids (Ogata *et al.* 1996). The examination of R2R3-MYB TFs *via* phylogenetic analysis revealed functionally distinct subgroups (Kranz *et al.* 1998, Stracke *et al.* 2001, Dubos *et al.* 2010), several of which are involved in the regulation of particular branches of phenylpropanoid metabolism (Paz-Ares *et al.* 1987, Quattroccchio *et al.* 1998, Schwinn *et al.* 2006), such as anthocyanin production (Ahmed *et al.* 2009), phlobaphene biosynthesis (Grotewold *et al.* 1994), flavonol biosynthesis (Mehrtens *et al.* 2005), hydroxycinnamic acid biosynthesis (Docimo *et al.* 2013), and monolignol biosynthesis (Zhou *et al.* 2009, Zhong *et al.* 2010). For the common phenylpropanoid metabolism pathway of shikonin biosynthesis, we speculate that R2R3-MYB TFs may have important functions in regulating the formation of shikonin. In this report, we isolated a *R2R3-MYB* gene, named *LeMYB1*, and characterized the promoter of *LeMYB1* from cultured cells of *L. erythrorhizon*. The expression patterns of *LeMYB1* were also analyzed.

Materials and methods

Plants and treatments: The callus cells (line Y8) used in this study were derived from young shoots of *Lithospermum erythrorhizon* Sieb. et Zucc (Zhang *et al.* 2010b) and were maintained in a B5 (Gamborg *et al.* 1968) growth medium for proliferation under an 8-h photoperiod (an irradiance of 80 $\mu\text{mol m}^{-2} \text{s}^{-1}$, TLD36 W/54, Philips, Eindhoven, The Netherlands) and a temperature of 25 °C. For the formation of shikonin and its derivatives, and for *LeMYB1* expression analysis, the cells were transferred into an M9 (Fujita *et al.* 1981) production medium and were kept in darkness at 25 °C on a shaker at 120 rpm. Approximately 1 g of cells from the B5 solid medium were transferred to 100 cm³ conical flasks containing 20 cm³ of the M9 liquid medium (Yang *et al.* 1999). Methyl jasmonate (MeJA) at a concentration of 10 μM , 50 μM ibuprofen (IBU), or 1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) (*Sigma*, St. Louis, MO, USA) were used to treat the cultured cells to analyze the gene expression patterns.

Full-length cDNA cloning of *LeMYB1*: To clone the *LeMYB1* gene, the total RNA of cells cultured in the M9 production medium was isolated as described by Zhang

et al. (2010a). The first-strand cDNA was synthesized using *M-MLV* reverse transcriptase (*Promega*, Madison, WI, USA) with an adaptor oligo (dT₁₅) primer. A combination of touch-down PCR (TD-PCR) and the rapid amplification of cDNA ends (RACE) were applied for cloning the full-length cDNA of *LeMYB1* as described by Zou *et al.* (2011). Initially, PCR was performed using the cDNA prepared above as the template, and the degenerated primers (Yang *et al.* 2008) were designed according to the conserved regions of *Glycine max* R2R3-type MYB sequences (Table 1 Suppl.), and gene-specific 5' and 3' RACE primers were designed based on the cloned sequence. The PCR products were cloned into a pMD18-T vector (*TaKaRa*, Dalian, China) for sequencing. The resulting sequences were aligned together to obtain a full-length cDNA designated as *LeMYB1*. To confirm the full-length cDNA sequence of *LeMYB1*, we redesigned the 5' and 3' primers based on the integrated full-length cDNA to clone the open reading frame (ORF) of *LeMYB1*.

Characterization and bioinformatic analysis of *LeMYB1*: The full-length cDNA of *LeMYB1* was

subjected to online *BLASTn* and *BLASTx* analyses and the ORF was identified using the online *ORF Finder* program (<http://ncbi.nlm.nih.gov>). For the multiple sequence alignment analysis, the amino acid sequences of *LeMYB1* and MYB homologs of different plant species that were retrieved from NCBI were aligned, and the phylogenetic tree was constructed based on the full-length amino acid sequences by using the bootstrap neighbor-joining (NJ) method in the *DNAMAN* 5.2.2. The following proteins were included for the construction of the evolutionary tree: *Arabidopsis thaliana* AtMYB4 (BAA21619), AtMYB12 (AF062864), AtMYB29 (NP_196386), AtMYB75 (NP_17605), AtMYB90 (NP_176813), and AtMYB122 (NP_177548), *Antirrhinum majus* AmMixta (CAA55725), *Lotus japonicus* LjMYB12 (BAF74782), *Fragaria × ananassa* FaMYB1 (AAK84064), *Nicotiana tabacum* NtMYBJS1 (AB236951), *Nicotiana attenuata* NaMYB8 (ADD59978), *Vitis vinifera* VvMYBF1 (FJ948477), VvMYBPA1 (AM259482), VvMYB5a (AY555190), and VvMYB5b (AY899404), *Diospyros kaki* DkMYB4 (BAI49721), *Picea mariana* PmMBF1 (AAA82943), *Malus domestica* MdMYB1 (ABK58136), *Zea mays* ZmC1 (AAA33482), and *Gynura bicolor* GbMYB1 (AB550244).

Cloning *LeMYB1* promoter and sequence analysis: The promoter of *LeMYB1* was isolated from the genomic DNA of *L. erythrorhizon* via PCR walking as described

Results

A PCR-based method was performed to isolate *R2R3-MYB* TF genes from the cultured cells of *L. erythrorhizon*. We amplified a 168 bp fragment sequence based on the design of the degenerated primers of *G. max*. By performing *BLAST* analysis on the cDNA fragment, the sequence was shown to have high

by Siebert *et al.* (1995). For the PCR reaction, *LeMYB1* gene-specific primers GSP1, GSP2, and GSP3 (Table 1) and adaptor primers AP1 and AP2 (Siebert *et al.* 1995) were used. Putative functional *cis*-acting elements of the *LeMYB1* promoter were identified using the *Plant cis-acting regulatory DNA elements (PLACE)* database (Higo *et al.* 1999).

Expression analyses of *LeMYB1* in cell cultures of *L. erythrorhizon*: The callus cells were subcultured in the B5 growth medium for 16 - 18 d, then were transferred to the M9 production medium. MeJA, IBU, or 2,4-D was added to the M9 medium to investigate the expression patterns of *LeMYB1*. Samples for the *LeMYB1* expression analysis were collected at 0, 3, 6, and 12 h, and 1, 2, 3, and 6 d after the cells were transferred to the M9 production medium (Zhang *et al.* 2010a). Mature seeds of *L. erythrorhizon* were germinated and grown in a greenhouse, and the roots, stems, and leaves of the intact seedlings with 16 true leaves were chosen for the tissue-specific expression analysis of *LeMYB1*. Real-time PCR was performed as described by Portereiko *et al.* (2006) and Wu *et al.* (2009). In each independent experiment, the relative expression at a maximal level was set to 100, other data were normalized accordingly. The primer pair of *LeMYB1*-Q-F and *LeMYB1*-Q-R was used to determine a *LeMYB1* gene expression, and the glyceraldehydephosphate dehydrogenase (*GAPDH*) gene was used as reference.

homology with *R2R3-MYB* genes. By RACE, the corresponding full-length cDNA sequence was subsequently obtained (Fig. 1) and designated as *LeMYB1* (GenBank accession number KC818628). The deduced *LeMYB1* contained an N-terminal R2R3 repeat that corresponds to the DNA binding domain of plant MYB-

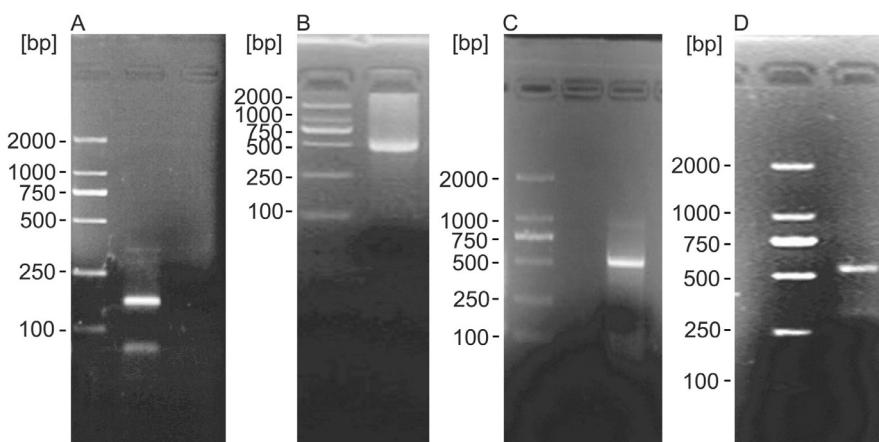


Fig. 1. Cloning *LeMYB1* cDNA from *L. erythrorhizon* cell cultures. *A* - The PCR product of the specific cDNA fragment of *LeMYB1* cloned via the TD-PCR method; *B* - the PCR product of the 5' cDNA end of *LeMYB1* cloned via the 5' RACE method; *C* - the PCR product of the 3' cDNA end of *LeMYB1* cloned via the 3' RACE method; *D* - the PCR product of the *LeMYB1* ORF.

Table 1. Putative *cis*-acting elements in the promoter sequence of *LeMYB1*. The positions of the *cis*-elements are with respect to the upstream position of the transcription start site.

Elements	Cis-element	Position	Sequence 5' to 3'
Myb, Myc binding	MYB2AT	42	TAACTG
	MYBCOREATCYCB1	1707	AACGG
	MYBST1	1419	GGATA
	TATCCAOSAMY	1447	TATCCA
Light regulation	MYCATERD1	1786	CATGTG
	RBCSCONSENSUS	165	AATCCAA
	REALPHALGLHCB21	536	AACCAA
	SORLIP1AT	550	GCCAC
Tissue-specific gene expression	SORLIP2AT	52, 72, 78	GGGCC
	ACGTOSGLUB1	698	GTACGTG
	CEREGLUBOX2PSLEGA	1282	TGAAAAC
	CACTFTPPCA1	742, 1389, 1422, 1460, 1614	TACT
Pathogen/elicitor response	DOFCORE	338, 453, 622, 814, 931, 1187, 1537, 1582, 1725, 1736, 1792	AAAG
	TAAAGSTKST1	452, 1186, 1735	TAAAG
	POLLEN1LELAT52	1021, 1580, 1648, 1659, 1675	AGAAA
	ROOTMOTIFTAPOX1	303, 431, 487, 566, 991, 1338, 1822, 1891	ATATT
Abiotic stress response	WBOXNTERF3	49, 599	TGACT
	WBOXATNPR1	727, 1510	TTGAC
	WRKY71OS	46, 599, 728, 1372, 1511, 1867	TGAC
	BIHD10S	691, 1115	TGTCA
Me-JA response	GT1GMSCAM4	619, 1022	GAAAAA
	ABRELATERD1	700, 883, 940	ACGTG
	ARR1AT	221, 635, 914, 1131	TGATT
	CCAATBOX1	160, 168, 538	CCAAT
Cu ²⁺ response	SURECOREATSULTR11	1308	GAGAC
	ANAERO2CONSENSUS	1572	AGCAGC
	RAV1AAT	419, 923, 1139, 1805	CAACA
	ASF1MOTIFCAMV	728, 1372	TGACG
	CURECORECR	239, 698, 1205	GTAC

type proteins. The alignment of the predicted translations of the *LeMYB1* gene with other MYB TFs at the R2R3 domain indicated a high degree of homology (Fig. 1 Suppl.), whereas the C-terminal region showed little homology. *LeMYB1* showed 75, 74, and 72 % identity to *NtMYBJS1*, *VvMYBF1*, and *AtMYB12*, respectively.

A phylogenetic tree was constructed with a selected set of full-length amino acid sequences of R2R3-type MYB factors from various plant species. They act as regulators of glucosinolate clade and cell shape (Glover *et al.* 1998, Dubos *et al.* 2010), C2 repressors of the flavonoid pathway (Jin *et al.* 2000, Aharoni *et al.* 2001), regulators of the phenylpropanoid pathway (Galis *et al.* 2006, Kaur *et al.* 2010), regulators of proanthocyanidins (Bogs *et al.* 2007, Akagi *et al.* 2009), general flavonoid pathway regulators (Deluc *et al.* 2006), and anthocyanin regulators (Borevitz *et al.* 2000, Takos *et al.* 2006, Shimizu *et al.* 2011, Gatica-Arias *et al.* 2012), respectively. The *LeMYB1* gene was located in subfamily 2 of *A. thaliana* which comprises *N. tabacum* *NtMYBJS1* and *N. attenuata* *NaMYB8*. These genes are involved in jasmonic acid signaling and regulating the phenylpropanoid pathway (Galis *et al.* 2006, Kaur *et al.* 2010) (Fig. 2).

A 1907 bp promoter fragment of *LeMYB1* was isolated from the genomic DNA of *L. erythrorhizon* via PCR walking (GenBank accession number KC818629). The transcription starting site was presumed to be at the 60th nucleotide upstream of the translation initiation codon (ATG) of the *LeMYB1* cDNA. The *LeMYB1* promoter was then analyzed for putative *cis*-acting elements by using the PLACE database (Higo *et al.* 1999) which revealed a number of potential regulatory motifs corresponding to several known *cis*-acting elements related to tissue-specific gene expression and abiotic and biotic stress responses. Several consensus *cis*-acting elements, such as MYB, MYC, WBOX, and WRKY, were also found (Table 1). Several important *cis*-acting elements related to shikonin formation, such as MeJA response and Cu²⁺ response elements, were involved in the promoter region. The *LeMYB1* promoter also contained four light regulation elements, including RBCSCONSENSUS, REALPHALGLHCB21, SORLIP1AT, and SORLIP2AT.

Changes in the *LeMYB1* transcript levels after the medium transition were confirmed via real-time PCR (Fig. 3). The transcripts for *LeMYB1* showed a significant increase in the expression within 12 h, after which the

LeMYB1 mRNA expression showed a more than 2-fold decrease to a steady-state level. This gene expression pattern is consistent with those of the shikonin-biosynthetic genes phenylalanine ammonia-lyase (*PAL*), 4-coumarate:CoA-ligase (*4CL*), 3-hydroxy-3-methyl-glutaryl-CoA reductase (*HMGR*), and *p*-hydroxybenzoate-3-geranyl transferase (*PGT*) (Zhang *et al.* 2010a), or that

of the other transcription factor gene *LeEIL-1* (Zou *et al.* 2011) which indicates that a stimulating effect occurred on the transcription of *LeMYB1*.

We characterized the expression of the *LeMYB1* gene of *L. erythrorhizon* cells in response to MeJA, an effective inducer of shikonin accumulation (Yazaki *et al.* 1997), and IBU, a specific inhibitor of JA biosynthesis.

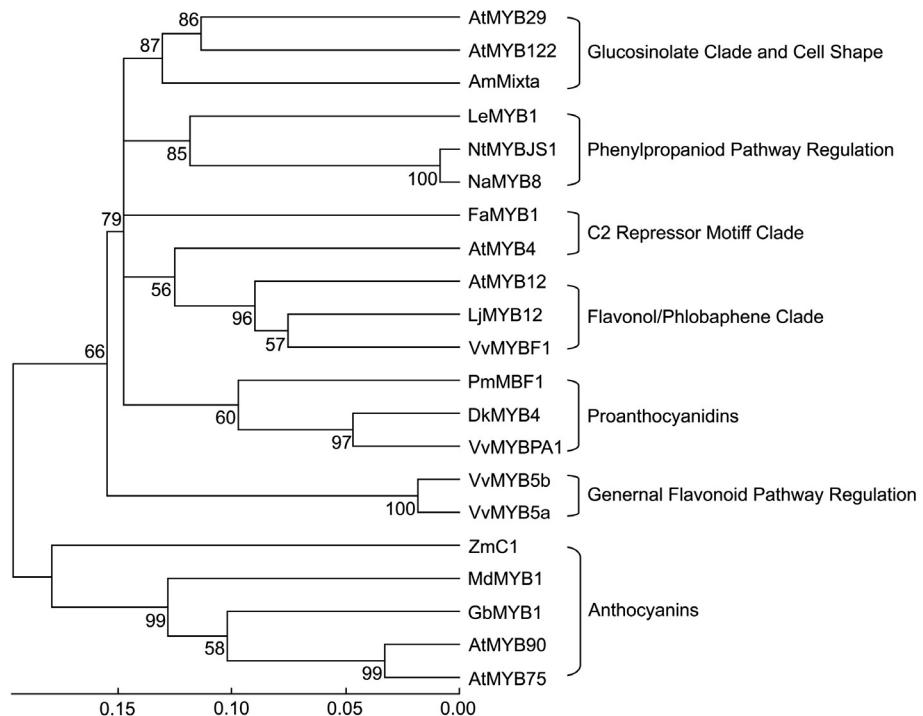


Fig. 2. A phylogenetic tree showing selected plant MYB transcription factors from the GenBank database (accession numbers are listed in the Materials and methods). The scale bar represents 0.1 substitutions per site, and the numbers next to the nodes are bootstrap values from 1 000 replicates.

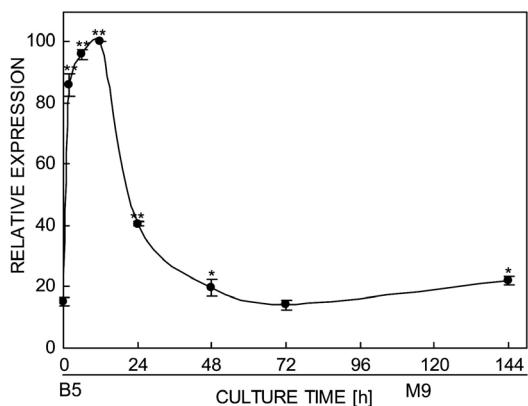


Fig. 3. The expression patterns of *LeMYB1* when cell cultures of *L. erythrorhizon* were transferred from a B5 growth medium to an M9 production medium. The *GAPDH* gene was used as reference. A representative sample from two biological replicates is shown. Means \pm SD for three technical replicates (* and ** - significant differences between the B5 medium at 0 h and the time points in the M9 medium at $P < 0.05$ and $P < 0.01$, respectively).

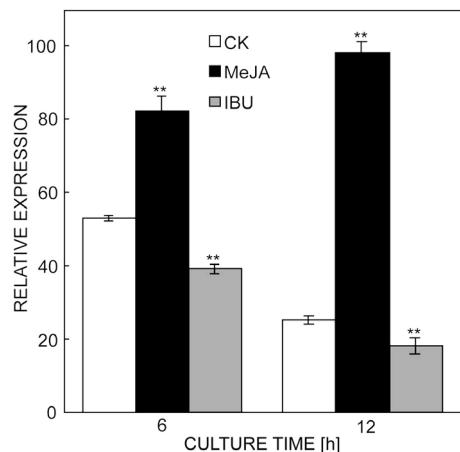


Fig. 4. The effects of MeJA (an effective inducer of shikonin biosynthesis) and IBU (an inhibitor of jasmonate biosynthesis) on the expression of *LeMYB1* in cell cultures of *L. erythrorhizon*. Untreated cells used as the control sample (CK) (** - significant difference between CK and the treatment at the same time point at $P < 0.01$).

The *LeMYB1* expression of *L. erythrorhizon* cells treated with 10 μ M MeJA was significantly higher compared with that of the control sample, whereas the *LeMYB1* expression was lower than that of the control sample after the *L. erythrorhizon* cells were treated with 50 μ M IBU for 6 h. The inducing effect of MeJA on *LeMYB1* expression was more significant at 12 h than at 6 h (Fig. 4). These results indicate that MeJA was involved in regulating the expression of *LeMYB1* in *L. erythrorhizon*.

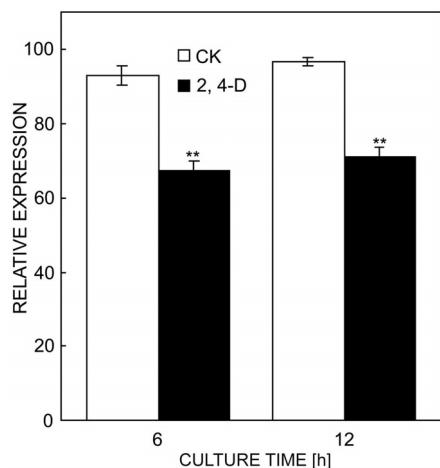


Fig. 5. The effect of 2,4-D (an inhibitor of shikonin formation) on the expression of *LeMYB1* in cell cultures of *L. erythrorhizon*. Untreated cells used as the control sample (CK) (** - significant difference between CK and the treatment at the same time point at $P < 0.01$).

Discussion

The MYB family is one of the most abundant classes of transcription factors in plants, and its subfamily of a R2R3 type is the largest in higher plants. A common feature of R2R3-type MYB proteins is the presence of a functional DNA binding domain that typically consists of two imperfect repeats (R2 and R3). Each repeat is of about 50 to 53 amino acids in length and encodes two α -helices that form a helix-turn-helix (HTH) structure which intercalates in the major groove of DNA when bound to it (Ogata *et al.* 1996). In higher plants, the R2R3-type MYB-related genes constitute a rather large family of genes and have important functions in the regulation of gene expression, including the control of cell morphogenesis, responses to stresses and phytohormones, and a regulation of the phenylpropanoid biosynthetic pathway (Ballesteros *et al.* 2001, Nesi *et al.* 2001, Schmitz *et al.* 2002, Galis *et al.* 2006, Pasquali *et al.* 2008, Liu *et al.* 2011, Petroni and Tonelli 2011). Systematic analyses of MYB TFs were previously performed in *Arabidopsis* and rice (Chen *et al.* 2006). However, relatively few MYB genes have been studied in medicinal plants, especially of *Boraginaceae* family. In the present study, we isolated an R2R3-type MYB gene

2,4-D, a strong inhibitor of shikonin biosynthesis, has an irreversible inhibitory effect on shikonin formation (Tabata *et al.* 1974, Yazaki *et al.* 1986b). To evaluate if the inhibitory effect of 2,4-D on shikonin biosynthesis was possibly mediated by the suppression of the *LeMYB1* gene expression, *LeMYB1* mRNA transcripts of *L. erythrorhizon* cells treated with 2,4-D (1 μ M) were analyzed via real-time PCR, and the result shows that 2,4-D significantly repressed the expression of *LeMYB1* (Fig. 5). The level of the *LeMYB1* expression was 72.4 and 73.3 % of the control sample at 6 h and 12 h, respectively, which shows that the suppression of the *LeMYB1* gene expression by 2,4-D might contribute to the inhibition of shikonin biosynthesis.

Real-time PCR was performed to clarify the spatial expression pattern of the *LeMYB1* gene in various organs of the *L. erythrorhizon* seedling. Roots, stems, and leaves were collected from intact seedlings with 16 true leaves. *LeMYB1* transcripts were detected in all organs, but the relative *LeMYB1* mRNA level in the roots, where shikonin was biosynthesized, was significantly higher than that in the stems ($P < 0.01$) or leaves ($P < 0.01$) (data not shown). We previously cloned two crucial regulator genes that are possibly related to shikonin formation, *LeERF-1* and *LeEIL-1*, and these two genes were also dominantly expressed in roots of intact *L. erythrorhizon* seedlings (Zhang *et al.* 2010b, Zou *et al.* 2011). In the present study, the results indicate that *LeMYB1* may be a pivotal factor in regulating the formation of shikonin.

from *L. erythrorhizon*. The structural analysis of the *LeMYB1* protein indicates that the protein possess a highly conserved N-terminal DNA-binding domain containing two typical motifs, whereas the C-terminal region is highly diverse compared with other members of the R2R3-MYB protein family in *Arabidopsis* or other species (Stracke *et al.* 2001). Despite the C-terminal diversity, the MYB factor families in *Arabidopsis* have been categorized into 22 subgroups based on the conserved amino acid sequence motifs detected in the C terminus of the MYB proteins. By analyzing the deduced amino acid sequence and phylogeny, *LeMYB1* exhibits a remarkable similarity to *N. tabacum* *NtMYBJS1* and *N. attenuata* *NaMYB8* which are involved in phenylpropanoid metabolism and are classified as subfamily 2 motif of the *A. thaliana* R2R3-MYB TFs. Previous studies have shown that the overexpression of *NtMYBJS1* in tobacco BY-2 cells specifically induces the expression of core phenylpropanoid pathway genes, such as *PAL* and *4CL*, and causes the accumulation of specific phenylpropanoid conjugates in the cells (Galis *et al.* 2006). Given the high homology of *LeMYB1* with *NtMYBJS1* and the common

phenylpropanoid metabolism pathway, *LeMYB1* possibly regulates *PAL* and *4CL* expressions in the phenylpropanoid metabolism of *L. erythrorhizon* which controls shikonin biosynthesis.

To understand its induction expression pattern, the promoter sequence of *LeMYB1* was amplified from the *L. erythrorhizon* genome. Sequence analysis by using PLACE revealed the presence of a number of putative tissue-specific or shikonin formation-related regulatory motifs corresponding to known *cis*-elements of plant genes, such as the MYB recognition site (Zahur *et al.* 2012), light stress, MeJA, and Cu²⁺ response elements which implies that the *LeMYB1* promoter may be involved in a complex regulation mechanism.

MeJA is a well-established signal molecule in plant defense responses and is an effective inducer of secondary metabolite accumulation in plant cell cultures, such as taxol (paclitaxel) in *Taxus* (Laskaris *et al.* 1999). Previous studies have shown that MeJA as well as jasmonic acid are capable of inducing the biosynthesis of shikonin in *L. erythrorhizon* cells, however, its molecular mechanism remains to be determined. In the present study, *LeMYB1* was up-regulated by MeJA which indicates that MeJA is a signal for the activation of the

MYB gene expression and shikonin biosynthesis activities of *L. erythrorhizon* cells. 2,4-D, a strong inhibitor of shikonin biosynthesis, has an irreversible inhibitory effect on shikonin formation. 2,4-D reportedly stimulates the growth of plant cells (Jacobs *et al.* 1966). A competition between plant secondary metabolite production and growth was also previously hypothesized (Van der Plas *et al.* 1995). Thus, we speculate that the inhibitory effect of 2,4-D on shikonin formation may be involved in the promotion of growth of *L. erythrorhizon* cells. As previously mentioned, MYB genes have important functions in cell proliferation, cell determination, cell differentiation, and secondary metabolite production in plants. Our results indicate that the addition of 2,4-D in the M9 medium remarkably altered the expression of the *LeMYB1* gene which suggests that the inhibitory effect of 2,4-D on shikonin formation was possibly mediated by the suppression of the *LeMYB1* expression. The tissue-specific expression analysis showed that the amount of *LeMYB1* transcripts was higher in the roots of the *L. erythrorhizon* seedlings where shikonin accumulated compared with the aboveground parts. These results collectively demonstrate that *LeMYB1* might have an important function in regulating shikonin formation.

References

Aharoni, A., De Vos, C.H., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J.N., O'Connell, A.P.: The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. - *Plant J.* **28**: 319-332, 2001.

Ahmed, N., Maekawa, M., Noda, K.: Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles. - *Biol. Plant.* **53**: 223-228, 2009.

Akagi, T., Ikegami, A., Tsujimoto, T., Kobayashi, S., Sato, A., Kono, A., Yonemori, K.: DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. - *Plant Physiol.* **151**: 2028-2045, 2009.

Ballesteros, M.L., Bolle, C., Lois, L.M., Moore, J.M., Vielle-Calzada, J.P., Grossniklaus, U., Chua, N.H.: LAF1, a MYB transcription activator for phytochrome A signaling. - *Genes Dev.* **15**: 2613-2625, 2001.

Bogs, J., Jaffe, F.W., Takos, A.M., Walker, A.R., Robinson, S.P.: The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. - *Plant Physiol.* **143**: 1347-1361, 2007.

Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., Lamb, C.: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. - *Plant Cell.* **12**: 2383-2394, 2000.

Chen, X., Yang, L., Zhang, N., Turpin, J.A., Buckheit, R.W., Osterling, C., Oppenheim, J.J., Howard, O.M.Z.: Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. - *Antimicrob. Agents Chemotherap.* **47**: 2810-2816, 2003.

Chen, Y.H., Yang, X.Y., He, K., Liu, M.H., Li, J.G., Gao, Z.F., Lin, Z.Q., Zhang, Y.F., Wang, X.X., Qiu, X.X., Shen, Y.P., Zhang, L., Deng, X.H., Luo, J.C., Deng, X.W., Chen, Z.L., Gu, H.Y., Qu, L.J.: The MYB transcription factor superfamily of *Arabidopsis*: expression analysis and phylogenetic comparison with the rice MYB family. - *Plant mol. Biol.* **60**: 107-124, 2006.

Damianakos, H., Kretschmer, N., Sykłowska-Baranek, K., Pietrosiuk, A., Bauer, R., Chinou, I.: Antimicrobial and cytotoxic isohexenylaphazarins from *Arnebia euchroma* (Royle) Jonst. (Boraginaceae) callus and cell suspension culture. - *Molecules* **17**: 14310-14322, 2012.

Deluc, L., Barrieu, F., Marchive, C., Lauvergeat, V., Decendit, A., Richard, T., Carde, J.P., Mérillon, J.M., Hamdi, S.: Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. - *Plant Physiol.* **140**: 499-511, 2006.

Docimo, T., Mattana, M., Fasano, R., Consonni, R., De Tommasi, N., Coraggio, I., Leone, A.: Ectopic expression of the *Osmyb4* rice gene enhances synthesis of hydroxycinnamic acid derivatives in tobacco and clary sage. - *Biol. Plant.* **57**: 179-183, 2013.

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., Lepiniec, L.: MYB transcription factors in *Arabidopsis*. - *Trends Plant Sci.* **15**: 573-581, 2010.

Fujita, Y., Hara, Y., Suga, C., Morimoto, T.: Production of shikonin derivatives by cell suspension cultures of *Lithospermum erythrorhizon*. - *Plant Cell Rep.* **1**: 61-63, 1981.

Gaisser, S., Heide, L.: Inhibition and regulation of shikonin biosynthesis in suspension cultures of *Lithospermum*. - *Phytochemistry* **41**: 1065-1072, 1996.

Galis, I., Simek, P., Narisawa, T., Sasaki, M., Horiguchi, T.,

Fukuda, H., Matsuoka, K.: A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. - *Plant J.* **46**: 573-592, 2006.

Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells. - *Exp. cell. Res.* **50**: 151-158, 1968.

Gatica-Arias, A., Farag, M.A., Stanke, M., Matousek, J., Wessjohann, L., Weber, G.: Flavonoid production in transgenic hop (*Humulus lupulus* L.) altered by *PAPI/MYB75* from *Arabidopsis thaliana* L. - *Plant Cell Rep.* **31**: 111-119, 2012.

Glover, B., Perez-Rodriguez, M., Martin, C.: Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. - *Development* **125**: 3498-3508, 1998.

Grotewold, E., Drummond, B.J., Bowen, B., Peterson, T.: The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. - *Cell* **76**: 543-553, 1994.

Han, J., Weng, X., Bi, K.: Antioxidants from a Chinese medicinal herb - *Lithospermum erythrorhizon*. - *Food Chem.* **106**: 2-10, 2008.

Heide, L., Berger, U.: Partial purification and properties of geranyl pyrophosphate synthase from *Lithospermum erythrorhizon* cell cultures. - *Arch. Biochem. Biophys.* **273**: 331-338, 1989a.

Heide, L., Nishioka, N., Fukui, H., Tabata, M.: Enzymatic regulation of shikonin biosynthesis in *Lithospermum erythrorhizon* cell cultures. - *Phytochemistry* **28**: 1873-1877, 1989b.

Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant *cis*-acting regulatory DNA elements (PLACE) database: 1999. - *Nucl. Acids Res.* **27**: 297-300, 1999.

Jacobs, W.P., McCready, C.C., Osborne, D.J.: Transport of the auxin 2,4-dichlorophenoxyacetic acid through abscission zones, pulvini, and petioles of *Phaseolus vulgaris*. - *Plant Physiol.* **41**: 725-730, 1966.

Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., Martin, C.: Transcriptional repression by *AtMYB4* controls production of UV-protecting sunscreens in *Arabidopsis*. - *EMBO J.* **19**: 6150-6161, 2000.

Kaur, H., Heinzel, N., Schottner, M., Baldwin, I.T., Galis, I.: R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in *Nicotiana attenuata*. - *Plant Physiol.* **152**: 1731-1747, 2010.

Kranz, H.D., Denekamp, M., Greco, R., Jin, H., Leyva, A., Meissner, R.C., Petroni, K., Urzainqui, A., Bevan, M., Martin, C., Smeekens, S., Tonelli, C., Paz-Ares, J., Weisshaar, B.: Towards functional characterisation of the members of the R2R3-MYB gene family from *Arabidopsis thaliana*. - *Plant J.* **16**: 263-276, 1998.

Laskaris, G., Boukouhyb, M., Theodoridis, G., Van der Heijden, R., Verpoortea, R., Jazirib, M.: Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in *Taxus baccata* cell cultures after elicitation by methyl jasmonate. - *Plant Sci.* **147**: 1-8, 1999.

Liu, R., Chen, L., Jia, Z., Lu, B., Shi, H., Shao, W., Dong, H.: Transcription factor *AtMYB44* regulates induced expression of the ETHYLENE INSENSITIVE2 gene in *Arabidopsis* responding to a harpin protein. - *Mol. Plant-Microbe Interact.* **24**: 377-389, 2011.

Mehrtens, F., Kranz, H., Bednarek, P., Weisshaar, B.: The *Arabidopsis* transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. - *Plant Physiol.* **138**: 1083-1096, 2005.

Min, B.S., Meselhy, M.R., Hattori, M., Kim, H.M., Kim, Y.H.: Cytotoxicity of shikonin metabolites with biotransformation of human intestinal bacteria. - *J. Microbiol. Biotechnol.* **10**: 514-517, 2000.

Nesi, N., Jond, C., Debeaujon, I., Caboche, M., Lepiniec, L.: The *Arabidopsis TT2* gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. - *Plant Cell* **13**: 2099-2114, 2001.

Ogata, K., Kanei-Ishii, C., Sasaki, M., Hatanaka, H., Nagadoi, A., Enari, M., Nakamura, H., Nishimura, Y., Ishii, S., Sarai, A.: The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and transactivation. - *Nat. Struct. Biol.* **3**: 178-187, 1996.

Papageorgiou, V.P., Assimopoulou, A.N., Ballis, A.C.: Alkannins and shikonins: a new class of wound healing agents. - *Curr. Med. Chem.* **15**: 3248-3267, 2008.

Papageorgiou, V.P., Assimopoulou, A.N., Samanidou, V.F., Papadoyannis, I.N.: Recent advances in chemistry, biology and biotechnology of alkannins and shikonins - *Curr. Org. Chem.* **10**: 2123-2142, 2006.

Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., Mattana, M.: *Osmyb4* expression improves adaptive responses to drought and cold stress in transgenic apples. - *Plant Cell Rep.* **27**: 1677-1686, 2008.

Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P.A., Saedler, H.: The regulatory c1 locus of *Zea mays* encodes a protein with homology to *myb* proto-oncogene products and with structural similarities to transcriptional activators. - *EMBO J.* **6**: 3553-3558, 1987.

Petroni, K., Tonelli, C.: Recent advances on the regulation of anthocyanin synthesis in reproductive organs. - *Plant Sci.* **181**: 219-229, 2011.

Portereiko, M.F., Lloyd, A., Steffen, J.G., Punwani, J.A., Otsuga, D., Drews, G.N.: *AGL80* is required for central cell and endosperm development in *Arabidopsis*. - *Plant Cell* **18**: 1862-1872, 2006.

Quattrochio, F., Wing, J.F., Van der Woude, K., Mol, J.N., Koes, R.: Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. - *Plant J.* **13**: 475-488, 1998.

Rinner, B., Kretschmer, N., Knausz, H., Mayer, A., Boechzel, H., Hao, X.J., Heubl, G., Efferth, T., Schaider, H., Bauer, R.: A petrol ether extract of the roots of *Onosma paniculatum* induces cell death in a caspase dependent manner. - *J Ethnopharmacol.* **129**: 182-188, 2010.

Schmitz, G., Tillmann, E., Carriero, F., Fiore, C., Cellini, F., Theres, K.: The tomato *Blind* gene encodes a MYB transcription factor that controls the formation of lateral meristems. - *Proc. nat. Acad. Sci. USA* **99**: 1064-1069, 2002.

Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K., Martin, C.: A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus *Antirrhinum*. - *Plant Cell* **18**: 831-851, 2006.

Shimizu, Y., Maeda, K., Kato, M., Shimomura, K.: Co-

expression of *GbMYB1* and *GbMYC1* induces anthocyanin accumulation in roots of cultured *Gynura bicolor* DC. plantlet on methyl jasmonate treatment. - *Plant Physiol. Biochem.* **49**: 159-167, 2011.

Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A., Lukyanov, S.A.: An improved PCR method for walking in uncloned genomic DNA. - *Nucl. Acids Res.* **23**: 1087-1088, 1995.

Stracke, R., Werber, M., Weisshaar, B.: The *R2R3-MYB* gene family in *Arabidopsis thaliana*. - *Curr. Opin. Plant Biol.* **4**: 447-456, 2001.

Tabata, M., Mizukami, H., Hiraoka, N., Konoshima, M.: Pigment formation in callus cultures of *Lithospermum erythrorhizon*. - *Phytochemistry* **13**: 927-932, 1974.

Takos, A.M., Jaffe, F.W., Jacob, S.R., Bogs, J., Robinson, S.P., Walker, A.R.: Light-induced expression of a *MYB* gene regulates anthocyanin biosynthesis in red apples. - *Plant Physiol.* **142**: 1216-1232, 2006.

Van der Plas, L.H.W., Eijkelboom, C., Hagendoorn, M.J.M.: Relation between primary and secondary metabolism in plant cell suspensions: competition between secondary metabolite production and growth in a model system (*Morinda citrifolia*). - *Pant Cell Tissue Organ Cult.* **43**: 111-116, 1995.

Wu, S.J., Qi, J.L., Zhang, W.J., Liu, S.H., Xiao, F.H., Zhang, M.S., Xu, G.H., Zhao, W.G., Shi, M.W., Pang, Y.J., Shen, H.G., Yang, Y.H.: Nitric oxide regulates shikonin formation in suspension-cultured *Onosma paniculatum* cells. - *Plant Cell Physiol.* **50**: 118-128, 2009.

Yamaga, Y., Nakanishi, K., Fukui, H., Tabata, M.: Intracellular localization of *p*-hydroxybenzoate geranyltransferase, a key enzyme involved in shikonin biosynthesis. - *Phytochemistry* **32**: 633-636, 1993.

Yang, W.J., Du, H., Fang, F., Yang, W.S., Wu, Y.M., Tang, Y.X.: Cloning and characterization of two new *MYB* transcription factor genes from Soybean. - *Sci. agric. sin.* **41**: 961-970, 2008.

Yang, Y., Zhang, H., Cao, R.: Effect of brassinolide on growth and shikonin formation in cultured *Onosma paniculatum* cells. - *J. Plant Growth Regul.* **18**: 89-92, 1999.

Yazaki, K., Fukui, H., Tabata, M.: Accumulation of *p*-O- β -D-glucosylbenzoic acid and its relation to shikonin biosynthesis in *Lithospermum* cell cultures. - *Phytochemistry* **25**: 1629-1632, 1986.

Yazaki, K., Matsuoka, H., Ujihara, T., Sato, F.: Shikonin biosynthesis in *Lithospermum erythrorhizon*: light-induced negative regulation of secondary metabolism. - *Plant Biotechnol.* **16**: 335-342, 1999.

Yazaki, K., Ogawa, A., Tabata, M.: Isolation and characterization of two cDNAs encoding 4-coumarate:CoA ligase in *Lithospermum* cell cultures. - *Plant Cell Physiol.* **36**: 1319-1329, 1995.

Yazaki, K., Ogawa, A., Tabata, M.: Isolation of the intermediates and related metabolites of shikonin biosynthesis from *Lithospermum erythrorhizon* cell cultures. - *Chem. Pharm. Bull.* **34**: 2290-2293, 1986.

Yazaki, K., Takeda, K., Tabata, M.: Effects of methyl jasmonate on shikonin and dihydroechinofuran production in *Lithospermum* cell culture. - *Plant Cell Physiol.* **38**: 776-782, 1997.

Zahur, M., Maqbool, A., Irfan, M., Jamal, A., Shahid, N., Aftab, B., Husnain, T.: Identification and characterization of a novel gene encoding myb-box binding zinc finger protein in *Gossypium arboreum*. - *Biol. Plant.* **56**: 641-647, 2012.

Zhang, W., Zou, A., Miao, J., Yin, Y., Tian, R., Pang, Y., Yang, R., Qi, J., Yang, Y.: *LeERF-1*, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in *Lithospermum erythrorhizon*. - *Plant Biol.* **13**: 343-348, 2010b.

Zhang, W.J., Su, J., Tan, M.Y., Liu, G.L., Pang, Y.J., Shen, H.G., Qi, J.L., Yang, Y.H.: Expression analysis of shikonin-biosynthetic genes in response to M9 medium and light in *Lithospermum erythrorhizon* cell cultures. - *Pant Cell Tissue Organ Cult.* **101**: 135-142, 2010a.

Zhong, R., Lee, C., Ye, Z.H.: Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. - *Trends Plant Sci.* **15**: 625-632, 2010.

Zhou, J., Lee, C., Zhong, R., Ye, Z.H.: MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in *Arabidopsis*. - *Plant Cell.* **21**: 248-266, 2009.

Zou, A.L., Zhang, W.J., Pan, Q.Y., Zhu, S.M., Yin, J.J., Tian, R.N., Gu, H.W., Wang, X.M., Qi, J.L., Yang, Y.H.: Cloning, characterization, and expression of *LeEIL-1*, an *Arabidopsis* EIN3 homolog, in *Lithospermum erythrorhizon*. - *Pant Cell Tissue Organ Cult.* **106**: 71-79, 2011.