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Abstract

Durum wheat (Triticum turgidum L. var. durum) is mainly produced under rainfed but often sub-optimal moisture
conditions in the Mediterranean basin. A set of 114 durum wheat recombinant inbred lines (RILs) developed from the
cross of cultivars Omrabi5 x Belikh2 were tested for the ability to tolerate moisture deficiency at the germination and
early seedling growth stage. The stress was imposed by exposing the germinating grain to 12 % polyethylene glycol. It
induced a measurable reduction in root length, shoot length, and the percentage of normal seedlings. The germination
and seedling growth of Belikh2 were more strongly inhibited than those of Omrabi5, and both parents were out-
performed by > 50 % of the RILs. A quantitative trait locus (QTL) analysis was carried out by first assembling a
linkage map from 265 informative microsatellites. Composite interval mapping revealed nine QTL spread over seven
chromosomes. Five of these were associated with coleoptile length, and one of the five explained nearly 29 % of the
relevant phenotypic variance. The coleoptile length was significantly correlated with the seedling growth, plant height,
and thousand kernel mass derived from field-grown plants of the same RIL population.
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Introduction

Production of durum wheat, the grain of which is used for
pasta, couscous, and bulgur, represents about 6 % of
global wheat production (Connell et al. 2004). Most of
the crop is grown under rainfed, moisture-deficient
conditions in the Mediterranean Basin (Maccaferri et al.
2008, Habash et al. 2009), a region where climate change
models are predicting a large increase in mean
temperature and a significant loss in precipitation later in
the century (Habash et al. 2009).

Moisture deficiency is a serious constraint on plant
productivity, affecting cellular metabolism in many ways
(McDowell et al. 2008, Sade et al. 2011), with knock-on
negative effects on growth and seed yield (Jaleel et al.
2009). In wheat, rapid germination, the development of a
long coleoptile, and high seedling vigour are important

requirements for crop establishment in drought-prone
areas (Blum 1996, Rebetzke et al. 1999, Rosyara et al.
2009). Since the grain size is positively correlated to the
seedling root and shoot lengths (Khurana and Singh
2001, Willenborg et al. 2005), it is likely to contribute to
the formation of an extensive root system in the mature
plant (Leishman and Westoby 1994). The extensive roots
may enhance the efficiency of water extraction from soils
which are not irrigated, however, they may deplete the
water content of the soil too rapidly (Palta et al. 2011).
There is probably some optimum root to shoot ratio
which ensures that water uptake is controlled in such a
way that sufficient moisture is retained in the soil during
the grain filling period (Passioura 1983, Vadez et al.
2013).
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The drought tolerance is variable in most crops, but is
challenging to quantify it (Collins et al. 2008, Reza et al.
2009). Growing plants under controlled conditions in pots
addresses some of these issues, but introduces the
question of relevance to the field situation. In addition, a
space available in most glasshouses or in hydroponic
facilities is limited (Blum 1989, Kulkarni and Deshpande
2007, Kato et al. 2008). Hydroponics-based experiments
allow a rather precise control over the root environment.
In the context of assessing drought tolerance, the stress is
commonly achieved by the addition of polyethylene
glycol (PEG; Michel and Kaufmann 1973, Chazen et al.
1995). In barley, a coleoptile growth in the presence of
PEG is well correlated with a field-grown flag leaf and

Materials and methods

Experimental material and measured parameters: A
set of 114 recombinant inbred lines (RILs) were
developed from a cross between ICARDA cultivar
Omrabi5 (selected to combine drought tolerance with
yield potential and yield stability) and breeding line
Belikh2 with high temperature and salinity tolerance.
Parental lines and RILs were multiplied under optimal
conditions, in order to maximize yield and grain quality,
in Gatersleben (Germany) in 2009. Three replicates of
15 grains per RIL were laid on two layers of moist filter
paper (moistened either with distilled water or with
12 %, m/v, PEG 6000) in a covered transparent plastic
box and held at a temperature of 21 + 1 °C in the dark for
three days, then provided with a 12-h photoperiod (an
irradiance of 75 pmol m™ s™) for further five days. At the
end of this period, the percentage of normal seedlings
(%NS) and of total germinated seedlings (%TG, a
criterion of full germination with a minimum root length
of 2 mm) was calculated. The maximum root length,
shoot length, coleoptile length, and root/shoot length ratio
(R/S) were also recorded. The root, shoot, and coleoptile
length, and R/S tolerance indices (TI) were derived from
the ratio between the values in the presence of PEG and
in the control treatment. The grain mass, grain area, grain
length, and grain width were all measured in 3 replicates
of 100 grains using a MARVIN seed analyser (GTA
Sensorik, Neubrandenburg, Germany). Means and
standard deviations were calculated in Microsoft Excel
2010, and a standard analysis of variance was performed
using the PlabStat software (Utz 2011). The statistical
significance of differences between the control and the
PEG treatments was derived from the paired Student’s
t-test, or, where a normality test failed at P < 0.001, the
Wilcoxon’s signed rank test. Broad-sense heritabilities
(H?) were calculated from the estimates of the genetic
variances. The Spearman’s correlation was used to
illustrate relationships between the various traits.
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grain mass under drought (Gonzalez and Ayerbe 2011).
Very little is known about the genetic control of
durum wheat grain size, germination, and seedling
growth under moisture-limiting conditions. Here, these
issues were explored by generating a durum wheat
mapping population and then subjecting it to a moisture
stress by growing the material in a hydroponic system in
the presence of PEG. As the same mapping population
has also been grown in the field in Syria, an attempt was
to relate the hydroponics-derived seedling phenotypic
variation to traits, such as time to maturity, plant height,
grain yield, and harvest index measured in a field setting
typical of the environment where durum wheat is grown.

Marker analysis and linkage mapping: Genomic DNA
was isolated from leaves using DNeasy Plant MiniKit
(Qiagen, Hilden, Germany). A set of 1 072 microsatellite
markers: GWM (Roder er al. 1998, Ganal and Roder
2007), BARC (Song et al 2005), and WMC
(IDnagenetics, Norwich, UK) were applied to the
parental DNA to select assays which would be
informative in the RIL population. This analyses resulted
in a set of 265 assays (159 GWM, 62 BARC, and
44 WMC) marking loci on all 14 linkage groups. The
MAPMAKER v2.0 program (Lander et al. 1987) was
employed to carry out a linkage analysis, and
recombination frequencies were converted into map
distances expressed in cM using the Kosambi (1944)
mapping function. Linkage groups were assigned using
the “two-point/group” command with a LOD threshold of
3.0. Additional markers were added using the “Try”
command, and a final marker order within each linkage
group was obtained through the use of the three-point
linkage analysis “Ripple” command. The chromosome
assignment and localization of the centromeres were
determined by the reference to extensive microsatellite-
based genetic maps of wheat (Roder et al. 1998, Song
et al. 2005).

Quantitative Trait Locus (QTL) analysis: QTL were
assigned using a composite interval mapping method
(model 6 with forward stepwise regression) implemented
in QTL Cartographer v2.5 (Wang et al. 2011). To control
the effects of genetic background, five markers, identified
by forward regression, were used as co-factors with a
window size of 5.0 cMA. LOD score of 3.0 was applied
to declare QTL as significant and reinforced by a
calculated threshold value by permutation using
1 000 iterations.
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Results

The PEG treatment decreased the germination and
seedling growth of RILs and parents, including a highly
significant reduction (P < 0.001) in the root length, shoot
length, coleoptile length, and %NS. Resulted TI were
0.49, 0.59, 0.74, and 0.63, respectively (Table 1). In the
control treatment, 72 out of 114 RILs produced
%NS < 80 %, whereas in response to the PEG treatment,
this parameter ranged from 0 to 84 % (Fig. 1). The shoot
length, coleoptile length, and %NS were more reduced in
the Belikh2 than in Omrabi5 plants, but the percentage of
total germinated seedlings (%TG) was higher in Belikh2

than in Omrabi5. The %TG H” was 0.51 in the control
treatment and 0.64 in the PEG treatment; for the root
length, it was 0.71 and 0.66, respectively. The %NS,
shoot length, and coleoptile length H* values were lower
in the PEG-treated seedlings than in the control ones. The
performance of both parents, as measured by TI, was
inferior to > 50 % of RILs. Further, results of both
parental lines were among 50 % of worse performing RILs
after the PEG treatment. The grain parameters varied
among the RILs and were all significantly correlated to one
another (P < 0.001). The H* for these characters were
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Fig. 1. Growth of Omrabi5 x Belikh2 RILs and parents. Performance under control (non-stressed) conditions are shown in green,
under the PEG stress in red, and tolerance indices (TIs) are shown in blue.

Table 1. Grain parameters, germination, and seedling growth of RIL parents Omrabi5 and Belikh2, and the RIL population. Standard
deviation (SD), minimum (Min), and maximum (Max) values of the set of RILs are given. Broad-sense heritability (H?) values were
estimated from the analysis of variance. PEG - polyethylene glycol, TKM - thousand kernel mass, TI - tolerance index (ratio of the
performance under control and PEG treatments). Different letters indicate significant differences between parameters under control
and PEG treatments.

Trait Omrabi5 Belikh2 RILs
mean SD min max LSD 5% H?
Grains TKM [g] 42.57 39.60 41.63 542  25.64 52.87 2.95 0.96
area [cm?] 20.27 18.77 18.77 137 14.73 21.40 0.81 0.95
length [cm] 3.20 323 6.58 0.31 2.60 3.40 0.16 0.94
width [cm] 6.87 6.30 3.08 0.17 5.70 7.37 0.10 0.96
Control NS [%] 66.67 68.89 74.37a 1434 17.78 100.00  25.99 0.58
TG [%] 91.11 80.00 86.24a 10.09  40.00 100.00  19.28 0.51
root length [cm] 8.78 8.92 9.03a  2.09 2.00 13.10 3.11 0.71
shoot length [cm] 6.21 4.37 5.89a 1.81 0.96 10.89 3.18 0.61
root/shoot 1.41 2.04 1.60a  0.29 1.03 2.46 0.97 0.39
coleoptile length [cm] 1.78 1.33 1.91a 0.56 0.58 3.81 0.56 0.86
PEG NS [%] 26.67 6.67 45.46b 14.19 0.00 84.44  37.90 0.26
TG [%] 68.89 75.56 81.24b 11.42  40.00 100.00  18.81 0.64
root length [cm] 3.00 3.27 5.06b  1.25 1.73 7.84 2.07 0.66
shoot length [cm] 1.52 0.68 2.67b  0.95 0.14 4.88 222 0.40
root/shoot 1.97 4.78 2.12b 1.39 1.25 1590 11.97 0.05
coleoptile length [cm] 0.92 0.57 1.36b  0.47 0.14 2.81 0.93 0.55
TI NS [%] 0.40 0.10 0.63 0.22 0.00 1.63 0.56 0.31
TG [%] 0.76 0.94 0.95 0.12 0.75 1.67 0.25 0.45
root length 0.34 0.37 0.59 0.21 0.28 1.81 0.26 0.80
shoot length 0.24 0.16 0.49 0.23 0.04 1.70 0.43 0.53
root/shoot 1.39 2.34 1.33 0.57 0.82 6.47 6.50 0.01
coleoptile length 0.52 0.43 0.74 0.24 0.10 1.89 0.53 0.43
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all > 0.90 (Table 1). The thousand kernel mass (TKM)
and coleoptile length were positively correlated in both
the control and PEG treatments (Fig. 2).

The genetic map constructed from the Omrabi5 x
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Fig. 2. Relationships between coleoptile lengths and thousand
kernel mass (TKM), and grain area and TKM in the RIL
population grown in control (non-stressed) and under PEG
stress conditions. *** - P < 0.001.

Belikh2 RIL population comprised 265 microsatellite loci
spanning 2864 cM (10.8 c¢cM mean inter-marker
separation) and divided equally between the two
constituent durum wheat sub-genomes (Fig. 3).
Individual chromosomes ranged in genetic length from 37
cM (chromosome 1A) to 366 ¢cM (chromosome 7B).
Composite interval mapping of the five growth
parameters identified the presence of nine QTL on seven
different chromosomes. Three of the QTL were expressed
only in the control treatment, two only in the PEG
treatment, and remaining four were based on TI (Table 2,
Fig. 3). The largest individual QTL was for the coleoptile
length (LOD 8.4, explaining 28.6 % of the phenotypic
variance, R?). The marker interval 99.8 - 107.6 cM on
chromosome 7B harboured QTL for %NS and %TG in
the control treatment and a TI for %NS and root length.
The other QTL were scattered. Alleles influencing
germination and seedling growth positively were shared
by the two parents. However, QTL with the highest LOD
scores (> 5) came from Omrabi5 and indicated the most
tolerance to osmotic stress. The analysis of the four grain
parameters revealed eight QTL distributed over three
chromosomes with LOD scores varying from 3.4 to 37.7
(Table 2, Fig. 3). A number of loci mapped to
chromosome 7B including one for TKM (LOD 11.9,
R? 41.3 %), the grain area (LOD 26.5, R? 53.1%), and
grain length (LOD 37.3, R? 57.7%). The positive alleles
for these loci were all contributed by Omrabi5.

Table 2. The QTL analysis of growth parameters and grain characteristics detected in the Omrabi5 x Belikh2 RIL population. QTL
declared when LOD exceeded 3. Positive additive effects indicate a contribution by Omrabi5. Chr - chromosome, R? - proportion of

phenotypic variance explained, TKM - thousand kernel mass.

Trait Treatment  Chr Marker interval [cM] Positions ~ LOD LOD R? [%] Additive
[eM] threshold effects
NS [%)] control 7B GWMS73-GWM1184 107.6 3.24 2.8 10.18 -6.36
TI 7B GWM400-GWM1184 99.8 5.61 22 21.06 0.13
TG [%] control 7B GWMS73-GWM1184 107.6 3.01 2.6 9.75 -5.98
Coleoptile length  control 4B WMC617-barc199 9.9 8.38 4.0 28.64 0.97
[cm] PEG 1B GWM947-WMC419 95.6 3.15 3.1 9.97 -0.19
PEG 4B GWM894-barc193 0.0 4.24 3.1 14.27 0.23
TI 3B WMC56-GWM655 122.3 3.05 2.6 8.98 0.09
TI 6A GWM459-GWM356 57.3 4.07 2.6 12.14 -0.10
Root length [em] TI 7B GWM400-GWMS540b 99.8 7.94 22 28.69 0.15
TKM 7B GWM16-WMC476 149.6 11.89 2.5 41.29 17.03
Grain area 7B GWMI16-WMC475 149.6 26.53 2.3 53.08 7.89
Grain area 7B WMC476-GWM297 167.8 3.42 2.3 11.08 -1.24
Grain area 7B barc255-GWM963b 173.1 21.00 2.3 58.86 7.90
Grain width 2A GWM122-GWM372 94.9 4.02 2.8 13.34 -0.25
Grain length 4A GWMI181-GWM160 0.0 3.13 2.1 9.10 -0.36
Grain length 7B GWMI16-WMC475 149.6 37.32 2.1 57.69 2.75
Grain length 7B barc255-GWM963b 173.1 32.03 2.1 64.01 2.79
Discussion

The prediction that the expected outcome of climate
change will be an increased occurrence of drought
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episodes in the Mediterranean basin has prompted much
research centred on improving the water use efficiency of
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Map distances are shown in cM. QTL declared above a LOD threshold of 3. Cole - coleoptile length, %NS - percentage of normal
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currently grown crops (Nachit and Elouafi 2004,
Tuberosa and Salvi 2006). The present experiments were
intended to generate relevant genetic information
regarding the durum wheat seedling response to osmotic
stress for breeding traits, such as time to maturity, plant
height, grain yield, and harvest index in a real field
situation.

The exposure to PEG caused a measurable decline in
the root, shoot, and coleoptile growths of the RILs. PEG
reduces water uptake by the root (Almansouri et al.
2001). The reduction in root length induced by PEG was
probably due to its osmotic effect, although it has been
suggested that PEG can also induce hypoxia under certain
conditions (Verslues et al. 1998). The effect of the stress
was the increased R/S ratio because in the face of a sub-
optimal water potential, the growth of the root is
generally less sensitive than that of the shoot (Wu and
Cosgrove 2000); note that the root length H? (unlike the
stem length one) was similar in the control and PEG
treatments. An effect of reducing overall growth is that
the requirement for water is lowered and thus the
probability of plant survival is increased, as noted in a
study of wild barley (Chen et al. 2010).

The effect of seed/grain size on germination is
controversial. In general, larger seeds/grains with a bigger
reservoir of assimilates enable greater seedling vigour
and more rapid stand establishment (Akinci et al. 2008).
Nevertheless, this association does not always seem to
hold (Bouaziz and Hicks 1990, Schutte et al. 2008,
Schwienbacher et al. 2010). Here, neither root growth,
shoot growth, nor any of the germination traits correlated
with any of the grain parameters under the control
conditions. The only significant relationship (albeit with
quite a low correlation coefficient) was observed between
the coleoptile length and TKM under both the control and
PEG treatments (Fig. 2) supporting the outcomes reported
by Mian and Nafziger (1994) and Mut ef al. (2010). The
ability of larger grains to produce more vigorous
seedlings seems to be an advantage rather under water
stress than under well-watered conditions (Mian and
Nafziger 1994, Rebetzke et al. 1999, Kaydan and
Yagmur 2008, Rosyara et al. 2009).

Various genetic analyses have been performed in
durum wheat, mostly focusing on grain yield components
(Blanco et al. 2001, Maccaferri et al. 2008, Czyczylo-
Mysza et al. 2011, Golabadi et al 2011). Genetic
variation for tolerance to osmotic stress at the seedling
stage has been relatively neglected to date, although it has
been shown that there are genotype-specific responses to
stress (Kato et al. 2008, Landjeva et al. 2008, Chen et al.
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