

Micropropagation of *Cassia occidentalis* L. and the effect of irradiance on photosynthetic pigments and antioxidative enzymes

R. NAZ¹, M. ANIS^{1,2*}, and H.A. EL ATTA²

Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India¹

Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia²

Abstract

The objective of the current study was to develop an efficient and reproducible protocol for plant regeneration using nodal (1.0 - 1.5 cm) explants excised from a field grown mature plant of *Cassia occidentalis* L. The highest shoot regeneration frequency (80 %) with a maximum number of shoots (11.66) and shoot length (3.83 cm) after eight weeks of culture were observed on a Murashige and Skoog (MS) medium amended with 5.0 μ M 6-benzyladenine, 100 μ M citric acid, and 1.0 μ M α -naphthalene acetic acid. A half-strength MS medium supplemented with 1.5 μ M indole-3-butyrlic acid proved best for the induction of maximum roots (8.33) per shoot. Plantlets with well-developed shoots and roots were successfully acclimatized in plastic pots containing sterile *Soilrite* under two irradiances of 50 and 300 μ mol $m^{-2} s^{-1}$ (LI and HI, respectively) in a culture room, and after transfer to the field, the survival rate was 70 %. A significant increase in chlorophyll, carotenoid, and malondialdehyde content was found during acclimatization under both the irradiances but higher under HI. Similarly, the activities of superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase increased more under HI. Plantlets acclimatized under HI exhibited a better growth than those under LI.

Additional key words: acclimatization, ascorbate peroxidase, carotenoids, catalase, chlorophyll, glutathione reductase, superoxide dismutase.

Introduction

Cassia occidentalis L. (Caesalpiniaceae), commonly known as coffee senna is a valuable small legume tree that could be used for production of several medicines (Krithikar and Basu 1999). Besides, the plant has also been recommended for reclamation of land and as green manure to restore fertility in exhausted fields. The propagation of *C. occidentalis* through seeds is unreliable due to poor seed quality, erratic germination, and seedling mortality, which explain its sparse distribution. Also, seeds are not always true to type (Ran and Simpson 2005) due to a high degree of heterozygosity and the law

of segregation. Hence, there is need to develop alternative propagation methods which could be beneficial in their large scale multiplication, improvement, and conservation of elite clones.

Tissue culture technology is desirable as mean for germplasm conservation to ensure the survival of medicinal plant species and rapid mass propagation for large-scale re-vegetation (Anis *et al.* 2012). However, in many cases, poor survival rates of *in vitro* plantlets after transplantation from tissue culture vials to a greenhouse or open field often limit the commercial application

Submitted 4 February 2014, last revision 20 July 2014, accepted 28 July 2014.

Abbreviations: APX - ascorbate peroxidase; BA - 6-benzyladenine; CA - citric acid; Car - carotenoids; CAT - catalase; Chl - chlorophyll; GR - glutathione reductase; HI - high irradiance; IBA - indole-3-butyrlic acid; 2-iP - 2-isopentenyl adenine; Kn - kinetin; LI - low irradiance; MDA - malondialdehyde; MS - Murashige and Skoog; NAA - α -naphthalene acetic acid; ROS - reactive oxygen species; SOD - superoxide dismutase; TBA - thiobarbituric acid; TCA - trichloroacetic acid.

Acknowledgments: We gratefully acknowledge the Department of Science and Technology (DST) and the University Grants Commission (UGC), Government of India, New Delhi, for providing research support under the DST-FIST (2011-2016) and UGC-DRS I (2009-2014) Programmes, respectively. M.A. is thankful to King Saud University, Riyadh, for offering a visiting professorship during 2012-13. R.N. is grateful to the University Grant Commission, New Delhi, for an award of the UGC-BSR fellowship.

* Corresponding authors, fax: (+91) 571 2700528, e-mail: anism1@rediffmail.com

(Pospíšilová *et al.* 1999). During *in vitro* conditions, plantlets grow under controlled environment: a fixed photoperiod and weak irradiance, high air humidity, gradually decreasing medium nutrient supply, as well as low CO₂ concentration. After transfer to *ex vitro* conditions, *in vitro* plants are exposed to irradiances higher than those used under *in vitro* conditions, resulting usually in photoinhibition and/or the generation of reactive oxygen species (ROS) which include superoxide radical, singlet oxygen, hydrogen peroxide, and hydroxyl radical (Ort and Baker 2002). The uncontrolled production of ROS can cause cellular damages directly or through the formation of secondary toxic substances

(Benson 2000). Plants are well equipped with numerous protective mechanisms involved in preventing oxidative damage, including superoxide dismutase (SOD), catalase (CAT), peroxidase, ascorbate peroxidase (APX), glutathione reductase (GR), *etc.* (Scandalios 1990).

In the present investigation, attempts were made to: 1) develop and standardize a reproducible protocol for rapid *in vitro* propagation using nodal segments excised from field grown mature plants and 2) evaluate the effect of different irradiances during *ex vitro* acclimatization of *C. occidentalis* plantlets on the antioxidant enzyme activities (SOD, CAT, GR, and APX), lipid peroxidation, and pigment content.

Materials and methods

Healthy shoots were collected from a six-month-old plant growing in the Botanical garden of the University, Aligarh, India. The twigs were washed under running tap water for 30 min, followed by the treatment with a 5 % (v/v) *Teepol* solution (a liquid detergent; *Qualigens*, Mumbai, India) for 15 min, and finally washed in tap water for 20 min. Explants were then surface disinfected with a 0.1 % (m/v) mercuric chloride (*Qualigens*) solution for 5 min under continuous shaking and then washed with at least five changes of sterile distilled water. Shoot segments containing a single node (1 to 1.5 cm) were excised aseptically and cultured on a Murashige and Skoog (MS) medium supplemented with 3 % (m/v) sucrose and 0.8 % agar (pH 5.8). Culture vials containing 20 cm³ of the medium were autoclaved at 121 °C and 1.06 kg cm⁻² for 15 min. All cultures were incubated at a temperature of 24 ± 2 °C, a 16-h photoperiod, an irradiance of 50 µmol m⁻² s⁻¹ (provided by cool white fluorescent tubes; 40 W, *Philips Electronics*, Kolkata, India), and a relative humidity of 60 - 70 %. The nodal segments were cultured on an MS medium supplemented with different cytokinins: 6-benzyladenine (BA), kinetin (Kn), or N-isopentenyl aminopurine (2-iP) at various concentrations (0.5, 2.5, 5.0, 7.5, or 10.0 µM) either individually or in a combination with citric acid (CA; 25, 50, 75, 100, and 125 µM) used as chelating agent. Further, optimum concentrations of each cytokinin and CA (100 µM) were used in combination with auxins, indole-3-butyric acid (IBA), or α-naphtha-leneacetic acid (NAA) at various concentrations (0.1, 0.5, 1.0, 1.5, or 2.0 µM) for a better shoot proliferation. Subculturing was performed on the same fresh medium after every two weeks. Data on the frequency of explants producing shoots per explant and on the shoot length were recorded after eight weeks of incubation in each of the experiments conducted.

After the evaluation of the best combination of plant growth regulators and CA, experiments were conducted to study the effect of auxins treatment on root formation. For root initiation, eight-week-old, 4 cm long shoots with

fully expanded leaves developed on BA (5.0 µM) + CA (100 µM) + NAA (1.0 µM) were cultured on an MS or half MS medium alone or in combination with IBA or NAA at various concentrations (0.5, 1.0, 1.5, 2.0, or 2.5 µM). The rooting percentage, root numbers, and root lengths were recorded after four weeks.

Eight-week-old plantlets with well-developed roots were removed from the culture tubes, washed gently under running tap water, transferred to 10 cm diameter plastic pots containing sterile *Soilrite*TM (*Keltech Energies*, Bangalore, India), and covered with a polythene bag. Plantlets were watered with a half MS solution every alternate day for two weeks, followed by tap water. A total of 50 pots were divided into 2 groups (25 pots for each group) and grown under irradiances of 50 and 300 µmol m⁻² s⁻¹ (LI and HI, respectively, provided by *Philips SON-T lamps*, Turnhout, Belgium) in a culture room maintained at 24 ± 2 °C, a 60 - 70 % relative humidity, and a 16-h photoperiod. Leaflets were taken at the transplanting day (0 d) and after 7, 14, 21, and 28 d for estimations of chlorophyll (Chl) *a*, Chl *b*, carotenoids (Car), malondialdehyde (MDA), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX). *In vitro* developed leaves (0 to 7 d) and new leaves (14 - 28 d) were used.

Chl *a*, Chl *b*, and Car content was determined using the methods of Mackinney (1941). Fifty samples (0.5 g) from different plants (25 for each LI and HI), were collected and ground in 5 cm³ of 80 % (v/v) acetone in a mortar and pestle. The suspension was filtered (*Whatman No. 1*) and absorbances of the solution were then measured at 645 and 663 nm for Chl, and 480 and 510 nm for Car on a UV-VIS spectrophotometer (*1700 Pharma-Spec*, *Shimadzu*, Tokyo, Japan).

MDA content was determined by the thiobarbituric acid (TBA) reaction as described by Heath and Packer (1968). Leaflets (0.5 g of about 5 - 7 small leaves) were homogenized with 1 cm³ of 0.5 % (m/v) trichloroacetic acid (TCA) in a mortar and pestle. The homogenate was

centrifuged at 14 000 g for 15 min. After centrifugation, 0.5 cm³ of the supernatant was mixed with 2.5 cm³ of 0.5 % (m/v) TBA in 20 % TCA and incubated in a boiling water bath for 30 min. Thereafter, it was cooled immediately on ice and centrifuged at 10 000 g for 10 min. Absorbances at 532 and 600 nm were determined and the MDA concentration was estimated by subtracting the non-specific absorption at 600 nm from the absorption at 532 nm using a coefficient of absorbance of 156 mM⁻¹ cm⁻¹.

For determination of antioxidant enzyme activities, 0.5 g of fresh leaflets was homogenized in 2.0 cm³ of an extraction buffer [a potassium phosphate buffer containing 1 % (m/v) polyvinylpyrrolidone (PVP), 1 % (v/v) *Triton X-100*, and 0.11 g of ethylenediaminetetraacetic acid (EDTA)] using a pre-chilled mortar and pestle. The homogenization was carried out in the dark at 4 °C. The homogenate was filtered through four layers of cheesecloth and centrifuged in a high-speed centrifuge (*Remi Instruments*, Mumbai, India) at 15 000 g for 20 min. The supernatant was used for enzyme assays using the above mentioned UV-visible spectrophotometer. Protein content in the enzymatic extracts was determined following the Bradford (1976) method using bovine serum albumin as standard.

SOD (EC1.15.1.1) activity was measured by the method of Dhindsa *et al.* (1981). The inhibition of photochemical reduction of nitroblue tetrazolium (NBT) in a reaction mixture consisting of a 0.5 M phosphate buffer (pH 7.5), 0.1 mM EDTA, 13 mM methionine, 63 mM nitroblue tetrazolium (NBT), 1.3 mM riboflavin, and 0.1 cm³ of the enzyme extract was monitored in a test tube at 25 °C. One unit (U) of enzyme activity was

defined as the quantity of enzyme that inhibited the nitroblue tetrazolium (NBT) reduction by 50 %.

CAT (EC 1.11.1.6) activity was determined from the rate of H₂O₂ decomposition as measured by the decrease of absorbance at 240 nm, following the method of Aebi (1984). An assay mixture contained a 50 mM phosphate buffer (pH 7.0) and 0.1 cm³ of the enzyme extract in a total volume of 3 cm³, and the reaction began by adding 10 mM H₂O₂.

GR (EC 1.6.4.2) activity was assayed by the method of Foyer and Halliwell (1976) modified by Rao (1992) based on glutathione dependent oxidation of nicotinamide adenine dinucleotide phosphate (NADPH) at 340 nm. An assay mixture contained a 50 mM potassium phosphate buffer (pH 7.5), 1.0 mM Na₂EDTA, 0.2 mM (NADH), and 0.5 mM glutathione disulfide (GSSG). The reaction was started by the addition of the enzyme extract and allowed to run 5 min at 25 °C. The activity was calculated using the coefficient of NADPH absorbance of 6.22 mM⁻¹ cm⁻¹.

APX (EC1.11.1.11) activity was determined at 25 °C by recording the decrease in absorbance at 290 nm due to ascorbic acid oxidation to dehydroascorbate by H₂O₂ according to the method of Nakano and Asada (1981). A reaction mixture contained a 50 mM phosphate buffer (pH 7.5), 0.5 mM ascorbate, and 0.1 mM EDTA, and 0.1 mM H₂O₂ was added to start the reaction.

The experiments were laid out in a completely randomized design. Ten replicates were taken in each experiment and each experiment was performed thrice. Data were subjected to the one-way analysis of variance (*ANOVA*) using *SPSS v. 16* (*SPSS Inc.*, Chicago, USA) and pair wise means were compared using the Tukey's multiple range test at $\alpha = 0.05$.

Results

The nodal explants (Fig. 1A) cultured on the MS basal medium served as control and did not show axillary bud proliferation even after four weeks of culture, whereas the addition of growth regulators favored axillary bud induction. The effect of various cytokinins (BA, Kn, and 2-iP) at different concentrations (0.5 - 10.0 µM) showed a marked effect on multiple shoots induction from the nodal explants. Among the different cytokinins tested, 5.0 µM BA was found to be most effective and produced 6.0 ± 0.57 shoots with the length of 1.5 ± 0.11 cm in 60 % of the cultures (Table 1), whereas Kn or 2-iP showed 50 or 30 % regeneration frequency with only 5.0 ± 1.15 or 3.6 ± 0.66 shoots per explant, respectively, after 8 weeks of culture (Table 1).

Browning has been a major drawback in leguminous plants. In *C. occidentalis*, browning was observed during 28 d of culture and was even extended up to 8 weeks. Therefore, to circumvent the problem, the medium was supplemented with CA at different concentrations.

Among the various concentrations of CA used, 100 µM CA along with the optimum concentration of each cytokinin was found effective in inhibiting browning by controlling phenolic exudation. The maximum 70 % shoot formation frequency with 8.0 ± 0.57 shoots per explant and 2.9 ± 0.11 cm shoot length was observed on a medium containing BA (5.0 µM) along with 100 µM CA (Table 2).

The synergistic influence of auxins with cytokinin was evident when the optimal concentration of each cytokinin and 100 µM CA was combined with different concentrations (0.1 - 2.0 µM) of NAA or IBA. Among all cytokinin-auxin combinations, the maximum shoot formation frequency (80 %) with 11.6 ± 0.88 shoots per explant and the longest shoots (3.83 ± 0.08 cm) was observed on a medium containing 5.0 µM BA, 100 µM CA, and 1.0 µM NAA after 8 weeks of culture (Fig. 1C). This was considered to be the optimal growth regulator combination for maximum shoots regeneration in

Table 1. Effects of different concentrations of cytokinins on multiple shoot induction from nodal segments after eight weeks of culture. Means \pm SE, $n = 10$, means within columns with different letters are significantly different ($P \leq 0.05$) according to the Tukey's multiple range test.

BA [μM]	Kn [μM]	2-iP [μM]	Response [%]	Number of shoots [explant ⁻¹]	Shoot length [cm]
0.5	-	-	26.60 \pm 0.67 ^f	2.00 \pm 0.57 ^{def}	0.63 \pm 0.24 ^d
2.5	-	-	33.40 \pm 0.67 ^d	4.33 \pm 0.88 ^{abcd}	1.00 \pm 0.15 ^{abcd}
5.0	-	-	53.20 \pm 0.86 ^a	6.00 \pm 0.57 ^a	1.50 \pm 0.11 ^a
7.5	-	-	35.60 \pm 0.50 ^c	4.66 \pm 0.88 ^{abc}	1.13 \pm 0.12 ^{bcd}
10.0	-	-	23.20 \pm 0.58 ^g	3.33 \pm 0.88 ^{bcd}	0.90 \pm 0.17 ^{bcd}
-	0.5	-	20.00 \pm 0.54 ^h	2.00 \pm 0.57 ^{def}	0.90 \pm 0.15 ^{bcd}
-	2.5	-	33.20 \pm 0.66 ^d	3.00 \pm 0.57 ^{bcd}	1.06 \pm 0.26 ^{abcd}
-	5.0	-	50.00 \pm 0.44 ^b	5.00 \pm 1.15 ^{ab}	1.30 \pm 0.17 ^{ab}
-	7.5	-	30.00 \pm 0.70 ^e	4.00 \pm 0.57 ^{abcde}	0.90 \pm 0.05 ^{bcd}
-	10.0	-	23.20 \pm 0.66 ^g	1.66 \pm 0.33 ^{ef}	0.70 \pm 0.10 ^{cd}
-	-	0.5	16.00 \pm 0.70 ⁱ	2.00 \pm 0.57 ^{def}	0.76 \pm 0.17 ^{bcd}
-	-	2.5	20.80 \pm 0.73 ^h	3.33 \pm 0.88 ^{bcd}	1.10 \pm 0.15 ^{abcd}
-	-	5.0	30.00 \pm 0.44 ^e	3.66 \pm 0.66 ^{abcde}	1.20 \pm 0.11 ^{abc}
-	-	7.5	13.40 \pm 1.81 ^j	2.33 \pm 0.88 ^{cdef}	0.96 \pm 0.18 ^{bcd}
-	-	10.0	11.60 \pm 0.40 ^j	1.33 \pm 0.33 ^f	0.90 \pm 0.05 ^{bcd}

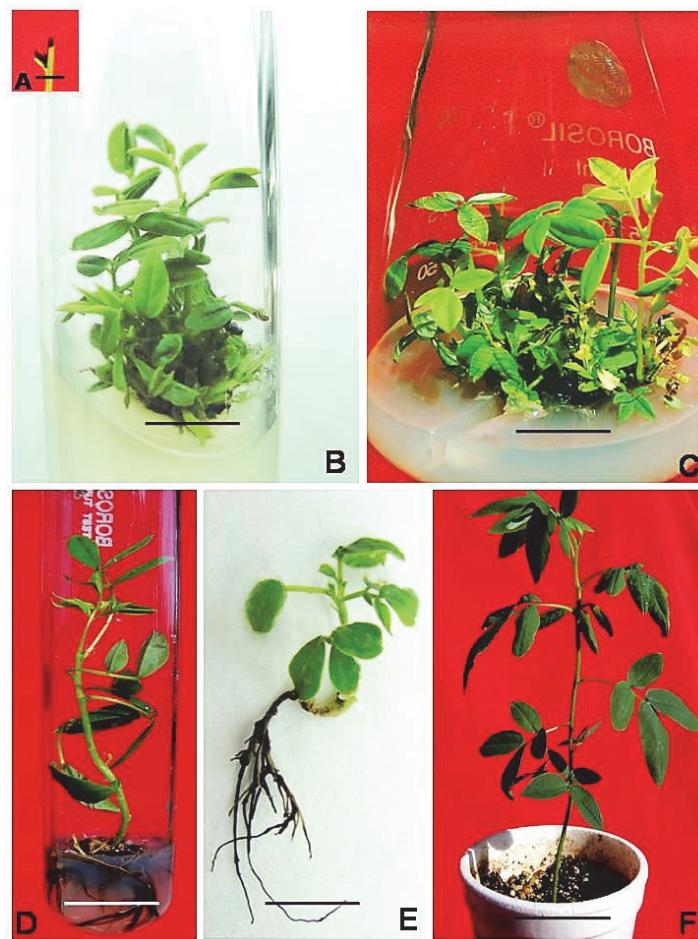


Fig. 1. Direct multiple shoot regeneration from nodal explants, and complete plantlet establishment of *Cassia occidentalis*. A - nodal explants, B - multiple shoots on an MS medium supplemented with 5.0 μ M BA, C - multiplication and elongation of shoots on an MS medium augmented with 5.0 μ M BA, 100 μ M CA, and 1.0 μ M NAA, D - an *in vitro* rooted plantlet, E - an *in vitro* thick root plantlet, F - an acclimatized plant in Soilrite. The scale bars represent 0.31 cm for A and 1 cm for B, C, D, E, and F.

Table 2. Effects of various concentrations of citric acid (CA) with the optimal concentration of different cytokinins on shoot induction and multiplication after eight weeks of culture. Means \pm SE, $n = 10$, means within columns with different letters are significantly different ($P \leq 0.05$) according to the Tukey's multiple range test.

BA [μM]	Kn [μM]	2-iP [μM]	CA [μM]	Response [%]	Number of shoots [explant ⁻¹]	Shoot length [cm]
0.5	-	-	25	27.00 \pm 0.57 ^g	3.66 \pm 0.88 ^{bc}	1.50 \pm 0.23 ^{def}
2.5	-	-	50	30.00 \pm 0.40 ^f	4.33 \pm 0.33 ^{bc}	1.80 \pm 0.11 ^{bcd}
5.0	-	-	75	40.00 \pm 0.91 ^c	5.33 \pm 0.88 ^{ab}	2.00 \pm 0.05 ^{bc}
7.5	-	-	100	70.00 \pm 0.70 ^a	8.00 \pm 0.57 ^a	2.90 \pm 0.11 ^a
10.0	-	-	125	33.50 \pm 0.86 ^e	4.00 \pm 1.15 ^{bc}	1.70 \pm 0.10 ^{bcd}
-	0.5	-	25	23.50 \pm 0.64 ^h	2.66 \pm 0.88 ^{bc}	1.20 \pm 0.17 ^f
-	2.5	-	50	33.00 \pm 0.91 ^e	3.33 \pm 1.33 ^{bc}	1.76 \pm 0.08 ^{bcd}
-	5.0	-	75	36.25 \pm 0.62 ^d	3.66 \pm 1.20 ^{bc}	1.90 \pm 0.05 ^{bcd}
-	7.5	-	100	60.00 \pm 0.70 ^b	5.66 \pm 0.66 ^{ab}	2.03 \pm 0.03 ^b
-	10.0	-	125	20.00 \pm 0.40 ⁱ	2.00 \pm 0.57 ^c	1.66 \pm 0.08 ^{bcd}
-	-	0.5	25	13.50 \pm 0.50 ^j	1.66 \pm 0.88 ^c	1.13 \pm 0.23 ^f
-	-	2.5	50	20.75 \pm 0.75 ⁱ	2.73 \pm 0.81 ^{bc}	1.20 \pm 0.15 ^f
-	-	5.0	75	23.00 \pm 0.91 ^h	3.33 \pm 1.20 ^{bc}	1.53 \pm 0.16 ^{cdef}
-	-	7.5	100	30.00 \pm 0.91 ^f	4.00 \pm 0.57 ^{bc}	1.66 \pm 0.08 ^{bcd}
-	-	10.0	125	26.50 \pm 0.64 ^g	2.00 \pm 1.00 ^c	1.30 \pm 0.20 ^{ef}

C. occidentalis, whereas the combination of 5.0 μ M BA + 100 μ M CA + 1.0 μ M IBA was less effective (Table 3).

Regenerated shoots failed to produce roots on the full strength MS basal medium. The addition of auxins in the half MS medium facilitated better rhizogenesis. Of the two auxins tested, the best rooting response (Fig. 1D) with 80 % of root regeneration frequency, 8.3 \pm 0.88 number of roots, and 2.6 \pm 0.08 cm root length was obtained in the half MS medium supplemented with 1.5 μ M IBA (Table 4). The roots were thick with secondary root hairs which helped in establishing the plantlets in soil. On the other hand, the half MS medium supplemented with NAA produced thin and delicate roots causing only a 50 % regeneration frequency (Table 4).

Regenerated plantlets (Fig. 1E) with a well-established root system were transferred to sterile *Soilrite* and grown under 300 or 50 μ mol m⁻² s⁻¹ (HI or LI) for 21 d. The plantlets from both the treatments were morphologically similar, with well-developed leaves and without any symptoms of necrosis. The HI exposure plantlets showed a higher survival and better growth than the plantlets under LI. Under both the irradiances, new leaves appeared around 14 d and reached full expansion after about 21 d of acclimatization. Further, when the HI treated plantlets were transferred to garden soil, 70 % of the plantlets could survive in the field, whereas only 50 % of the LI treated plantlets survived. A considerable increase in the content of photosynthetic pigments (Chl *a*, Chl *b*, and Car) was observed in the *in vitro* derived

plantlets after the acclimatization period (Fig. 2A,B,C) under both HI and LI. However, a decrease in the pigments content during the first seven days of the acclimatization was found, but on the subsequent days when new leaves appeared, a significant increase ($P \leq 0.05$) was recorded (Fig. 2A). At the end of the acclimatization, an increase in Chl *a* was 74 and 75 % under LI and HI, respectively. Likewise, Chl *b* also gradually increased up to 65 and 56 % at HI and LI, respectively (Fig 2B). The Car content also showed a positive response to HI compared to LI (Fig. 2C).

Lipid peroxidation (measured as MDA content) was higher in the HI treated plantlets than in the LI grown plantlets indicating a higher degree of oxidative stress. The maximum accumulation of MDA was observed after the first week of the acclimatization, and a slight decrease afterwards (Fig. 2D).

Under HI, the SOD activity increased slightly during the first two weeks after transfer of the plantlets in *Soilrite*, followed by a significant increase ($P \leq 0.05$) on day 28 (Fig. 2E). A slight increase of SOD activity was also detected under LI (Fig. 2E). The CAT activity increased gradually during the whole period of the acclimatization (Fig. 2F). A significantly higher CAT activity under HI than under LI was observed at day 28. The GR and APX activities also increased during the acclimatization period in comparison with day 0, however, similarly under HI and LI (Fig. 2G,H).

Discussion

The *in vitro* regeneration of direct axillary shoots is an essential method for the production of elite plant

genotypes and to avoid formation of somaclones. In nature, axillary buds remain dormant depending on the

Table 3. Effects of optimum concentrations of cytokinins (BA, Kn, and 2-iP), 100 μ M citric acid (CA), and various concentrations of auxins (NAA or IBA) on shoot multiplication and elongation after eight weeks of culture. Means \pm SE, $n = 10$, means within columns with different letters are significantly different ($P \leq 0.05$) according to the Tukey's multiple range test.

BA [μ M]	Kn [μ M]	2-iP [μ M]	NAA [μ M]	IBA [μ M]	Response [%]	Number of shoots [explant $^{-1}$]	Shoot length [cm]
5.0	-	-	0.1	-	30.00 \pm 0.70 ^l	4.00 \pm 1.00 ^{defghi}	2.80 \pm 0.05 ^b
5.0	-	-	0.5	-	50.00 \pm 0.83 ^f	6.66 \pm 0.33 ^{bcd}	3.06 \pm 0.12 ^b
5.0	-	-	1.0	-	80.00 \pm 0.63 ^a	11.66 \pm 0.88 ^a	3.83 \pm 0.08 ^a
5.0	-	-	1.5	-	60.00 \pm 0.54 ^c	8.33 \pm 1.20 ^b	3.03 \pm 0.12 ^b
5.0	-	-	2.0	-	36.40 \pm 0.50 ^j	6.66 \pm 0.88 ^{bcd}	2.80 \pm 0.05 ^b
-	5.0	-	0.1	-	20.00 \pm 0.44 ^o	4.33 \pm 0.88 ^{defghi}	2.06 \pm 0.08 ^{def}
-	5.0	-	0.5	-	40.00 \pm 0.70 ⁱ	5.00 \pm 0.57 ^{defgh}	2.40 \pm 0.17 ^c
-	5.0	-	1.0	-	66.60 \pm 1.50 ^b	6.00 \pm 1.15 ^{bcd}	2.76 \pm 0.08 ^b
-	5.0	-	1.5	-	50.00 \pm 0.94 ^f	4.33 \pm 1.33 ^{defghi}	2.20 \pm 0.05 ^{cde}
-	5.0	-	2.0	-	43.40 \pm 0.81 ^h	4.00 \pm 0.57 ^{defghi}	1.96 \pm 0.08 ^{ef}
-	-	5.0	0.1	-	26.40 \pm 0.50 ^m	2.00 \pm 1.00 ⁱ	1.23 \pm 0.12 ^{kl}
-	-	5.0	0.5	-	30.00 \pm 0.83 ^l	2.66 \pm 0.88 ^{hi}	1.46 \pm 0.08 ^{hijk}
-	-	5.0	1.0	-	43.20 \pm 0.37 ^h	4.00 \pm 0.57 ^{defghi}	1.80 \pm 0.05 ^{fgh}
-	-	5.0	1.5	-	23.40 \pm 0.87 ⁿ	3.66 \pm 0.33 ^{efghi}	1.63 \pm 0.08 ^{ghi}
-	-	5.0	2.0	-	19.80 \pm 0.37 ^o	2.33 \pm 1.20 ^{hi}	1.50 \pm 0.05 ^{hijk}
5.0	-	-	-	0.1	20.00 \pm 0.54 ^o	4.00 \pm 1.15 ^{defghi}	1.86 \pm 0.14 ^{fg}
5.0	-	-	-	0.5	30.00 \pm 0.83 ^l	4.66 \pm 1.20 ^{defghi}	2.03 \pm 0.18 ^{ef}
5.0	-	-	-	1.0	56.80 \pm 0.86 ^d	8.00 \pm 0.00bc	2.36 \pm 0.08 ^{cd}
5.0	-	-	-	1.5	50.00 \pm 0.83 ^f	6.33 \pm 0.88 ^{bcd}	1.80 \pm 0.15 ^{fgh}
5.0	-	-	-	2.0	46.60 \pm 0.50 ^g	5.00 \pm 0.57 ^{defgh}	1.56 \pm 0.12 ^{ghijk}
-	5.0	-	-	0.1	20.00 \pm 1.22 ^o	3.16 \pm 0.44 ^{ghi}	1.43 \pm 0.12 ^{ijk}
-	5.0	-	-	0.5	26.60 \pm 0.40 ^m	3.66 \pm 0.33 ^{efghi}	1.60 \pm 0.05 ^{ghij}
-	5.0	-	-	1.0	53.40 \pm 0.74 ^e	5.66 \pm 0.88 ^{cdefg}	2.00 \pm 0.05 ^{fgh}
-	5.0	-	-	1.5	40.20 \pm 1.11 ⁱ	3.33 \pm 0.33 ^{fghi}	1.80 \pm 0.05 ^{fgh}
-	5.0	-	-	20	30.00 \pm 0.94 ^l	3.00 \pm 0.57 ^{ghi}	1.56 \pm 0.08 ^{ghijk}
-	-	5.0	-	0.1	16.60 \pm 0.92 ^p	2.70 \pm 0.30 ^{hi}	1.23 \pm 0.08 ^{kl}
-	-	5.0	-	0.5	30.00 \pm 1.09 ^l	3.66 \pm 0.66 ^{efghi}	1.30 \pm 0.05 ^{ijkl}
-	-	5.0	-	1.0	33.20 \pm 0.73 ^k	3.66 \pm 0.88 ^{efghi}	1.50 \pm 0.05 ^{hijk}
-	-	5.0	-	1.5	20.00 \pm 0.70 ^o	2.33 \pm 0.33 ^{hi}	1.26 \pm 0.08 ^{ijkl}
-	-	5.0	-	2.0	10.00 \pm 0.70 ^q	2.00 \pm 0.57 ⁱ	1.10 \pm 0.11 ^l

Table 4. Effects of auxins on *in vitro* root induction in tissue-culture-raised shoots obtained from a BA (5.0 μ M) + CA (100 μ M) + NAA (1.0 μ M) treatment in *C. occidentalis* on a half MS medium after four weeks of culture. Means \pm SE, $n = 10$, means within columns with different letters are significantly different ($P \leq 0.05$) according to the Tukey's multiple range test.

IBA [μ M]	NAA [μ M]	Rooting [%]	Number of roots [shoot $^{-1}$]	Root length [cm]
0.5	-	19.80 \pm 0.48 ^g	2.00 \pm 0.57 ^c	1.26 \pm 0.12 ^{de}
1.0	-	43.40 \pm 0.74 ^c	3.66 \pm 0.66 ^{bc}	1.50 \pm 0.15 ^{cd}
1.5	-	80.00 \pm 0.70 ^a	8.33 \pm 0.88 ^a	2.63 \pm 0.08 ^a
2.0	-	40.00 \pm 1.30 ^d	4.40 \pm 0.83 ^{bc}	1.93 \pm 0.08 ^b
2.5	-	30.00 \pm 0.83 ^f	3.66 \pm 0.33 ^{bc}	1.66 \pm 0.08 ^{bc}
-	0.5	20.00 \pm 0.70 ^g	2.00 \pm 0.57 ^c	0.73 \pm 0.18 ^g
-	1.0	30.00 \pm 0.70 ^g	2.33 \pm 0.88 ^c	1.10 \pm 0.10 ^{efg}
-	1.5	50.00 \pm 0.94 ^b	5.00 \pm 1.00 ^b	1.23 \pm 0.08 ^{def}
-	2.0	40.00 \pm 0.89 ^d	4.00 \pm 0.57 ^{bc}	0.86 \pm 0.12 ^{fg}
-	2.5	36.00 \pm 0.83 ^e	3.00 \pm 1.00 ^{bc}	0.76 \pm 0.12 ^g

growth pattern of the plant. However, using tissue culture, the rate of shoot multiplication is greatly enhanced in a nutrient medium containing a suitable

cytokinin or cytokinin and auxin combinations (Sato and Mori 2001). Cytokinins have been shown to stimulate or accelerate the release of buds from dormancy (Sachs and

Thimann 1967). In the current study, the nodal explants failed to develop shoot buds in a growth regulator free medium. In contrast, when the same explants were grown on culture media containing cytokinins, axillary shoots developed and proliferated to form small clusters of secondary shoots. BA was found to be more potent compared to other cytokinins tested. BA is commonly preferred cytokinin for *in vitro* propagation, as it

stimulates cell division as well as cell elongation, activates RNA synthesis, stimulates protein synthesis and enzyme activities (Al Malki and Elmeer 2010). The stimulating effect of BA on bud break and multiple shoot formation has been reported in many plants, *e.g.*, *Cassia angustifolia* (Agrawal and Sardar 2003), *Tylophora indica* (Faisal and Anis 2007) and *Bauhinia tomentosa* (Naz *et al.* 2011).

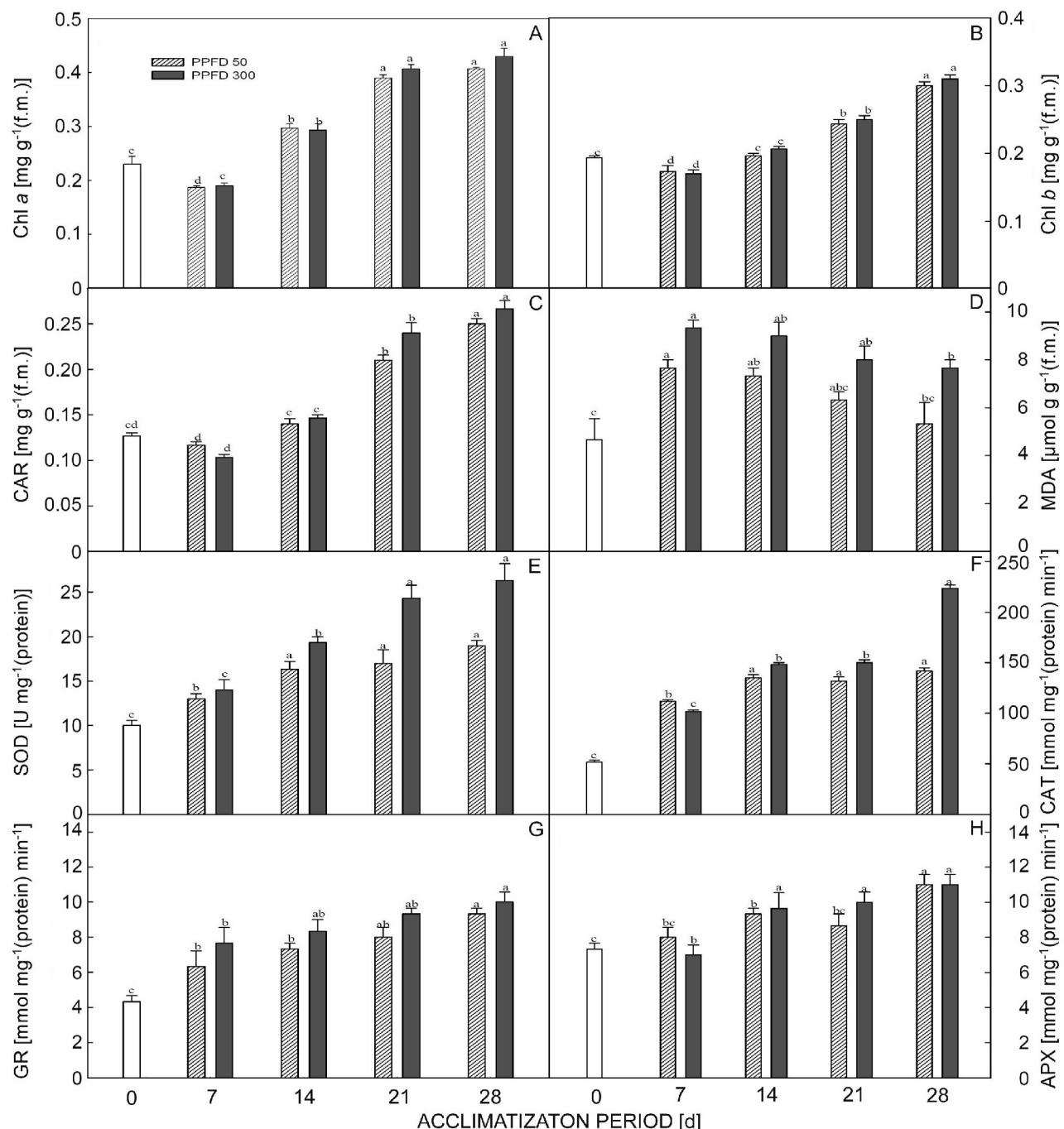


Fig. 2 Changes in the chlorophyll a (A), chlorophyll b (B), carotenoids (C), and MDA content (D), activities of SOD (E), CAT (F), GR (G), and APX (H) of micropropagated plantlets of *C. occidentalis* at PPFDs of 50 and 300 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for 28 d. Means \pm SE, $n = 10$. Means with different letters are significantly different at $P \leq 0.05$ according to the Tukey's multiple range test.

Explant browning is usually attributed to the production of phenolic compounds released from the cut surfaces of the explants. Phenolic compounds include polyphenols and tannins which not only prevent explant development, but also lead to death of the explants. CA has a dual role as potential antioxidant and growth enhancer (acts as vitamins) in plant tissue culture systems (Nayanakantha *et al.* 2010). The enhancing effect of CA in controlling phenolic browning and accelerating organogenic potential is crucial. The application of CA in MS media have been reported as the best treatment to check browning and helps in the improvement of shoot development in *Myrica esculenta* (Bhatt and Dhar 2004) and *Santalum album* (Muthan *et al.* 2006).

The combination of cytokinin and auxins appeared to be a prerequisite for the increase of shoot development and growth in *C. occidentalis*. Both the regeneration frequency and average number of shoots per explant were enhanced significantly when compared with a single cytokinin only. All the auxins (IBA or NAA) along with optimum concentrations of cytokinins (BA, Kn, or 2-iP) were capable to produce new shoots, but the combination of 5.0 μM BA, 100 μM CA, and 0.5 μM NAA was best for maximum shoot regeneration (Table 3).

Roots initiation and development vary in their requirement of auxin type in different plant species. Our study indicates that the half MS medium supplemented with 1.5 μM NAA gave a lesser (50 %) rooting frequency, whereas quite a high percentage (80 %) of shoots rooted well when IBA was used, and it was found to be most effective at the 1.5 μM concentration. The promotive effect of IBA in rooting is well documented in *Cassia angustifolia* (Agrawal and Sardar 2006).

Successful acclimatization of plantlets is an important step in tissue culture studies (Aragón *et al.* 2014). Tissue culture raised plants are quite often susceptible to various stresses during *ex vitro* transplantation. Therefore, the plantlets were first acclimatized for 28 d in a culture room under low (50 $\mu\text{mol m}^{-2} \text{s}^{-1}$) and high (300 $\mu\text{mol m}^{-2} \text{s}^{-1}$) irradiances before transfer to the field. The plantlets of *C. occidentalis* showed a significant increase in the photosynthetic pigments under both LI and HI after 7 d of the acclimatization. Comparatively a higher Chl content was recorded under HI than LI. A continuous increase in pigment content suggests that the exposure of the plants either to LI or HI did not impair the photosystem (PS) II (Von Willert *et al.* 1995).

Enhancements in Chl *a*, Chl *b*, and Car content in new leaves of *C. occidentalis* formed during the acclimatization period are in accordance with the reports on *Calathea louisae* (Van Huylenbroeck *et al.* 2000) and

Tylophora indica (Faisal and Anis 2010). The increase in Car content observed in both the LI and HI plants reflects a flexible functional response of the photosynthetic apparatus, since the photoprotective role of Car against photo-oxidative damage is well documented (Young 1991, Van Huylenbroeck *et al.* 2000). Similar observations have been reported in different plants like *Withania somnifera* (Fatima *et al.* 2011) and *Rauvolfia tetraphylla* (Faisal and Anis 2009), where chlorophyll and carotenoid content increased during acclimatization.

MDA content is routinely used as indicator of lipid peroxidation resulting from oxidative stress (Zhang *et al.* 2007, Monteiro *et al.* 2009). The increase in the amount of MDA during the acclimatization as compared to the amount found at day 0 indicated the generation of ROS similarly as reported Faisal and Anis (2010) in *Tylophora indica*. To overcome the damage caused by ROS, plants stimulate the antioxidative mechanisms (Alscher 1989, Foyer *et al.* 1997). The current investigation demonstrates the diverse responses of the antioxidant enzymes in the plants acclimatized under LI or HI. SOD is thought to be the first line of defense against ROS. It is presented in all sub-cellular compartments and catalyzes the dismutation of superoxide radical into less harmful H_2O_2 (Zhao *et al.* 2006, Gill and Tuteja 2010). CAT decomposes this H_2O_2 and also H_2O_2 produced by photorespiration through the mitochondrial electron transport system (Scandalios 1990). Thus, SOD and CAT were more active in the HI treatment than in the LI one. These changes indicated the acclimatization of the plantlets and revealed a protection against photo-oxidation (Logan *et al.* 1998). Similar trends have been reported in *Calathea* (Van Huylenbroeck *et al.* 2000) and *Tylophora indica* (Faisal and Anis 2010). APX and GR are predominantly localized in chloroplasts which are the major site of H_2O_2 production in leaves (Foyer *et al.* 1997). GR is considered a key enzyme responsible for maintaining the reduced form of glutathione pool (Foyer *et al.* 1997). The increase in GR activity at HI exhibited protection against photooxidative stress linked to photoinhibition, as it has been previously reported by Logan *et al.* 1998 in *Cucurbita pepo* and *Vinca major* plants. Also, the increased activity of APX under both the irradiances suggests the chloroplast based detoxification of ROS produced via the Mehler pathway. These results are in accordance to the findings on the changes in the activities of the antioxidant enzymes in the micropropagated plantlets of *Tylophora indica* (Faisal and Anis 2010) and *Tecomella undulata* (Varshney and Anis 2012) during an acclimatization period. In fact, *C. occidentalis* was tolerant to HI during the acclimatization.

References

Aebi, H.: Catalase *in vitro*. - Methods. Enzymol. **105**: 121-126, 1984.

Agrawal, V., Sardar, P.R.: *In vitro* organogenesis and histomorphological investigations in senna (*Cassia*

angustifolia) – a medicinally valuable shrub. - *Physiol. mol. Biol. Plants* **9**: 131-140, 2003.

Agrawal, V., Sardar, P.R.: *In vitro* propagation of *Cassia angustifolia* through leaflet and cotyledon derived calli. - *Biol. Plant.* **50**: 118-122, 2006.

Alscher, R.G.: Biosynthesis and antioxidant function of glutathione in plants. - *Physiol. Plant.* **77**: 457-464, 1989.

Al Malki, A.A.H.S., Elmeer, K.M.S.: Influence of auxin and cytokinin on *in vitro* multiplication of *Ficus anastasia*. - *Afr. J. Biotechnol.* **9**: 635-639, 2010.

Anderson, J.M., Aro, E.M.: Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: an hypothesis. - *Photosyn. Res.* **41**: 315-326, 1994.

Anderson, J.M., Park, Y.I., Chow, W.S.: Photoinactivation and photoprotection of photosystem II in nature. - *Physiol. Plant.* **100**: 214-223, 1997.

Anis, M., Siddique, I., Naz, R., Ahmed, M.R., Aref, I.M.: Advances in micropropagation of a highly important *Cassia* species – a review. - In: Bandani, A.R. (ed.): *New Perspective in Plant Protection*. Pp. 191-206. In Tech, Rijeka 2012.

Aragón, C.E. Sánchez, C. Gonzalez-Olmedo, J. Escalona, M. Carvalho, S. Amâncio, L.: Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during *in vitro* growth and acclimatization. - *Biol. Plant.* **58**: 29-38, 2014.

Benson, E.E.: Do free radicals have a role in plant tissue culture recalcitrance? - *In vitro cell. dev. Biol. Plant.* **36**: 163-170, 2000.

Bhatt, I.D., Dhar, U.: Factors controlling micropropagation of *Myrica esculenta* Buch-Ham. Ex D. Don: a high value wild edible of Kumaun Himalaya. - *Afr. J. Biotechnol.* **3**: 534-540, 2004.

Bradford, M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. - *Ann. Biochem.* **72**: 248-254, 1976.

Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. - *J. exp. Bot.* **32**: 93-101, 1981.

Faisal, M., Anis, M.: Regeneration of plants from alginate encapsulated shoots of *Tylophora indica* (Burm.f.) Merrill, an endangered medicinal plant. - *J. hort. Sci. Biotechnol.* **82**: 351-354, 2007.

Faisal, M., Anis, M.: Changes in photosynthetic activity, pigment composition, electrolyte leakage, lipid peroxidation, and antioxidant enzymes during *ex vitro* establishment of micropropagated *Rauvolfia tetraphylla* plantlets. - *Plant Cell. Tissue Organ Cult.* **99**: 125-132, 2009.

Faisal, M., Anis, M.: Effect of light irradiations on photosynthetic machinery and antioxidative enzymes during *ex vitro* acclimatization of *Tylophora indica* plantlets. - *J. Plant Inter.* **5**: 21-27, 2010.

Fatima, N., Ahmad, N., Anis, M.: Enhanced *in vitro* regeneration and change in photosynthetic pigments, biomass and proline content in *Withania somnifera* L. (Dunal) induced by copper and zinc ions. - *Plant Physiol. Biochem.* **49**: 1465-1471, 2011.

Foyer, C.H., Halliwell, B.: The presence of glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. - *Planta* **133**: 21-25, 1976.

Foyer, C.H., López-Delgado, H., Dat, J.F., Scott, I.M.: Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. - *Physiol. Plant.* **100**: 241-254, 1997.

Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in biotic stress tolerance in crop plants. - *Plant Physiol. Biochem.* **48**: 909-930, 2010.

Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. - *Arch. Biochem. Biophys.* **125**: 189-198, 1968.

Krithikar, K.R., Basu, B.D.: *Cassia occidentalis*. - In: Blatter, E., Caius, J.F., Mhaskar, K. (ed.): *Indian Medicinal Plants* II. Pp. 860. Book Sellers and Publishers, Dehradun 1999.

Logan, B.A., Demming-Adams, B., Adams, W.W., Grace, S.C.: Antioxidants and xanthophyll cycle-dependent energy dissipation in *Cucurbita pepo* L. and *Vinca major* L. acclimated to four growth PPFDs in the field. - *J. exp. Bot.* **49**: 1869-1879, 1998.

Mackinney, G.: Absorption of light by chlorophyll solution. - *J. biol. Chem.* **140**: 315-322, 1941.

Monteiro, M. S., Santos, C., Soares, A. M. V. M., Mann, R. M.: Assessment of biomarkers of cadmium stress in lettuce. - *Ecotoxicol. Environ. Safety* **72**: 811-818, 2009.

Muthan, B.S., Rathore, T.S., Ravishankar Rai, V.: Micropropagation of an endangered Indian sandalwood (*Santalum album* L.). - *J. Forest. Res.* **11**: 203-209, 2006.

Nayananantha, N.M.C., Singh, B.R., Kumar, A.: Improved culture medium for micropropagation of *Aloe vera* L. - *Trop. agr. Res. Extension* **13**: 87-93, 2010.

Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. - *Plant Cell Physiol.* **22**: 867-880, 1981.

Naz, R., Anis, M., Aref, I.M.: High frequency shoot regeneration through cotyledonary node explants of *Bauhinia tomentosa* L., a woody leguminous tree. - *J. hort. Sci. Biotechnol.* **86**: 37-42, 2011.

Ort, D.R., Baker, N.R.: A photoprotective role for O₂ as an alternative electron sink in photosynthesis? - *Curr. Opin. Plant Biol.* **5**: 193-198, 2002.

Pospíšilová, J., Synková, H., Haisel, D., Čatský, J., Wilhelmová, N., Šrámek, F.: Effect of elevated CO₂ concentrations on acclimation of tobacco plantlets to *ex vitro* conditions. - *J. exp. Bot.* **50**: 119-126, 1999.

Ran, Y., Simpson, S.: *In vitro* propagation of the genus *Clivia*. - *Plant Cell Tissue Organ Cult.* **81**: 239-242, 2005.

Rao, M.V.: Cellular detoxifying mechanism determines age dependent injury in tropical plants exposed to SO₂. - *J. Plant Physiol.* **40**: 733-740, 1992.

Sachs, T., Thimann, K.V.: The role of auxin and cytokinins in the release of buds from dominance. - *Amer. J. Bot.* **54**: 136-144, 1967.

Sato, S.S., Mori, H.: Control of outgrowth and dormancy in axillary buds. - *Plant Physiol.* **127**: 1405-1413, 2001.

Scandalios, G.: Response of plant antioxidant defense genes to environmental stress. - *Adv. Genet.* **28**: 1-41, 1990.

Van Huylenbroeck, J.M., Piqueras, A., Debergh, P.C.: The evolution of photosynthesis capacity and the antioxidant enzymatic system during acclimatization of micropropagated *Calathea* plants. - *Plant Sci.* **155**: 59-66, 2000.

Varshney, A., Anis, M.: Improvement of shoot morphogenesis *in vitro* and assessment of changes of the activity of

antioxidant enzymes during acclimation of micropagated plants of Desert Teak. - *Acta Physiol. Plant.* **34**: 859-867, 2012.

Von Willert, D.J., Matyssek, R., Herppich, W.: *Experimentelle Pflanzenökologie. Grundlagen und Anwendungen. [Experimental Plant Ecology. Basics and Applications]* - Georg Thieme, Stuttgart - New York 1995. [In German]

Young, A.J.: The protective role of carotenoids in higher plants. - *Physiol. Plant.* **83**: 702-708, 1991.

Zhang, F.Q., Wang, Y. S., Lou, Z. P., Dong, J. D.: Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (*Kandelia candel* and *Bruguiera gymnorhiza*). - *Chemosphere* **67**: 44 -50, 2007.

Zhao, F., Guo, S., Zhang, H., Zhao, Y.: Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. - *Plant Sci.* **170**: 216-224, 2006.