

A novel DREB transcription factor from *Halimodendron halodendron* leads to enhance drought and salt tolerance in *Arabidopsis*

J.-T. MA^{1,2}, C.-C. YIN², Q.-Q. GUO^{3,2}, M.-L. ZHOU², Z.-L. WANG¹, and Y.-M. WU^{2*}

Grassland Research Institute, Chinese Academy of Agricultural Sciences, Huhhot 010010, Nei Mongol, P.R. China¹

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China²

School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand³

Abstract

A new member of the APETALA2/ethylene responsive element binding protein (AP2/EREBP) transcription factor family, HhDREB2, was isolated from *Halimodendron halodendron*. Based on the similarity of the AP2/ERF domain, HhDREB2 was classified into A-5 group of the DREB subfamily. The expression of *HhDREB2* gene was induced by drought, high salinity, and low temperature, but not by exogenous plant hormones. Trans-activity assay demonstrated that *HhDREB2* gene encodes a transcription activator. Furthermore, over-expression of *HhDREB2* gene under the stress-inducible *rd29A* promotor in *Arabidopsis* resulted in enhanced tolerance to salt and drought stresses. The overall results reveal that HhDREB2 functioned as important transcription factor in regulation of stress-responsive signaling in plants and may be used for improving plant tolerance to abiotic stresses.

Additional key words: abiotic stress, abscisic acid, auxin, cytokinin, gibberelic acid, expression pattern, transcriptional regulation, transgenic plant.

Introduction

Plants are often subjected to many environmental stresses which negatively influence their survival, biomass production, and yields around the world. Plants respond and adapt to these stresses with a series of biochemical and physiological processes involving numerous stress responsive genes. Transcription factors, like AP2/EREBP, bHLH, NAC, ZFHD, Zinc finger, bZIP, MYB, and Homeodomain, can regulate these genes by interacting with *cis*-elements present in promoter regions (Yamaguchi-Shinozaki and Shinozaki 2006, Zhao *et al.* 2007).

APETALA2/ethylene responsive element binding protein (AP2/EREBP) transcription factors are characterized by a conserved AP2/ERF domain of approximately 60 amino acids for DNA binding proteins. Dehydration responsive element binding (DREB) proteins, as subfamily of AP2/EREBP transcription factors with only one AP2/ERF domain, were identified in various plant species (Gutha and Reddy 2008). According to the structure characteristics, the DREB transcription factors

(DREBs) can be further divided into six subgroups from A-1 to A-6 (Zhou *et al.* 2010). DREBs specifically interact with a dehydration-responsive element/C-repeat sequence (DRE/CRT; A/GCCGAC) and play a crucial role in enhancing plant stress tolerance by regulating the expression of stress-related genes in response to a wide spectrum of abiotic stresses (Zhou *et al.* 2010). Constitutive expression of DREBs in transgenic plants enhances tolerance to cold, drought, and salinity (Dubouzet *et al.* 2003, Tang *et al.* 2011, Bouaziz *et al.* 2012, Li *et al.* 2012, Sazegari and Niazi 2013). However, the over-expression of DREBs driven by the cauliflower mosaic virus (CaMV) 35S promoter causes severe growth retardation under normal growth conditions. To minimize the negative effect on plant growth, the stress-inducible responsive to dehydration 29A (*rd29A*) promoter can be used instead of the constitutive CaMV 35S promoter for genes over-expression (Behnam *et al.* 2007, Chen *et al.* 2009, Zhou *et al.* 2012).

Plant response to abiotic stimuli is a complex process

Submitted 29 October 2013, last revision 19 May 2014, accepted 20 May 2014.

Abbreviations: ABA - abscisic acid; BA - 6-benzylaminopurine; CaMV - cauliflower mosaic virus; DREB - dehydration responsive element binding; GA₃ - gibberellic acid; GFP - green fluorescent protein; MS - Murashige and Skoog; NAA - 1-naphthaleneacetic acid; RACE - rapid amplification of cDNA ends; TBA - thiobarbituric acid; TCA - trichloroacetic acid.

Acknowledgments: This work was supported by the National Program on Key Basic Research Project (973 Program) (Grant No. 2014CB138701) and the National Natural Science Foundation of China (Grant No. 31372361).

* Corresponding author; fax: (+86) 10 82106109, e-mail: wuyanmin211@yeah.net

which might be affected also by phytohormones (Santner and Estelle 2009, Zhou *et al.* 2010). Some DREBs can integrate input stimuli from abiotic factors and exogenous phytohormones, *e.g.*, abscisic acid (ABA; Huang and Liu 2006, Chen *et al.* 2007, Xu *et al.* 2009, Yang *et al.* 2011, Bouaziz *et al.* 2012, Roychoudhury *et al.* 2013). In our previous research, we isolated a gene from *Populus euphratica* named *PeDREB2a* which is not only induced by salinity, drought, and cold, but also by 1-naphthaleneacetic acid (NAA), gibberellic acid (GA₃), and 6-benzylaminopurine (BA; Zhou *et al.* 2012). This shows that DREBs may play different roles in the complex regulatory networks or on the sites of cross-talk between different signaling pathways.

Materials and methods

Plants and treatments: *Halimodendron halodendron* (Pall.) Druce seeds were collected from Lop Nur, Xinjiang, China, and seedlings were grown in loam soil in a growth chamber with a 16-h photoperiod, an irradiance of 400 $\mu\text{mol m}^{-2} \text{s}^{-1}$, a temperature of 28 °C, and a relative humidity of 50 %. The 4-week-old seedlings growing in mixed peat, *Vermiculite*, and *Perlite* (1:1:1) were irrigated with 250 mM NaCl, 20 % (m/v) PEG 6000, 100 μM ABA, 100 μM GA₃, 100 μM BA, or 100 μM NAA. PEG 6000 was used to simulate a drought stress. A cold treatment was conducted by transferring the seedlings to a growth cabinet setting at 4 °C. The above treatments lasted 0, 1, 3, 6, 12, and 24 h. During the treatments, the plants were grown at a temperature of 22 °C, a relative humidity of 50 %, a 16-h photoperiod, and an irradiance of 120 $\mu\text{mol m}^{-2} \text{s}^{-1}$. For observation of the root development under the salt stress, *Arabidopsis* seedlings were grown on a Murashige and Skoog (MS) medium in a growth chamber for one week before transferring the seedlings onto MS media with 0, 50, 100, 150, and 200 mM NaCl. To detect the developmental phenotypes and stress tolerance, the control and transgenic plants were treated for 3 weeks with 200 mM NaCl or deprived of water after growing for 4 weeks in soil.

Isolation of *HhDREB2* gene from *H. halodendron*: To isolate a DREB gene from *H. halodendron*, homologous regions, the AP2/ERF domains, of the reported AP2/EREBP genes in other plants were used to design a pair of degenerate primers. The primers were SP1, 5'-C(A/C)(G/A)(A/T/C)GG(A/C/G)ATAAGGATG(A/C)GGAAGTG-3' and ASP2, 5'-(G/A)(T/C)(T/C)TGGAG(C/A)CGCTCGACT-3'. Total RNA was extracted from leaves of *H. halodendron* treated with 250 mM NaCl for 6 h with a plant RNAout column according to the instruction (Tiandz, Beijing, China), and then specific primers were designed for the rapid amplification of cDNA ends (RACE). For 3' RACE, two antisense gene-specific primers (GSP) were designed, 3HDGSP1, 5'-TAT TCTACCTCAGAGGTCTTCGGC-3', and 3HDGSP2,

Halimodendron halodendron is a typical deciduous shrub growing well on alkaline, sandy, and saline soils in China and Russia. *H. halodendron* is highly tolerant to drought and salt stresses, but its molecular mechanism of stresses tolerance is not clear yet. In this study, we isolated and characterized a novel DREB homologous gene, designating it as *HhDREB2*, from salt-treated *H. halodendron* seedlings. The subcellular localization, trans-activating ability and expression pattern of *HhDREB2* in different plant organs were investigated. Furthermore, we also generated transgenic *Arabidopsis* plants over-expressing *HhDREB2* to evaluate their response to stress conditions.

5'-TACCTCAGAGGTCTTCGGCTC-3'. Primers for 5' RACE were 5HDGSP1, 5'-GAACCCAACCAAATCCTTGACCT-3', and 5HDGSP2, 5'-AAATTGAGGCGAGCCGAAGGAC-3'. The RACE reactions were performed according to the manufacturer's protocol (Invitrogen, Carlsbad, CA, USA). The full-length of *HhDREB2* cDNA was obtained by combining three fragments: 5' RACE, conserved cDNA, and 3' RACE. A pair of primers was then designed as HDREB1 (5'-GTTTGAAAGAAAGATTATCAC-3') and HDREB2 (5'-CGATTATCTAGGCTCAGGCA-3') from the putative 3'- and 5'- untranslated regions (UTRs) of the full-length cDNA sequence. The amplified products were gel purified, cloned in a pMD19-T vector (TaKaRa, Shiga, Japan) and sequenced.

Transcriptional activity assay and subcellular localization: Full-length cDNA of *HhDREB2* was cloned into *EcoR* I and *Sal* I restriction sites of yeast expression vectors, pBD (Clontech, Palo Alto, CA, USA), without the activation domain (AD) of GAL4. Plasmid pBD-*HhDREB2* was introduced into yeast strain AH109 with reporter genes *His3* and *LacZ* following the manufacturer's instructions (Clontech). The colony-lift filter β -galactosidase assay was carried out according to the Yeast Protocols Handbook (Clontech). The β -galactosidase activity was expressed in Miller units (1 unit of β -galactosidase hydrolyzes 1 μmol of ONPG to *o*-nitrophenol and D-galactose per cell per min). Yeast cells containing pGAL4 and pBD were used as positive and negative controls, respectively.

To get the fusion protein *HhDREB2*-GFP, the full length open reading frame of *HhDREB2* without the termination codon was cloned into *Sall* and *BamH*I sites of vector p163-GFP (Zhou *et al.* 2012). The fusion construct (35S::*HhDREB2*-GFP) and the control (35S::GFP) were respectively bombarded into onion epidermis cells. Plasmid DNA (4 μg) was used to coat 300 μg gold particles as described previously (Kinkema *et al.* 2000). Transformed cells were incubated on a MS

medium at 25 °C in the dark for 24 h, and green fluorescence was visualized with a laser confocal scanning microscope (*Leica TCS SP2*, Germany).

Generation of transgenic *Arabidopsis* plants and semi-quantitative RT-PCR: To express *HhDREB2* in *Arabidopsis thaliana* L. (ecotype Columbia-0), *HhDREB2* cDNA was ligated into pCAMBIA1302-rda9A vector between sites of *BamH* I and *BstE* II. pCAMBIA1302-rda9A vector was constructed by inserting *rd29A* promoter into pCAMBIA1302 between sites of *Kpn* I and *BamH* I. The gene driven by stress-inducible promoter *rd29A* was introduced into *Arabidopsis* by the *Agrobacterium*-mediated floral-dip method (Clough and Bent 1998). Seeds were screened on a MS selection medium containing 50 µg cm⁻³ hygromycin for 14 d. The homozygous lines were used for further analyses.

The gene-specific primers of *HhDREB2* for a RT-PCR analysis were HD-RT (F), 5'-GGCGGTTATGATGGA

AGAAGA-3', and HD-RT (R), 5'-GAAGAGCGGTTT GGATAGCAT-3'. As control, RT-PCR to detect an internal control gene, *actin*, was run at the same time. To normalize the amount of templates, primers were designed as *actin*-F, 5'-CAACCTTAATCTTCATGCTG-3', and *actin*-R, 5'-AGCAACTGGGATGACATGGAG-3'.

Determination of physiological and biochemical properties: Leaves were harvested and the malondialdehyde (MDA) content was determined by a modified method of Cui and Wang (2006). Leaf powder (0.5 g) was transferred into 2 cm³ of 10 % (m/v) trichloroacetic acid (TCA). After centrifugation at 12 000 g for 10 min, the supernatant was mixed with an equal volume of 0.6 % (m/v) thiobarbituric acid (TBA) comprising 10 % TCA. The mixture was heated in a boiling water for 30 min and then quickly cooled in an ice bath. After another centrifugation at 10 000 g for 10 min, the absorbances of the supernatant was measured at 450, 532, and 600 nm with a spectrometer *Unicam UV-330*

A

1 GTTTGAAGAAAGATTATCACATATAGTTAGTTAGGTATTGGTAAGTTAGCGAC
 61 TCAGGTGGATGATAGGTAGGGAGCAGAGCGGAATTAGGCGGTATGATGGAAGAAG
 1 M M E E
 121 AAAGAGATTGTTCAACGATCACAAGAAGCAGAACAGCAACAGCCCTCCAGAGAACG
 5 E R D C C S T I T R S R I S N S P P E K
 181 GAAACAACAAACAGCAAGAGAACGATACAGAGGAATAAGGAGGAGGAAGTGGGGAAAGT
 25 R K Q Q Q Q E K P Y R G I R R R R K W G K
 241 GGGTGGCAGAGATCAGAGAACCAAACAAAAGGTCAAGGATTGGTTGGTTCTTACACCA
 45 W V A E I R E P N K R S R I W L G S Y T
 301 CCCCTGTAGCCGCTGCACGTGCTACGACATCGCCGTATTCTACCTCAGAGGTCCCG
 65 T P V A A A R A Y D I A V F Y L R G P S
 361 CTCGCCCTCAATTCCCGGAATTGTTATTCCAAGAACGACGAGCAGAACGAGTCGGTCCGTCC
 85 A R L N F P E L L F Q D D D E V G S V
 421 AACAGCTGCAGGGCAGATGTCGCCGATTCAATACGCAAAAGCCACCCGAGTCGGCG
 105 Q Q A A G D M S A D S I R K K A T R V G
 481 CAAGAGTGGATGCTATCCAAACCGCTTCAGGCCCTCCCGCTCCACTCCACTCGAT
 125 A R V D A I Q T A L Q A S S R S T S T R
 541 TCACCTCCGACAACCGGATTGAAAGAGTTCCAAAGCCTGAAGATTCCCTGATGACT
 145 F T S D K P D L N E F P K P E D S L D D
 601 TTGATTGTTAACAGAGCGTATATAGCAAGAACTAGATACTCTCATAATGCAACTTCT
 165 F E L L T E R I *
 661 TTAAAGGTTTTTTAAGAAAGTACCATGAATTAAATTGTCACTTTGTGTGGTTC
 721 TCTTGACGGAGCATGTTGATGAGTTTATCAGGTTGGTGTGCAAGTTGTACAAGG
 781 TGTGTGCTGTTGCCCTGAGCTAGATAATCGAAATCAAATAACCAATTTCGTTGGTGA
 841 ATTTCCTCAAAAAAAAAAAAAAA

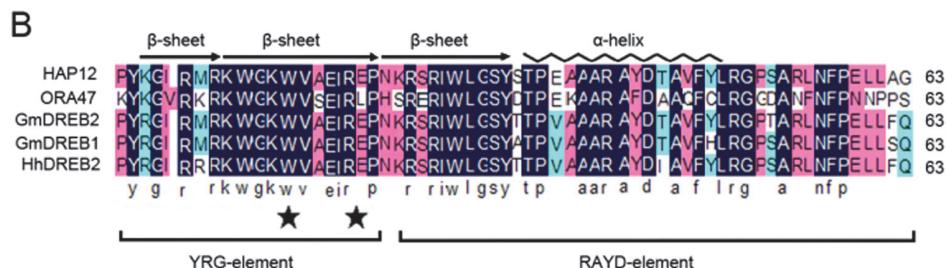


Fig. 1. The sequence analysis of HhDREB2 and other AP2/ERF-related proteins from different species. **A** - The nucleotide and deduced amino acid sequence of HhDREB2 analysed by *DNAMAN* software. The structural and function domains of HhDREB2 were analysed by *SMART* and *cNLS Mapper*. The AP2/ERF domain is in the *shaded region*; basic amino acids that potentially act as nuclear localization signals (NLS) in the N-terminal region are *double underlined* and the acidic C-terminal region that might act as transcriptional activation domain is *boxed*. **B** - The alignment of AP2/ERF domain of HhDREB2 and other closely related DREB proteins. HAP12 and ORA47 were taken from *Arabidopsis* information resource *TAIR*. The accession numbers of other proteins are as follows: GmDREB1, AAP47161.1; GmDREB2, ABB36645.1; HhDREB2, ACJ66376.1. The highly conserved amino acid 14 V and 19 E have the *asterisks*. Three β -sheets and α -helix structures are marked above corresponding sequences.

(Cambridge, UK). The MDA content was calculated according to the formula $[6.45 \times (A_{532} - A_{600})] - 0.56 \times A_{450}$. Soluble sugars were determined by thiobarbi-turic acid method (Li *et al.* (2008) and their content was calculated as $11.71 \times A_{450}$. The water content of leaves was calculated as $[(\text{fresh mass} - \text{dry mass})/\text{fresh mass}] \times 100$.

Results

A full-length cDNA sequence of the putative *DREB* gene was isolated by RACE-PCR and designated as *HhDREB2* (Genbank accession No. EU872018). The full-length of cDNA was 873 bp including a complete open reading frame of 519 bp with 5'-UTR of 107 bp and 3'-UTR of 247 bp (Fig. 1A). The predicted protein of *HhDREB2* was composed of 172 amino acids with a calculated molecular mass of 19.7 kDa and a theoretical isoelectric point of 8.95. The genomic PCR products revealed that *HhDREB2* had no intron interrupting its coding region (data not shown).

A bioinformatics analysis revealed that the deduced amino acid sequence of *HhDREB2* contained a typical AP2/ERF domain which included 64 amino acids, from 33 to 96, and shared a very high amino acid identity with DREBs from other plants. *HhDREB2* had the same 14th Val (V) and 19th Glu (E) in the AP2/ERF domain as other DREBs. A putative nuclear localization signal

Statistics: All experiments were repeated at least three times with five biological replicates. Data were examined using the one-way analysis of variance (*ANOVA*). The Student-Newman-Keuls test was used to identify statistically different means.

sequence and an acidic region that might act as transcriptional activation domain were found at the N-terminal and C-terminal regions, respectively. Two important elements, YRG and RAYD, were also found within the AP2/ERF domain (Fig. 1B). These features suggest that *HhDREB2* encodes a possible DREB protein. Furthermore, a phylogenetic analysis of the conserved AP2/ERF domains from various plants confirmed that *HhDREB2* belongs to the A-5 group of the DREB subfamily (Fig. 2).

To confirm the transcriptional activation of *HhDREB2* protein, the yeast one-hybrid system was employed. A yeast strain containing pBD-*HhDREB2* or pGAL4 grew well on a synthetic dropout (SD) medium lacking histidine and tryptophan (SD/-His-Trp), whereas the negative control pBD strain could not grow on it. Besides, the β -galactosidase activity assay suggests that pBD-*HhDREB2* and pGAL4 strains could activate

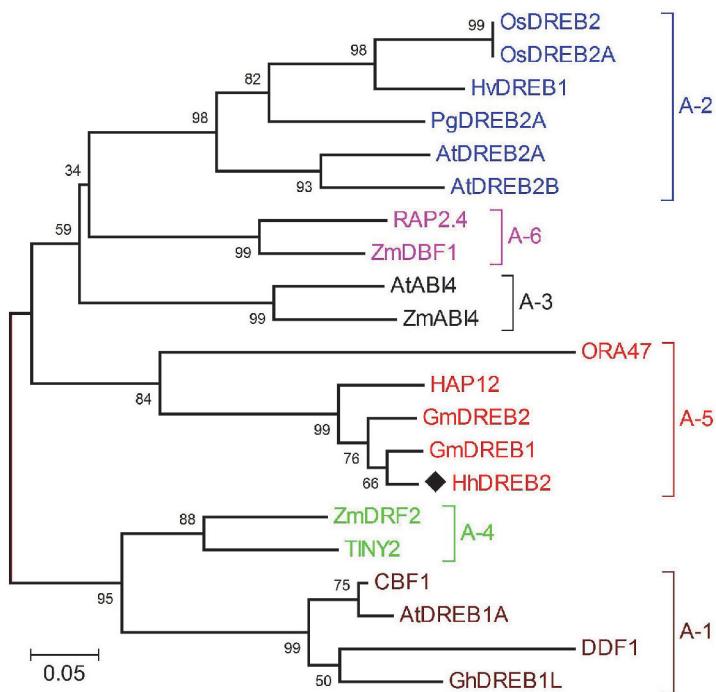


Fig. 2. A phylogenetic tree of AP2/ERF domains of *HhDREB2* and other higher plants constructed by the *MEGA 4.1* program. The branch numbers represent percentages of bootstrap values in 10 000 replicates, and the scale indicates branch lengths. Sequence information of *Arabidopsis* DREB was taken from *TAIR*. The accession numbers of other plant proteins are: GhDREB1L, ABD65473.1; OsDREB2, AAN02487.2; OsDREB2A, AAN02487.2; HvDREB1, AAY25517.1; PgDREB2A, AAV90624.1; ZmABI4, AAM95247.1; ZmDRF2, AAM80485.1; GmDREB1, AAP47161.1; GmDREB2, ABB36645.1; HhDREB2, ACJ66376.1.

reporter genes *his3* and *LacZ* and made the colony-lift filters showing a clear blue (Fig. 3A). These results confirm the transcriptional activity of the *HhDREB2* protein. A fused construct *35S::HhDREB2-GFP* was introduced into onion epidermal cells by particle bombardment. The fusion proteins *HhDREB2-GFP* were exclusively localized in the nucleus with a strong fluorescence signal, whereas the control GFP protein was distributed throughout the onion cell (Fig. 3B). These results suggest the nucleus-localized *HhDREB2* protein.

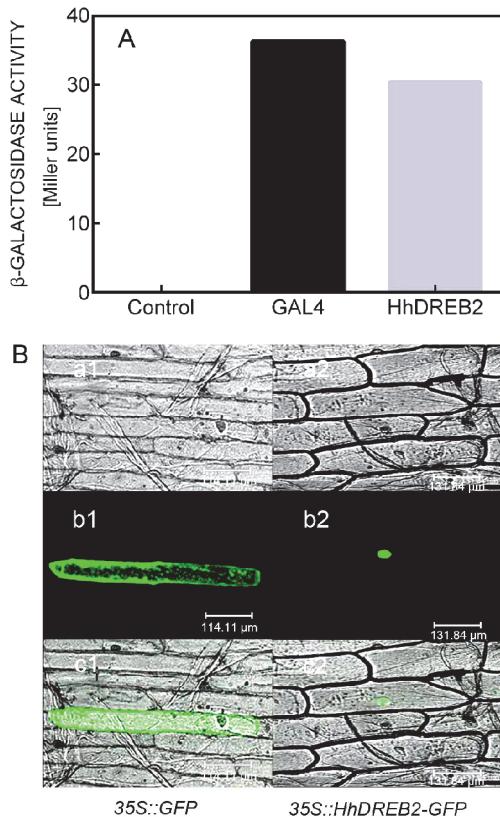


Fig. 3. The transcriptional activity and subcellular localization of *HhDREB2* protein. *A* - The analysis of DNA-binding activity of *HhDREB2* protein by the yeast one-hybrid assay. *B* - The subcellular localization of *HhDREB2-GFP* fusion proteins. The fusion construct for *HhDREB2-GFP* (1) and the GFP control plasmid (2) were introduced into onion epidermal cells by particle bombardment. Nuclear localization was investigated by confocal microscopy: *a* - a bright field image; *b* - a fluorescence image; *c* - conformity for both.

To further investigate the role of *HhDREB2* gene in plant tolerance to abiotic stresses, the gene under the control of *rd29A* promoter was transformed into *Arabidopsis* plants. We confirmed nine transgenic lines by PCR (Fig. 5A) and randomly selected one (*HhDREB2OE#3*) as research object. Compared with the wild-type plants (WT), the transgenic plants (*T₂*) showed no detectable phenotype defects in growth and flowering.

After treatments with 200 mM NaCl and drought for 3 weeks, the plants over-expressing *HhDREB2* gene showed higher survival rates compared with the wild-type

plants. The transgenic line even could flower and set fruits under drought (Fig. 5B,C). There were no differences in root lengths between *T₂* and WT on the normal MS medium. In the presence of 50 mM NaCl, the transgenic plants showed a less severe inhibition on primary root growth and plant height than the WT plants. However, the primary root growth of the transgenic plants was dramatically retarded compared with WT when subjected to 100, 150, and 200 mM NaCl, but not for plant height (Fig. 5D,E).

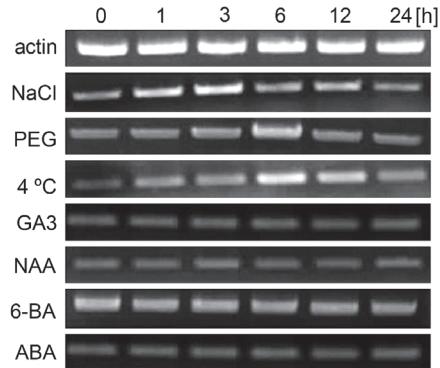


Fig. 4. The semi-quantitative RT-PCR analyses of *HhDREB2* in response to various stresses. *Halimodendron halodendron* seedlings were subjected to 250 mM NaCl, 20 % PEG 6000, 4 °C, 100 µM GA₃, 100 µM NAA, 100 µM 6-BA, and 100 µM ABA for the indicated times. An *actin* gene was amplified as template control.

In order to clarify the potential function of *HhDREB2* in response to different stimuli, the expression pattern of the *HhDREB2* gene was analysed by semi-quantitative RT-PCR under various stress conditions. Under the NaCl stress, *HhDREB2* mRNA accumulated quickly and reached its maximal level at 3 h and then decreased to its basic level at 24 h. In contrast, the expression of *HhDREB2* peaked within 6 h by the 20 % PEG 6000 or 4 °C treatment. Interestingly, *HhDREB2* mRNA still maintained a high expression between 6 - 12 h under the cold treatment. Thus, the RT-PCR analysis revealed that the expression of *HhDREB2* was induced by salinity, drought, and low temperature, however, it was not affected by GA₃, NAA, BA, or ABA (Fig. 4).

To evaluate physiological changes of the transgenic plants, the content of water, soluble sugars, and MDA in WT and *T₂* were compared after the drought and salt treatments. These parameters were similar in the WT and *T₂* plants before the application of the stresses. After 14 d, the water content under the drought stress decreased much more in WT than in *T₂*. The salinity hardly affected the water content except for the 200 mM NaCl treatment (Fig. 6). After the treatment with 100 mM NaCl, the content of soluble sugars in *T₂* was about 2.8-fold higher than that under the normal conditions, whereas it was only 1.7-fold higher in WT (Fig. 6). After 14 d of the drought stress or 200 mM NaCl, the content of MDA in *T₂* was much lower than that in the WT plants (Fig. 6).



Fig. 5. The growth analysis of transgenic lines HhDREB2OE#3 and WT *Arabidopsis* seedlings under stress treatments. A - PCR to identify positive transgenic lines. PC - positive control, NC - negative control. B and C - Performances of transgenic lines with drought-inducible expression of *HhDREB2* during a survival test (drought or 200 mM NaCl for three weeks, and then re-watering for one week). D - Root length under normal conditions, or treatments with 50, 100, 150, and 200 mM NaCl for 3 weeks. E - Plant height after treatments with 50, 100, 150, and 200 mM NaCl for 3 weeks. Each experiment was repeated three times. The grey bars - transgenic lines, the black bars - WT. Data were obtained from three independent experiments. Means \pm SE, $n = 5$, significant differences: * - $P \leq 0.05$, ** - $P \leq 0.01$.

Discussion

After the discovery of DREB protein, accumulating evidence has revealed that DREBs act as important regulators in plant abiotic stress responses (Dubouzet *et al.* 2003, Xu *et al.* 2009, Zhou *et al.* 2010). In this study, a new member of the AP2/EREBP transcription factors, HhDREB2, was identified in the 250 mM NaCl-treated *H. halodendron* seedlings. Detailed analyses show that HhDREB2 had many typical features of other DREBs. YRG and RAYD as two important elements binding with the promoter sequence, and some other interacting proteins were also found within the AP2/ERF domain of HhDREB2. The 14th valine and the 19th glutamic acid in the YRG element are highly conserved in diverse plant species and considered to play an important role in the binding to the DRE *cis*-elements (Zhou *et al.* 2010). The results suggest that conserved elements may play an important role in DNA-binding specificity during the evolution of higher plants.

Earlier studies showed that DREB2-type proteins contain a conserved Ser/Thr-rich region (a putative phosphorylation site) adjacent to or far away from the AP2/ERF domain. The over-expression of DREB2-type

proteins in plants was not sufficient for the induction of target stress-responsive genes, although corresponding mRNA accumulates even under unstressed conditions (Liu *et al.* 1998, Dubouzet *et al.* 2003). Sakuma *et al.* (2006) found that deletion of the Ser/Thr-rich motif lead to a constitutively active protein form. The DNA binding of phosphoproteins is negatively influenced by phosphorylation which gets reversed by a dephosphorylating treatment (Agarwal *et al.* 2007). Therefore, phosphorylation sites in DREBs may act as negative regulation motifs. However, recent reports suggest that some DREB2 homologues, like ZmDREB2A and HvDREB1, can function as transcriptional activators without any post-translational modification (Qin *et al.* 2007, Xu *et al.* 2009). In this work, a Ser/Thr-rich region was found in the C-terminal region, but we did not observe any negative effect on the transgenic lines as described by Liu *et al.* (2007). It appears that the Ser/Thr-rich region perhaps serves dissimilar biological function in DREBs from different plant species.

Transcriptional regulatory networks in plants in response to abiotic stresses involve a large number of

genes. Signaling cross-talks exists in the regulation of different DREB groups. Earlier studies found that DREB2-type genes are induced mainly by drought and salinity, whereas *CBF/DREB1* genes are induced mainly by low temperature (Liu *et al.* 1998, Sakuma *et al.* 2006, Agarwal *et al.* 2007, Xu *et al.* 2008). It is interesting that *CBF4/DREB1D*, as CBF/DREB1-type gene, is induced by osmotic stress, but *DDF1/DREB1F* and *DDF2/DREB1E* are induced by salinity (Yamaguchi-Shinozaki and Shinozaki 2006). In this study, *HhDREB2* (A-5) gene was induced by the drought, salinity, and low temperature, which is similar with the earlier studies with *PpDBF1* (A-5) (Liu *et al.* 2007), *GhDREB1L* (A-1) (Huang *et al.* 2007), *TaAIDFa* (A-2) (Xu *et al.* 2008), and *GhDBP3* (A-4) (Huang and Liu 2006).

ABA as signaling molecule plays a key role in many aspects of abiotic stress responses by regulating gene expression including transcription factor genes. However, not all abiotic responses appear to be mediated by ABA in plants. The signaling pathways can be divided into ABA-dependent and ABA-independent (Yamaguchi-Shinozaki and Shinozaki 2006). The expression patterns of *HhDREB2* (Fig. 4) show that *HhDREB2* was not induced by ABA, but it was very sensitive to the abiotic stresses,

especially NaCl. The data presented in our study also show that the water content of leaves decreased when the plants were subjected to the stresses. Plants accumulate osmolytes to adjust the intracellular osmotic potential, which was evidenced by determining the soluble sugar content of the *HhDREB2* transgenics. Similar results were shown in *OsDREB2A* and *PeDREB2a* transgenic plants that maintain a higher soluble sugar content than control plants under stress conditions (Cui *et al.* 2011, Zhou *et al.* 2012). MDA is the final decomposition product of membrane lipid peroxidation, so the MDA content is considered as characteristics of damage of cellular membranes (Lei *et al.* 2007). A lower content of MDA in T₂ than in WT after the treatments suggest that *HhDREB2* improved stress tolerance of the plants by increasing the amount of osmolytes *via* controlling the expression of some related genes in the ABA-independent pathway.

In conclusion, it is postulated that *HhDREB2* activated the expression of downstream genes that regulate inherent complex physiological and biochemical processes and improve tolerance to drought and salt stresses. However, limited knowledge in relationships between physiological metabolism and stress-tolerance

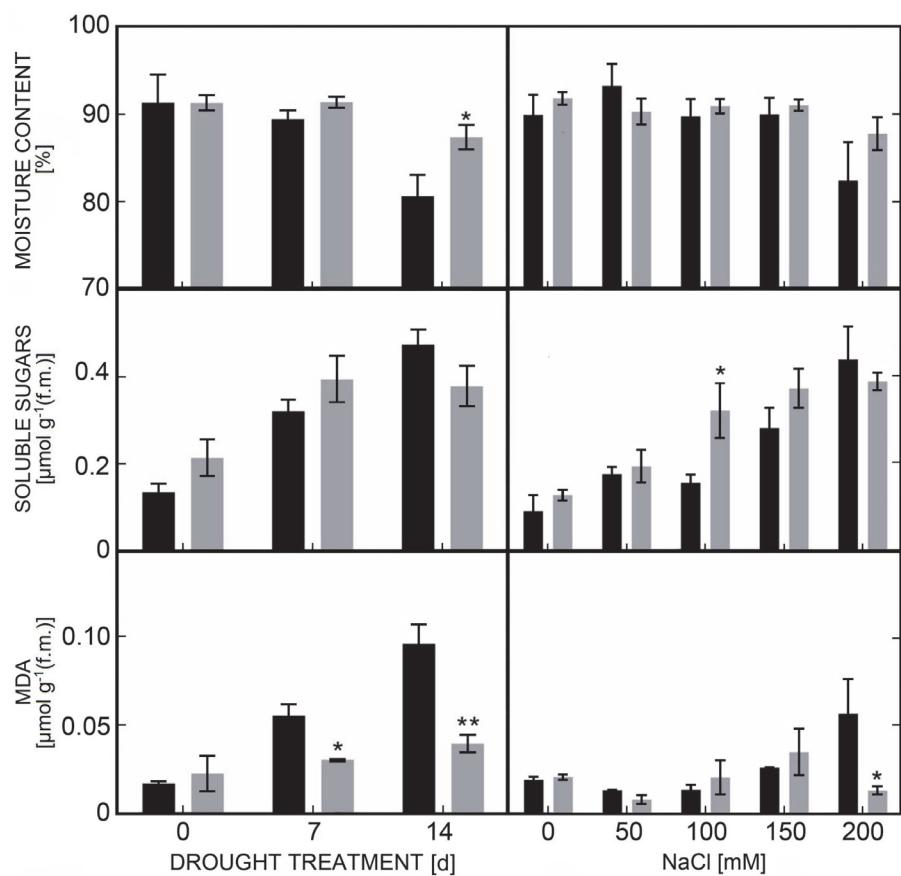


Fig. 6. The changes of physiological characteristics of wild-type and transgenic line HhDREB2OE#3 of *Arabidopsis*. The moisture content, soluble sugars, and MDA content were determined under the normal conditions (0 d), drought stress (7 or 14 d), and 0 - 200 mM NaCl. The black bars - WT, the grey bars - transgenic plants. Data were obtained from three independent experiments. Means \pm SE, $n = 5$, significant differences: * - $P \leq 0.05$, ** - $P \leq 0.01$.

genes, and the cross points between stress signaling pathways are the barriers for us to understand regulation mechanisms of plants under stress conditions. To identify

more genes related to stress tolerance and study their expression in other plants will help us to reveal the network in future.

References

Agarwal, P., Agarwal, P.K., Nair, S., Sopory, S.K., Reddy, M.K.: Stress-inducible DREB2A transcription factor from *Pennisetum glaucum* is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. - *Mol. Genet. Genomics* **277**: 189-198, 2007.

Behnam, B., Kikuchi, A., Celebi-Toprak, F., Kasuga, M., Yamaguchi-Shinozaki, K., Watanabe, K.N.: *Arabidopsis rd29A::DREB1A* enhances freezing tolerance in transgenic potato. - *Plant Cell Rep.* **26**: 1275-1282, 2007.

Bouaziz, D., Pirrello, J., Charfeddine, M., Hammami, A., Jbir, R., Dhibe, A., Bouzayen, M., Gargouri-Bouzid, R.: Overexpression of *StDREB1* transcription factor increases tolerance to salt in transgenic potato plants. - *Mol. Biotechnol.* **54**: 803-817, 2012.

Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., Ma, Y.Z.: *GmDREB2*, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. - *Biochem. biophys. Res. Commun.* **353**: 299-305, 2007.

Chen, M., Xu, Z.S., Xia, L.Q., Li, L.C., Cheng, X.G., Dong, J.H., Wang, Q.Y., Ma, Y.Z.: Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, *GmDREB3*, in soybean (*Glycine max* L.). - *J. exp. Bot.* **60**: 121-135, 2009.

Clough, S.J., Bent, A.F.: Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. - *Plant J.* **16**: 735-743, 1998.

Cui, M., Zhang, W., Zhang, Q., Xu, Z., Zhu, Z., Duan, F., Wu, R.: Induced over-expression of the transcription factor *OsDREB2A* improves drought tolerance in rice. - *Plant Physiol. Biochem.* **49**: 1384-1391, 2011.

Cui, Y., Wang, Q.: Physiological responses of maize to elemental sulphur and cadmium stress. - *Plant Soil Environ.* **52**: 523-529, 2006.

Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: *OsDREB* genes in rice, *Oryza sativa* L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. - *Plant J.* **33**: 751-763, 2003.

Gutha, L.R., Reddy, A.R.: Rice *DREB1B* promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. - *Plant mol. Biol.* **68**: 533-555, 2008.

Huang, B., Jin, L., Liu, J.: Molecular cloning and functional characterization of a DREB1/CBF-like gene (*GhDREB1*) from cotton. - *Sci. China C. Life Sci.* **50**: 7-14, 2007.

Huang, B., Liu, J.Y.: Cloning and functional analysis of the novel gene *GhDBP3* encoding a DRE-binding transcription factor from *Gossypium hirsutum*. - *Biochim. biophys. Acta* **1759**: 263-269, 2006.

Kinkema, M., Fan, W., Dong, X.: Nuclear localization of NPR1 is required for activation of PR gene expression. - *Plant Cell* **12**: 2339-2350, 2000.

Lei, Y., Korpelainen, H., Li, C.: Physiological and biochemical responses to high Mn concentrations in two contrasting *Populus cathayana* populations. - *Chemosphere* **68**: 686-694, 2007.

Li, K.R., Wang, H.H., Han, G., Wang, Q.J., Fan, J.: Effects of brassinolide on the survival, growth and drought resistance of *Robinia pseudoacacia* seedlings under water-stress. - *New Forests* **35**: 255-266, 2008.

Li, M.R., Li, Y., Li, H.Q., Wu, G.J.: Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue *FaDREB1*. - *Tree Physiol.* **32**: 104-113, 2012.

Liu, N., Zhong, N.Q., Wang, G.L., Li, L.J., Liu, X.L., He, Y.K., Xia, G.X.: Cloning and functional characterization of *PpDBF1* gene encoding a DRE-binding transcription factor from *Physcomitrella patens*. - *Planta* **226**: 827-838, 2007.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBPAP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in *Arabidopsis*. - *Plant Cell* **10**: 1391-1406, 1998.

Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Regulation and functional analysis of *ZmDREB2A* in response to drought and heat stresses in *Zea mays* L. - *Plant J.* **50**: 54-69, 2007.

Roychoudhury, A., Paul, S., Basu, S.: Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. - *Plant Cell Rep.* **32**: 985-1006, 2013.

Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of an *Arabidopsis* transcription factor, DREB2A, involved in drought-responsive gene expression. - *Plant Cell* **18**: 1292-1309, 2006.

Santner, A., Estelle, M.: Recent advances and emerging trends in plant hormone signalling. - *Nature* **459**: 1071-1078, 2009.

Sazegari, S., Niazi, A.: Isolation and molecular characterization of wheat (*Triticum aestivum*) dehydration responsive element binding factor (DREB) isoforms. - *Aust. J. Crop Sci.* **6**: 1037-1044, 2013.

Tang, M., Liu, X.F., Deng, H.P., Shen, S.H.: Over-expression of *JcDREB*, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant *Jatropha curcas*, enhances salt and freezing tolerance in transgenic *Arabidopsis thaliana*. - *Plant Sci.* **181**: 623-631, 2011.

Xu, Z.S., Ni, Z.Y., Li, Z.Y., Li, L.C., Chen, M., Gao, D.Y., Yu, X.D., Liu, P., Ma, Y.Z.: Isolation and functional characterization of *HvDREB1* - a gene encoding a dehydration-responsive element binding protein in *Hordeum vulgare*. - *J. Plant Res.* **122**: 121-130, 2009.

Xu, Z.S., Ni, Z.Y., Liu, L., Nie, L.N., Li, L.C., Chen, M., Ma, Y.Z.: Characterization of the *TaAIDFa* gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. - *Mol. Genet. Genomics* **280**: 497-508, 2008.

Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - *Plant Biol.* **57**: 781-803, 2006.

Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song, L.L., Liu, X.M., Wang, Y.F., Wang, F.W., Zhang, C., Liu, Y., Zong, J.M., Li, H.Y.: Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress *via* both ABA-dependent and ABA-independent pathways. - *Planta* **233**: 219-229, 2011.

Zhao, J., Ren, W., Zhi, D., Wang, L., Xia, G.: *Arabidopsis DREB1A/CBF3* bestowed transgenic tall fescue increased tolerance to drought stress. - *Plant Cell Rep.* **26**: 1521-1528, 2007.

Zhou, M.L., Ma, J.T., Pang, J.F., Zhang, Z.L., Tang, Y.X., Wu, Y.M.: Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. - *Afr. J. Biotechnol.* **9**: 9255-9279, 2010.

Zhou, M.L., Ma, J.T., Zhao, Y.M., Wei, Y.H., Tang, Y.X., Wu, Y.M.: Improvement of drought and salt tolerance in *Arabidopsis* and *Lotus corniculatus* by overexpression of a novel DREB transcription factor from *Populus euphratica*. - *Gene* **506**: 10-17, 2012.