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Antioxidative defence under drought stress in a wheat stay-green mutant
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Abstract

A wheat stay-green mutant, named fasg/, was generated using the mutagen ethyl methane sulphonate applied to wheat
(Triticum aestivum L.) cv. HS2. A drought stress was imposed by controlling irrigation and sheltering plants from rain.
The antioxidant defence was characterized in the flag leaves of the tasg/ and wild-type (WT). Compared with WT,
tasgl had higher reduced ascorbate/oxidized ascorbate ratio, reduced glutathione/oxidized glutathione ratio, and
antioxidant enzyme activities during senescence under both normal and drought stress conditions. The DHAR gene
expression remained higher in tasg/ than in WT during the drought stress and tasg/ had a higher antioxidant defence
competence which may contribute towards the delayed leaf senescence. The different transcriptional responses of some
wheat senescence-associated genes to the drought stress between tasg/ and WT were observed. These results suggest

that the competent antioxidative capacity might play an important role in the enhanced drought tolerance in fasgl.
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Introduction

Drought is the primary limitation to wheat production
worldwide (Meller et al. 2007) and disturbs almost all
plant functions (Yamaguchi-Shinozaki et al. 2002).
Mutants that retain greenness during senescence are
collectively called stay-green mutants and different types
(A, B, C, D, and E) have been defined (Thomas and
Howarth 2000). They are further divided into functional
stay-green and non-functional stay-green mutants
depending on whether retention of green colour is
coupled with retention (functional stay-greens) or loss
(non-functional stay-greens) of photosynthetic activity
(Thomas and Howarth 2000). The first two classes (type
A and B) are functionally stay-green, and the remaining
three are non-functional. An increased drought resistance
in some stay-green mutants was confirmed. Rivero ef al.
(2007) reported that the suppression of drought-induced
leaf senescence by the production of cytokinins in
transgenic tobacco plants results in outstanding drought

tolerance and improved plant survival and yield. Borrell
et al. (2000) also reported that stay-green sorghum
hybrids produced 47 % more post-anthesis biomass than
their counterparts under terminal moisture deficit
conditions. But the mechanism underlying the increased
drought resistance in some stay-green mutants remains
unknown.

We generated a new wheat mutant, tasg/, with
delayed leaf senescence using ethyl methane sulphonate
(EMS) as mutagen. Tasgl is a functional stay-green
mutant with drought resistance characteristics according
to our previous studies (Tian et al. 2012, Hui ef al. 2012).
In the present work, the antioxidant defence mechanism
and the expression of senescence-associated genes were
analyzed. These data will be helpful for better
understanding the stay-green mechanism and for
improving the drought resistance of wheat cultivars.
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Materials and methods

A wheat stay-green mutant, named fasg/, was generated
in our laboratory using the mutagen EMS applied to a
wheat (Triticum aestivum L.) cultivar HS2 which is
further considered as wild-type (WT). Plants were grown
in the field of the Shandong Agricultural University,
China, during the growing seasons (October to June) of
2011 and 2012. Six 4 m’ interspersed plots were
established via random block design in the field, with
three replicate plots for each genotype. Conventional
agricultural management was maintained during growth
and development of the seedlings. A drought stress (DS)
was imposed by controlling irrigation and sheltering the
plants from rain from May 1% to May 15" (flowering
stage); plants under normal water conditions served as
controls (CK). We harvested the flag leaves to determine
physiological and biochemical parameters every five days
after the drought stress was imposed, and we immediately
submersed them in liquid nitrogen and stored at -80 °C
till used.

Water content of the soil was measured after 10 d of
DS and statistically significant differences between DS
and CK were achieved. The soil water content in
0 - 20 cm and 20 - 40 cm depths was 6.32 and 7.58 % in
CK, and 4.88 and 7.13 % in DS, respectively.

Total leaf H,O, content was measured according to
the method described by Sui et al. (2007) with slight
modifications. Leaf samples (0.2 g) were homogenized
with 3 em® of a 50 mM phosphate buffer (pH 6.8). The
homogenate was centrifuged at 6 000 g for 25 min. The
supernatant was mixed with 1 cm® of 0.1 % (m/v)
titanium sulfate in 20 % (m/v) H,SO,4, and the mixture
was then centrifuged at 6000 g for 15 min. The
absorbance change at 410 nm was monitored using a
UV-visible spectrophotometer (Shimadzu UV-1601,
NSW, Australia). H,O, content was calculated according
to the standard curve plotted with known concentrations
of H,0,. Hydroperoxides (R-OOH) were assayed using
ferric-xylenol orange as described by Gay and Gebicki
(2000).

Leaf discs (1 g) were homogenized in 5 cm® of 10 %
(m/v) trichloroacetic acid containing 1.5 mM ethylene-
diaminetetraacetic acid (EDTA). After centrifugation at
14000 g for 15 min, the supernatant was diluted 1:50
with 5 % (m/v) Na,HPO, (pH 7.5) for neutralization.
Total ascorbate (AsA) content was determined according
to the method of Arakawa et al. (1981). Dehydro-
ascorbate (DHA) content was calculated as the difference
between total AsA and reduced AsA. Glutathione (GSH)
metabolite pool was measured using the enzymatic
recycling assays according to the method of Anderson
et al. (1992). All values are reported as GSH equivalents
according to the standard curve plotted with known
concentrations of GSH.

Antioxidant enzymes were extracted by grinding 0.5 g
of fresh flag leaves with 5 cm® of an extraction buffer
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consisting of 0.05 M phosphate, pH 7.8, 0.1 mM EDTA,
and 1 % (m/v) polyvinylpyrrolidone (PVP) in an ice bath
and then centrifuged at 12 000 g and 4 °C for 20 min. The
supernatant was used for the following enzyme assays.
Glutathione reductase (GR; EC 1.6.4.2) activity was
assayed according to Schaedle and Bassham (1997).
Dehydroascorbate reductase (DHAR; EC 1.8.5.1) activity
was measured according to Hossain and Asada (1984).
The rate of reaction was corrected for the non-enzymatic
reduction of dehydroascorbate by reduced glutathione.
Monodehydroascorbate reductase (MDHAR; EC1.6.5.4)
activity was measured according to Arrigoni ef al. (1981).
The absorbance change of 0.1 in 1 min was defined as
one unit of GR, DHAR, and MDHAR activities.

For laboratory experiments, seeds of both WT and
tasgl germinated at 25 £ 1 °C for 24 h on filter paper
moistened with water after being sterilized with 0.2 %
(m/v) sodium hypochlorite. The seeds were then placed in
an orderly fashion on a nylon gauze sheet at an
appropriate density and cultured in trays (25 cm x 18 cm
x 5 cm) containing a Hoagland solution. These trays were
placed in a growth chamber at a temperature of 25 £+ 1 °C,
a 12-h photoperiod, an irradiance of 300 pmol m™ s, and
a relative humidity of 70 %. After complete unfolding,
second leaves were harvested for senescence-inducing
treatments as described below. An osmotic stress was
induced using a 20 % (m/v) polyethylene glycol (PEG)
6000 solution (the osmotic potential of -1.45 MPa). The
solution was changed every 12 h.

Total RNA was extracted from the control and PEG-
treated wheat leaves with a Trizol reagent (TaKaRa,
Shiga, Japan) according to the manufacturer’s protocol
and then was treated with DNasel (RNase-free, Promega,
Madison, USA). The total RNA was subjected to the
first-strand cDNA synthesis with a Revertdid first strand
cDNA synthesis kit (Fermentas, USA) according to the
manufacturer’s protocol. The cDNA was diluted to
0.1 cm’® with sterile water. Real-time PCR was performed
using the first-strand cDNA generated above, and
selected primers (listed in Table 1) were described
previously (Baek and Skinner 2003) or designed using
the Primer Premier 5.0 software. Each primer was
composed of about 20 nucleotides with melting
temperatures around 60 °C. A primer set for each
antioxidant enzyme was designed to produce an amplicon
ranging from about 90 to 110 nucleotides. The tubulin
cDNA was used as reference. Tubulin has been accepted
widely as housekeeping gene in growing plants (Coker
and Davies 2003). PCR was carried out in a 0.02 cm’
reaction containing a 1 x SYBR Green PCR master mix
(Tiangen, Beijing, China), 500 nM forward and reverse
primers, and 0.002 cm’ of cDNA template. The
quantitative analysis was performed using the Bio Rad
CFX Manager (Hercules, USA) system with PCR
conditions of 40 cycles at 94 °C for 20 s, 61 °C for 30 s,



and 68 °C for 35 s. The absence of primer-dimer formation
was examined in single and no-primer controls. Each
sample was examined in triplicate using relative
quantification analysis. This method normalizes the
expression of the specific gene versus the control reference
with the formula 2"*4°T, where ACt = Cr of specific gene -
Cr of reference gene, and AACt = ACr - an arbitrary
constant. The threshold cycle value is defined as the PCR
cycle number that crosses an arbitrarily placed threshold
line.

Six genes related to senescence were selected to
examine their different expression in tasg/ and WT. First,
total RNA from wheat leaves that were grown under
normal conditions and drought stress treatments for 0, 5,
10, and 15 d was isolated according to the manufacturer’s
protocol (Trizol, TaKaRa, Shiga, Japan), and sub-
sequently used for the reverse transcription polymerase
chain reaction (RT-PCR). Then, total RNA was treated
with DNasel (RNase-free; Promega) to remove genomic
DNA, and the reverse transcription was performed using
the primer oligo (dT);3 and Moloney murine leukemia
virus (M-MLV) reverse transcriptase (Promega) at 42 °C
for 60 min. Subsequently, the PCR reaction with equal
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aliquots of cDNA samples was performed using special
primers.

The amplification of the fubulin gene (using primers
tubulin F: 5'-ACCGCCAGCTCTTCCACCCT-3" and
tubulin ~ R:  5-TCACTGGGGCATAGGAGGAA-3")
exhibiting a constitutive expression was used as positive
control, from which a linear relationship between the
amount of RNA used for amplification and the amount of
the cDNA fragment amplified as well as the quality of
both extracted RNA and RT-PCR reactions were
determined. The amplification conditions were as
follows: 94 °C for 30 s, 56 °C for 30 s, and 72 °C for
30 s. The cycle was repeated 28 times. RT-PCR products
were separated on a 1.0 % (m/v) agarose gel. The
experiments were independently repeated three times
under the identical conditions.

All experiments were repeated at least three times.
Statistical analysis was conducted using the data
processing system of the Zhejiang University, Zhejiang,
China. Differences between means among the wheat lines
or treatments were compared using the Duncan’s multiple
range tests at a 0.05 probability level.

Table 1. Primer sequences. The annealing temperature for each of the primer couple and the size of the amplicons are also indicated
(the tubulin cDNA was used * - for DHAR expression and ° - for SAG expressions).

Gene Forward primer sequence 5'-3' Reverse primer sequence 5'-3’ [°C]  Size [bp]
DHAR TCAAGCCAGATTTAGTCACC TGGAAGCGTGGAGCGATTTG 20
Tubulin® ATCTGTGCCTTGACCGTATCAGG GACATCAACATTCAGAGCACCATC 23
TaSAG1 TCAAGCCAGATTTAGTCACC TGGAAGCGTGGAGCGATTTG 56 616
TaSAG3 TGTTCTTGACGACGATGGTG TGAGCACTAAGCGCAGCA 52 213
TaSAG4 CCTCACCAGCCTCAAGTTCC GTCTTCTCCGTCCTGTCAGT 54 223
TaSAG6 TCGTCCTGGTCATGCTCGCT TCGTCCTGGTCATGCTCGCT 54 454
TaSAG7 CAAGCGCCCCTACACCGTCC TGGTACTGCTGGGCGAAGAA 52 321
TaSAGY9 ACAAGTTCAACCCCGTCAAG CCATCAGCTTCATCAGACCC 56 439
Tubulin® ACCGCCAGCTCTTCCACCCT TCACTGGGGCATAGGAGGAA 58 579
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Fig. 1. Effects of drought stress on the H,O, content (4) and R-OOH content (B) in flag leaves of WT and tasg/ plants. Means + SD
(n = 5). Different letters indicate significant differences at a 0.05 level at the same time point.
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Results

hydroperoxides (R-OOH). There was no obvious diffe-

Reactive oxygen species (ROS) production in plants was
monitored by measuring the content of H,O, and
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Fig. 2. Effects of drought stress on the ascorbate-glutathione cycle in flag leaves of WT and fasgl plants: 4 - AsA, B - DHA,

C - AsA/DHA ratio, D - total ascorbate (AsA+DHA), £ - GSH, F - GSSG, G - GSH/GSSG ratio, and H -

(GSH+GSSG). Means + SD (n = 3). Different letters indicate significant differences at a 0.05 level at the same time point.
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CK. DS resulted in a significant increase in H,O, content
in both the wheat genotypes, but the increase was greater
in WT than in tasgl. After 15 d under CK, the H,0,
content increased by 75.2 and 63.0 % in leaves of the
tasgl and WT plants, respectively, due to senescence. On
the other hand, the H,O, content increased by 77.6 and
70.6 % in leaves of the tasg/ and WT plants,
respectively, under DS (Fig. 14). The trend in changes of
R-OOH content was in accordance with that of H,0O,
(Fig. 1B). No obvious difference was found between
tasgl and WT at the initial phase of DS. However, in the
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Fig. 3. Effects of drought stress on the antioxidant enzyme
activities in flag leaves of WT and tasgl: 4 - GR, B - DHAR,
and C - MDHAR. Means + SD (n = 3). Different letters indicate
significant differences at a 0.05 level at the same time point.
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late stage of DS, the R-OOH content in fasg! was higher
than in WT.

As concern the ascorbate cycle, there was no
significant difference in the content of AsA, DHA, and
AsA+DHA, and the AsA/DHA ratio between the WT and
tasgl plants under CK (Fig. 24-D). DS decreased the
content of DHA, but increased the content of AsA and the
AsA/DHA ratio more in fasg/ than in WT.

In the glutathione cycle, DS remarkably decreased the
content of oxidized glutathione (GSSG) in both WT and
tasgl, and the decrease in tasg/ was more serious than in
WT (Fig. 2F). Furthermore, DS induced a greater
increase in GSH content and GSH/GSSG ratio in tasg!
than in WT (Fig. 2E,G). However, there was no
considerable change in GSH+GSSG wunder DS as
compared with CK in both fasg/ and WT (Fig. 2H).

No obvious difference was found in the glutathione
reductase (GR) activity between fasg/ and WT at the
initial phase of DS. However, the GR activity in tasgl
was always higher than in WT under late DS (Fig. 34).
DS induced a significant decrease in the activity of
DHAR in both WT and fasg/. But the decrease in WT
was more serious than in tasg/ (Fig. 3B). The activity of
DHAR was 26.1 and 21.5 % higher in tasg/ than in WT
under CK and DS, respectively. When DS was applied,
the MDHAR activity decreased considerably in WT. The
MDHAR activity in tasgl also decreased but much less
than in WT (Fig. 30).

The DHAR gene was selected to determine the
different transcriptional responses to the drought stress
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Fig. 4. Changes in the DHAR mRNA expression in response to
a drought stress measured using real-time RT-PCR. The drought
stress was induced using a 20 % PEG-6000 solution for 0, 12,
24, 36, and 48 h with water as control. The expression data
correspond to means of triplicates, normalized to a-tubulin, and
using a control sample from 0 h as calibrator. The expression of
data is in arbitrary units £ SD. Different letters indicate
significant differences at a 0.05 level at the same time point.
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between tasgl and WT (Table 1). As revealed by
RT-PCR, the expression of the DHAR gene was similar in
WT and tasg! before the PEG treatment (Fig. 4). After
12 h, the expression increased in both the wheat geno-
types. However, the expression then decreased conti-
nuously and the decrease was greater in WT than in
tasgl.

Six wheat senescence-associated genes (SAG) in the
flag leaf were selected to determine different
transcriptional responses to the drought stress between
tasgl and WT (Table 1). As revealed by semi-
quantitative RT-PCR (Fig. 5), the expression of these
genes showed distinct responses to the PEG treatment,
and the expression patterns varied for different genes.

Discussion

The efficient removal of ROS is a key factor for plant
stress tolerance. ROS are produced in a controlled
manner through normal metabolic processes in aerobic
organisms (Elstner et al. 1994, Gratio et al. 2005) as
signaling molecules in pathogen defense, programmed
cell death, and abiotic stress responses (Desikan et al.
2001, Mittler 2002). However, stress conditions can
unbalance a steady-state level in ROS production (Foyer
and Noctor 2005, Sharma and Dietz 2009). Failure to
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Fig. 5. SAG gene expressions in responses to a drought stress in
wheat. Total RNA from wheat flag leavesthat were grown under
the drought stress for 0, 5, 10, and 15 d was isolated and reverse
transcribed. Subsequently, RT-PCR was performed using
specific primers, and the RT-PCR products were separated on a
1.0 % (m/v) agarose gel. The tubulin line was as positive
control of the RT-PCR reactions with the fubulin gene which
exhibits a constitutive expression. The experiments were
independently repeated three times under the identical
conditions.
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TaSAGI1, TaSAG6, and TaSAG9 were the most sensitive
genes to the drought stress, their expressions were up-
regulated immediately after the PEG treatment in both
WT and fasg! (Fig. 5). The expressions of TaSAGI,
TaSAG6, and TaSAGY9 were higher in WT compared to
tasgl for various periods after the PEG treatment. On the
other hand, the expression of TaSAGI, TaSAG6, and
TaSAGY were firstly inhibited in fasg!/, but further slowly
increased. Even at the last tested time point (48 h), the
expressions of TaSAGI, TaSAG6, and TaSAGY9 did not
increase significantly in WT and remained low. 7aSAG3,
TaSAG4, and TaSAG7 showed no significant
accumulation in both tasg/ and WT after the PEG
treatment.

control ROS accumulation leads to a phenomenon known
as oxidative stress (Bartosz 1997, Foyer and Noctor
2000).

We studied the mechanisms underlying the drought
resistance of tasgl. First, we compared the ROS
accumulation in leaves of fasg/ with that of WT. When
the wheat plants were treated with DS for 15 d, the
accumulation of H,O, and R-OOH increased less in tasg!
than in WT (Fig. 1) suggesting their greater antioxidant
competence.

Both enzymatic and non-enzymatic components are
involved in the ascorbate-glutathione cycle (Gratio ef al.
2005). This cycle plays a crucial role in removing ROS
and maintaining the cellular redox status in different cell
compartments (Noctor and Foyer 1998, Drazkiewicz
et al. 2003, Singh et al. 2006). The capacity of this cycle
is dependent on the content and redox status of AsA and
GSH. Under environmental stresses, AsA in the
chloroplast can alleviate photoinhibition of photosystem
(PS) II not only by donating electrons to violaxanthin de-
epoxidase to dissipate excess excitated energy, but also
by providing electrons to ascorbate peroxidase (APX) for
detoxification of HyO,. AsA regeneration is necessary for
the reductive detoxification of H,O, (Hossain et al
1984). In this study, DS resulted in a more significant
increase in the content of AsA and the AsA/DHA ratio in
tasgl than in WT (Fig. 24,C), but the AsA+DHA content
increased to the equivalent extent in both WT and tasgl
(Fig. 2D).

The ascorbate-glutathione cycle uses GSH as electron
donor to regenerate AsA from its oxidized form, and is
considered as the main pathway of O," and H,O,
removal in the chloroplast (Noctor and Foyer 1998). In
the present study, we observed a greater increase in GSH
and GSH/GSSG in tasg!/ than in WT after DS
(Fig. 2F,G). Besides, GSSG decreased more seriously in
WT (Fig. 2F). However, DS did not considerably change
the GSH+GSSG content as compared with CK (Fig. 2H).

Four enzymes, i.e., APX, GR, DHAR, and MDHAR,



are involved in the removal of H,O, and of O,  in this
cycle. In our previous study (Tian et al. 2012), APX
activity was determined from the 22™ to 30™ day after
anthesis. The APX activity was mostly suppressed by DS,
but the activity was higher in tasg! than in WT. Here, our
results show that DS decreased the activities of GR,
DHAR, and MDHAR more in WT than in tasgl.
Evidently, the enhanced activities of these enzymes
concomitant with the enhanced content of AsA and GSH
could help to quench ROS in tasg!.

We also detected the DHAR gene responses to the
drought stress between fasg!/ and WT. After the 12 h
PEG treatment, the expression of DHAR increased in both
the wheat genotypes but then decreased. Similarly, the
DHAR gene expression in the wheat seedlings quickly
increased, peaked at 24 h of the drought stress, and then
gradually decreased (Kang et al. 2013).

Numerous studies have shown that ROS and
antioxidant systems are involved in natural senescence
(Evans et al. 1999, Puppo et al. 2005). In the senescence
process, many senescence-associated genes are up-
regulated (Gregersen and Holm 2007). Among 11 SAGs
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