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Abstract

Little is known about the contributions of DNA methylation/demethylation to plant aging and senescence. We used
Arabidopsis thaliana to study how increasing age of an annual plant species influences DNA methylation. Based on
methylation-sensitive DNA fragmentation assay, it could be concluded that aging A. thaliana was accompanied by
DNA demethylation. Bisulfite sequencing reveals that cytosine methylation within the Actin2 3’ untranslated region and
internal transcribed spacer with 5.8S rRNA (/7S1-5.85rRNA-ITS2) DNA regions decreased with A. thaliana growth and
aging. We show that transcription of methyltransferase genes, chromomethyltransferase AfCMT3 and methyltransferse
AtMETI, significantly decreased during development and aging of the A. thaliana plants, whereas expression of
demethylase genes — repressor of silencing AtROSI, demeter AtDME, and demeter-like AtDML2 and AtDML3 —
increased at least at some stages of plant development. The data obtained in the present study suggest that plant DNA
regions may undergo demethylation during plant aging via reduction of DNA methylation processes and activation of

active DNA demethylation.
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Introduction

Cytosine DNA methylation is an epigenetic modification
that is important for maintaining genome stability and
regulating gene expression in higher plants and other
organisms (Gehring and Henikoff 2007, Zhang et al.
2010, Vanyushin and Ashapkin 2011). Growing evidence
suggest that DNA methylation is implicated in regulating
gene expression across plant development and in
response to environmental stresses (Zhang et al. 2010,
Ding et al. 2014, Plitta et al. 2014, Liu et al. 2015).
Cytosine DNA methylation of plant nuclear genomes is
more extensive and involves a wider range of methylation
sites than in animal nuclear genomes (Vanyushin and
Ashapkin 2011), but it remains unclear how DNA
methylation alters during plant ageing and whether
contributes to ageing (Dubrovina and Kiselev 2016).
Many studies show that DNA is methylated at a higher
level in adult plant tissues than in juvenile tissues (Bitonti
et al. 2002, Fraga et al. 2002, Valledor et al. 2010, Guo et

al. 2011, Mankessi et al. 2011, Huang et al. 2012, Yuan
etal. 2014, Sun et al. 2015), but there are also data
reporting a lower level of DNA methylation in adult plant
tissues than in juvenile ones (Demeulemeester et al.
1999, Baurens et al. 2004, Hasbun et al. 2005, Monteuuis
et al. 2009, Meng et al. 2012, Michalak et al. 2015). Guo
et al. (2011) and Yuan et al. (2014) found that the total
genomic DNA methylation considerably increases with
the age of bamboo plants. Taken together, the data
suggest that methylation status of genomic DNA can vary
during plant ageing and senescence resulting in changes
in transcription of genes responsible for age-related plant
deterioration.

The level and pattern of cytosine methylation are
determined by both DNA methylation machinery and
DNA demethylation machinery (Meyer 2011). The
process of methylation is performed by methylases.
Plants possess three methylase families: methyl-
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transferases (METs), chromomethyltransferases (CMTs),
and domains rearranged methyl-transferases (DRMs).
The METs are responsible for maintaining methylation
within symmetrical “CG” sites. In rare instances, these
methylases can also affect cytosine methylation in a
“CHG” context (where H = A, T or C) (Singh et al.
2008). The CMTs maintain cytosine methylation within
partial symmetrical “CHG” sites but can also affect
de novo methylation within asymmetrical “CHH” sites
(Pavlopoulou and Kossida 2007). The DRMs maintains

“CHH” methylation through persistent de novo
methylation  (Pavlopoulou and Kossida 2007).
Arabidopsis  thaliana (the ecotype Col-0) methyl-

transferases are encoded by four METs (AtMETI,
AtMETIIA, AtMETIIB, and AtMETII]), three CMTs
(AtCMTI1, AtCMT2, and AtCMT3), and three DRMs
(AtDRM1, AtDRM?2, and AtDRM3) genes, but only
AtMETI, AtCMT3, AtDRM1, and AtDRM?2 were shown to
be essential for DNA methylation (Pavlopoulou and
Kossida 2007).

In contrast to DNA methylation, DNA demethylation
can be passive and/or active (Ikeda and Kinoshita 2009).
Whereas passive DNA demethylation may take place due
to lack of maintenance of methylation during DNA
replication, active demethylation occurs enzymatically by

Materials and methods

Plant material and growth conditions: Plants
(Arabidopsis thaliana L. ecotype Columbia, stored by our
laboratory) were grown in pots filled with commercially
available rich soil in a controlled environmental chamber
(KS-200, SPU, Smolensk, Russia) at a temperature of
22 °C, an air humidity of 80 %, a 16-h photoperiod, and
an irradiance of 70 pmol m™ s (Dubrovina ef al. 2015).
To compare DNA methylation at different stages of
A. thaliana life cycle, two A. thaliana plants were
collected after 1 (seedlings with two cotyledons), 4 (full
rosettes with emerging flower shoots), 8 (full rosettes
with developed flower shoots and developing siliques),
and 12 (seed maturation and plant senescence) weeks
after seed sowing (Fig. 1 Suppl.).

DNA extraction and bisulfite sequencing: For DNA
purification, we collected shoots and the total DNA was
extracted as described Kiselev et al. (2015b).

The cytosine methylation status of the 3' untranslated
region (UTR) of the Actin2 gene and the central part of
the internal transcribed spacer with 5.8S rRNA (ITSI-
5.85rRNA-ITS2) DNA region of A. thaliana was analyzed
using bisulfite sequencing as described Kiselev ef al.
(2015a). Briefly, the total of 1 pg of the genomic DNA
was subjected to bisulfite modification using an £Z DNA
methylation kit (Zymo Research, Irvine, CA, USA)
according to the manufacturer’s instructions. The DNA
was converted using the following conditions: 95 °C for
5 min and 64 °C for 2 h. Cloned PCR products of the
Actin2 and ITS regions were used as positive controls for
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removing methylated cytosines. In plants DNA
glycosylases were shown to exhibit DNA demethylation
activity in combination with base excision repair process.
Members of DNA glycosylase families demeter (DME)
and repressor of silencing 1 (ROS1) were better studied
than demeter-like 2 (DML2) and DML3 (Zhu 2009, Law
and Jacobsen 2010). The four DNA glycosylases were
shown to cut the N-glycosidic linkage between the DNA
backbone and 5-methylcytosine. Then, the abasic site is
removed by apurinic/apyrimidinic site lyase, and the
resulting gap in the DNA chain is filled by DNA
polymerase and ligase in vivo (Ikeda and Kinoshita 2009).
Biochemical studies showed that AtROS1, AtDME,
AtDML2, and AtDML3 are S5-methylcytosine DNA
glycosylases that initiate a base excision pathway for
active DNA demethylation in Arabidopsis (Zhu 2009).
The purpose of the present study was to elucidate
whether nuclear cytosine methylation and transcription of
methyltransferase/demethylase genes change during the
life cycle of A. thaliana. We analyzed DNA methylation
using methylation-sensitive DNA fragmentation assay
and bisulfite sequencing. Also, we analyzed transcription
of the four methyltransferase (AtMETI, AtCMT3,
AtDRM1, and AtDRM?2) and four demethylase (4tROS],
AtDME, AtDML?2, and AtDML3) genes in A. thaliana.

the bisulfite chemical reactions. The level of C to T
transitions in the converted PCR products was greater
than 98 %. After DNA conversion, a 361-bp Actin2

fragment was amplified using primers 5'-AGG
AATYGTTYAYAGAAAATGTT-3' and 5'-TATACA
ATACTTATATTAACATTRCA-3". Primers 5-GAT

GAAGAAYGTAGYGAAATGYGATA-3' and 5'-ACA
ARARCRACCRATAAAATRTAAT-3' were used for
amplification of a 281-bp product from the /7S DNA
region. The primers were designed according to the Zymo
Research recommendations. The PCR products were
isolated from agarose gels using a Cleanup mini kit
(Eurogene, Moscow, Russia) and subcloned as described
Dubrovina et al. (2014). The clones were amplified and
sequenced (8 clones for each plant and 16 clones for
2 plants for an analyzed stage) using an ABI 3130 genetic
analyzer (Applied Biosystems, Foster City, CA, USA)
following the manufacturer’s protocol and recommend-
dations as described Kiselev ef al. (2013a). There were 58
(7 CG, 4 CHG, and 47 CHH cites) and 70 (18 CG, 12
CHG, and 40 CHH cites) cytosines in the amplified
regions of the Actin 2 and ITS genes, respectively. The
Basic Local Alignment Search Tool (BLAST) program
was used for sequence analysis. Multiple sequence
alignments were performed using the ClustalX program
(Altschul et al. 1990).

Extraction of RNA and real time quantitative PCR

analysis: The total RNA was extracted as described
Kiselev et al. (2013b) and its concentration was measured
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with a spectrophotometer (NanoPhotometer P-300,
Munich, Germany). We used RNA with the ratio of
absorbances at 260 and 280 nm (Aje/Asgp) higher than
1.8. Complementary DNAs were synthesized using
1.5 pg of the total RNA by an RNA PCR kit (Silex M,
Moscow, Russia). The reactions were performed in
0.05 cm’ aliquots of a reaction mixture, which contained
reverse transcriptase (RT) buffer, 0.2 mM each of the
four dNTPs, 0.2 pM oligo-(dT);s primer, and 200 U of
Moloney murine leukemia virus polymerase at 37 °C for
1.5 h (Kiselev et al. 2013c). Samples of 0.5 mm’ of
reverse transcription products were then amplified by
PCR. After cDNA synthesis, the 3’UTR of Actin2
(GenBank accession No. NM_112764) was amplified
using primers Act-S2 5'-GATTCAGATGCCCAGAA
GTC-3' and Act-A2 5-TCTGTGAACGATTCCTGGA-3'
designed for the 3' end of the protein coding region. A
442-bp fragment of the Actin gene was amplified using
DNA as template and a 356-bp fragment was amplified
using cDNA as template (the difference of the 86 bp was
due to the presence of an intron in the Actin gene). In the
following real time quantitative PCRs (qPCRs), we used
only those RT reactions that resulted in the 356 bp
RT-PCR product for the Actin gene. We discarded those
RT reactions that resulted in both the 356 bp RT-PCR
product and the 442 bp RT-PCR product for the Actin
gene, which indicated DNA contamination. Two
biological replicates used for RNA isolation were
presented by the whole one-week-old seedling and by
leaves, inflorescences, and rosettes of the same whole
plant 4, 8, and 12 weeks after seed sowing.
Complementary DNAs (AtCMT3, AtMETI, AtDRM1,
AtDRM2, AtDME, AtDML2, AtDML3, AtROSI,
AtGAPDH, and AtActin) were amplified using an
EvaGreen real time PCR dye (Biotium, Hayward, USA);
primers are listed in Table 1 Suppl. The real time qPCRs
were performed using a real time PCR kit (Syntol,
Moscow, Russia) in a thermocycler supplied with a
multicolor real time qPCR detection system (DNA
Technology, Moscow, Russia). An expression was
calculated by the 27T method (Livak and Schmittgen
2001). After the calculations, value 1 was assigned to the
most expressed sample in relative mRNA calculation in

Results

Methylation-sensitive BstHH 1 restriction digestion was
used to investigate DNA methylation in A. thaliana
during plant growth, development, and ageing. The total
DNA was isolated from A. thaliana plants 1, 4, 8, and
12 weeks after seed sowing and digested with BstHH1
(Fig. 1). Based on this assay, it could be concluded that
cytosine DNA methylation gradually decreased during
growth and ageing of the 4. thaliana plants (Fig. 1).
Using bisulfite sequencing, we analyzed the total
level of cytosine methylation within two control nuclear
DNA regions (Actin2 and ITS) of the A. thaliana plants
grown for 1, 4, 8, and 12 weeks. The analysis reveals that
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each qPCR reaction. Genes AtActin? (acc. No.
NM 112764) and AtGAPDH (acc. No. NM 111283)
were used as endogenous controls to normalize variance
in the quality and amount of cDNA of 4. thaliana used in
each real time qPCR experiment. The AtGAPDH gene
was selected in a previous study as a relevant reference
gene for real time PCRs of Arabidopsis genes
(Czechowski et al. 2005). We did not find significant
differences in the data calculated using AtActin2? or
AtGAPDH as reference genes, and thus we decided to use
both reference genes. Also, Actin genes are usually used
as reference genes for plants, e.g., Actin is one of the best
reference genes for grape cells (Reid et al. 2006, Marum
et al. 2012). A no-template control was included in every
assay. The real time qPCR data shown were obtained
from two independent experiments and are averages of
eight technical replicates for each independent
experiment (four qPCR reactions normalized to Actin and
four qPCR reactions normalized to GAPDH expression
for each independent experiment).

Methylation-sensitive DNA fragmentation assay:
Restriction endonuclease BstHH I (50 mm®, SibEnzyme,
Novosibirsk, Russia) was used to conduct methylation-
sensitive DNA fragmentation assay. A source of BstHH 1
is Bacillus stearothermophilus HH. Restriction reactions
of BstHH I proceed if cytosine within its recognition site
GCG1TC is not methylated. Activity of BstHH I is
affected by  5'G(5mC)GC3/3'CG(5mC)G5'  and
5'G(5mC)GC3'/3'CGCGS' methylation, but it is not
affected by  5'GCG(5mC)3/3'(5mC)GCGS'  and
5'GCG(5mC)3'/3'CGCGS"  methylation.  Restriction
reactions were performed in volumes of 20 mm’
containing 1 pg of DNA. The DNA samples were treated
at 50 °C for 50 min and separated by electrophoresis on a
1.3 % (m/v) agarose gel.

Statistical analysis: Statistical analysis was carried out
using the Statistica 10.0 program. The data are presented
as mean + standard error of the mean (SE) and were
tested for statistical significance by paired Student's #-test.
P < 0.05 was selected as the point of minimal statistical
significance of differences in all analyses.

the total level of cytosine methylation within the Actin2
and /7S DNA regions gradually decreased with
A. thaliana growth, maturation, and ageing (Fig. 2). The
percentage of methylated cytosines at asymmetrical
(CHH) sites increased with ageing the Arabidopsis plants
in the ITS DNA region, whereas symmetrical and
partially symmetrical (CG and CHG) methylation
decreased with A. thaliana maturation within both the
Actin2 DNA region and the /7S DNA region (Table 1).
To elucidate the molecular mechanism of DNA
demethylation during Arabidopsis growth and ageing,
expression of four methyltransferase genes (4tCMT3,



AtMETI, AtDRM1, and AtDRM?2) and four demethylase
genes (AtROSI, AtDME, AtDML2, and AtDML3) in
A. thaliana of different age was analyzed by real time
qPCR. The analysis reveals that expression of AtCMT3
considerably decreased during the first month of growth
from one-week-old seedlings to four-week-old plants

(Fig. 34). Then, AtCMT3 expression maintained
1 2 3 4
Al [bp]

<10000

Fig. 1. An electrophoregram of total DNA samples before (4)
and after (B) BstHH I treatment. The total DNA isolated from
50 Arabidopsis seedlings: I - 1-week-old, 2 - 4-week-old,
3 - 8-week-old, 4 - 12-week-old, M - molecular mass marker.

Table 1. Cytosine methylation in Actin2 or internal transcribed
spacer with 5.8S rRNA (/7S) DNA regions in different
sequence contexts during growth and ageing of A. thaliana
plants. The total number of cytosines in each DNA region and
for each methylation context (CG, CHG, or CHH) was regarded
as 100 %. Means = SEs obtained from two independent
experiments (n = 16); significant differences at * - P < 0.05 and
** . P <0.01 versus values measured in 1-week-old plants.

Age [week] CG [%] CHG [%] CHH [%]
Actin2 1 87.1+13.6 924+ 41 71.7+174
4 783+ 63 967+ 2.7 82+ 1.6%*
8 377+ 58** 612+ 6.1* 6.7+1.7*%*
12 267+ 6.6%* 424+ 82%* 554 1.4%*
ITS 1 76.7 £13.1 65.1 +10.6 6.0+0.6
4 422 +129*% 46.7+14.5 18.1 £6.3**
8 148+ 6.7** 222 +10.0** 18.3 £6.5%*
12 18.8 £12.6** 26.7+14.7* 12.1 £4.1*
Discussion

A number of studies show that ageing in humans and
animals is generally characterized by genome-wide
hypomethylation and site-specific hypermethylation (e.g.,
Johansson et al. 2013). The available data on plants
reviewed in Dubrovina and Kiselev (2015) indicate that
DNA methylation vary depending on age of plant tissues
and chronological age of the whole plant. However, there
is lack of investigations where DNA methylation would
be analyzed depending on age of the whole plant. Guo et
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essentially at the same level in leaves and rosettes of
4-, 8-, and 12-week-old plants. Transcription of AtMETI
significantly decreased only in 12-week-old tissues
(P <0.05) and not in younger tissues (Fig. 3B). At the
same time, expression of AtDRM] did not significantly
change (Fig. 3C), but expression of AtDRM?2
considerably increased in the 4-, 8-, and 12-week-old
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Fig. 2. Analysis of total cytosine DNA methylation within
Actin2 and internal transcribed spacer with 5.8S rRNA (ITS)
DNA regions of Arabidopsis thaliana. Means + SEs (n =16)
obtained from plants collected 1, 4, 8, and 12 weeks after
sowing. Significant differences at * - P <0.05 and ** - P <0.01
versus values of cytosine methylation one week after seed
sowing. The total number of cytosines was regarded as 100 % in
each DNA region.

leaves and 12-week-old rosettes but not in inflorescences
(Fig. 3D).

In contrast to AtCMT3 and AtMETI expressions,
expressions of the demethylase genes AtROSI, AtDME,
AtDML?2, and AtDML3 markedly increased during growth
of A. thaliana (Fig. 4). Expressions of the AtfROSI gene
in leaves and rosettes were 2 - 6 times higher in the
4-, 8-, and 12-week-old plants than in the 1-week-old
seedlings (Fig. 44). The AtDME gene displayed the same
tendency in expression in the 4- and 8-week-old plants
(Fig. 4B). However, its expression did not considerably
increase in 12-week-old rosettes and inflorescences
compared to the 1-week-old seedlings. Expressions of the
AtDML?2 and AtDML3 genes markedly increased only in
the 4-week-old plants (Fig. 4C,D). Further growing the
Arabidopsis plants led to a decrease in AtDML2 and
AtDML3  expressions reaching expressions in the
1-week-old seedlings (Fig. 4C,D).

al. (2011) and Yuan et al. (2014) found that the total
genomic DNA methylation considerably increases with
age of bamboo. Conversely, the data obtained in the
present study show that the total genomic DNA cytosine
methylation and Actin2- and [TS-specific DNA
methylation decreased during growth and ageing of
A. thaliana. Similar results were obtained by Michalak
et al. (2015) on Quercus robur seeds; a decrease in seed
viability during their ageing was highly correlated with a
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global decline in amount of 5-methylcytosine in the
genomic DNA. In the present investigation, we show that
the level of asymmetrical CHH methylation increased
during A. thaliana growth for the ITS DNA region,
whereas the symmetrical CG and partial symmetrical
CHG methylation decreased both in the Actin2 DNA
region and the /7S DNA region. These results are in

accordance with the data published by Vaillant ef al.
(2008) that asymmetrical cytosine hypermethylation in
ribosomal 5S DNA correlates with ageing of Arabidopsis.

There are many studies investigating methyl-
transferase and demethylase mutant phenotypes of
Arabidopsis (Zhang and Jacobsen 2006, Williams et al.
2015). In these studies, important biochemical properties
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Fig. 3. Expressions of methyltransferase genes AtCMT3 (A4), AIMETI (B), AtDRM1 (C), and AtDRM?2 (D) in Arabidopsis thaliana.
IR, 4R, 8R, and 12R: the total RNA extracted from 1-, 4-, 8-, and 12-week-old Arabidopsis seedlings and rosettes; 4L, 8L, and 12L:
RNA extracted from leaves of 4-, 8-, and 12-week-old plants; 81 and 12I: RNA extracted from inflorescences of 8- and 12-week-old
plants. Means + SEs (n = 16). Significant differences at * - P <0.05 and ** - P <0.01 versus values of methyltransferase gene

expression in one-week-old A4. thaliana seedlings (1R).
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of Arabidopsis methyltransferases and demethylases are
characterized. Although there is some information about
methyltransferase and demethylase gene expression in
different plant organs (primary root tips, seedlings,
leaves, floral organs, and siliques) and under different
treatments (Huang et al. 2014, AtGenExpress database),
the data were collected from different experiments and
the oldest used Arabidopsis tissues were only 35-d-old.
Thus, there was no information about methyltransferase
and demethylase transcription during the whole life cycle
of A. thaliana plants in one generation. Based on the
present analysis of methyltransferase and demethylase
gene transcription at different stages of Arabidopsis life
cycle, it is clear that expressions of CMT3 and METI
methyltransferases decreased with plant age, whereas
expression of ROSI demethylase increased in the
4-, 8-, and 12-week-old plants in comparison with the
I-week-old seedlings. This suggests that plant DNA
regions may undergo demethylation during plant ageing
via reduction of DNA methylation processes and
activation of active DNA demethylation. Expressions of
DME, DML2, and DML3 demethylases increased in
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