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Salicylic acid and nitric oxide increase photosynthesis
and antioxidant defense in wheat under UV-B stress
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Abstract

The effects of exogenous salicylic acid (SA), sodium nitropusside (SNP, a nitric oxide donor), or their combination on
dwarf polish wheat (Triticum polonicum L.) seedlings under UV-B stress were studied. The UV-B stress significantly
decreased plant height, shoot dry mass, pigment content, net photosynthetic rate, intercellular CO, concentration,
stomatal conductance, transpiration rate, and variable to maximum chlorophyll fluorescence ratio (F,/F,,) in all plants, but
less in the presence of SA, SNP, and their combination. On the other hand, there were considerable increases in
malondialdehyde (MDA), proline, O,", and H,0, content under the UV-B stress. When SA, SNP, and their combination
were applied, content of MDA, proline, H,O,, and O,” were less increased. Moreover, there were considerable increases
in activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase under the UV-B stress
and more in the presence of SA, SNP, and their combination. Therefore, it is considered that SA, SNP, and especially their
combination could alleviate UV-B stress in dwarf polish wheat.

Additional key words: antioxidants, chlorophyll fluorescence, lipid peroxidation, net photosynthetic rate, stomatal conductance,

transpiration rate, Triticum polonicum.

Introduction

The effects of increased UV-B radiation (280 - 320 nm) at
the earth’s surface on plant growth have been investigated
extensively. Increases in solar UV-B have raised concerns
about the damaging impact of UV-B radiation on crop
plants (Caldwell et al. 2007). The UV-B radiation varies
with time of day, time of year, latitude, and cloud cover
(Rozema et al. 1997). A UV-B stress could induce
over-production of free radicals resulting in oxidative
stress (Yu et al. 2004). Harmful effects of enhanced UV-B
are often related to the excessive production of reactive
oxygen species (ROS) (Strid et al. 1994) and a resultant
damage includes reduced photosynthesis, biomass
accumulation, protein synthesis, and impaired chloroplast
function (Ren et al. 2006). When plants are exposed to
UV-B stress, they could induce some protective
mechanisms. For example, increases in UV-B absorbing
compounds, proline content, and activity of antioxidant
enzymes have been reported (Prochazkova et al. 2001).
Salicylic acid (SA) is an important signal molecule,

which plays an important role in modulating a number of
physiological processes and plant response to stresses such
as drought (Waseem et al. 2006, Saruhan et al. 2012),
salinity (Mutlu et al. 2009), and heavy metals (Jamali ef a/.
2011). It has been suggested that SA is directly involved in
signaling antioxidant responses (Larkindale and Knight
2002). In addition, application of SA was found to
alleviate stress induced by water deficit and UV-B
radiation (Bandurska and Ciéslak 2013).

Nitric oxide has been proved to be a signal molecule
playing important roles in diverse physiological processes
in plants, including growth and development (Paghussat
et al. 2002), hormones modulation (Neil et al. 2002), and
biotic and abiotic stresses (Modolo et al. 2002). Previous
reports have suggested NO as stress-inducing agent
(Antoniou et al. 2014), whereas others have assigned it as
protective molecule (Tanou ez al. 2012) functioning as
antioxidant by scavenging ROS (Laspina et al. 2005).
Moreover, NO can reduce superoxide anion formation and
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lipid peroxidation (Boveris et al. 2000). Therefore, we
hypothesized that SA, NO, or their combination could
ameliorate destructive effects of UV-B on plants.

Dwarf polish wheat (Triticum polonicum L., 2n =4x =28,
AABB) may constitute a valuable genetic material for
breeding new wheat cultivars characterized by a high
nutritive value and satisfactory resistance to Fusarium

Materials and methods

Plants and growth conditions: Dwarf polish wheat
(Triticum polonicum L.) seeds were sterilized with 5 %
(m/v) sodium hypochlorite for 15 min, washed extensively
with distilled water, and then germinated on moist filter
paper in the dark at 26 °C for 5 d. Each plastic pot
(16 cm in diameter, 20 cm in height) was filled with
Vermiculite, after which two uniform seedlings were
transplanted into each pot. The seedlings were grown in
chambers at a 16-h photoperiod, a photon flux density
(PED) of 500 pmol m? s, day/night temperatures of
25/20 °C, and a 65 + 5 % relative humidity. The seedlings
were carefully irrigated in the morning of every third day
with 20 cm® of Hoagland’s nutrient solution. After four
weeks, the seedlings were divided into eight treatments:
1) C (control), 2) U (UV-B), 3) S (0.5 mM SA), 4) N (NO;
0.5 mM sodium nitropruside, SNP), 5) SN (SA + NO),
6) US (UV-B + SA), 7) UN (UV-B + NO), and §) USN
(UV-B + SA + NO). The concentrations of SA and SNP
were according to previous studies (Santa-Cruz et al. 2010,
Li et al. 2014). One half of every group of the seedlings
was irradiated with UV-B for 7 h a day (from 10:00 to
17:00) using UV fluorescent lamps (7L 20 W/01 RS). The
irradiation was determined with a USB2000 Fibre Optic
spectrometer (Ocean Optics, Dunedin, FL, USA) and
weighed with the generalized plant action spectrum
normalized to 300 nm (Caldwell 1971). Vertical polyester
curtains were placed above the plants in order to prevent
the UV-B radiation under the C treatment. The desired
radiation dose rate was obtained by adjusting the distance
between the lamps and the leaves. The total daily
biological effective UV-B radiation was 21 kJ m? d”' in
this study (according to the method of Flint and Caldwell
2003a,b). The experiment was arranged in a randomized
complete block design with three replicates.

After a week of the UV-B irradiation, photosynthetic
parameters were measured and the plants were harvested.
Leaves were washed thoroughly with running tap water
followed by deionized water. Fresh samples of the top
three fully expanded leaves were used for physiological
indexes determination. For enzyme activities, the fresh
material was frozen in liquid nitrogen and stored at -70 °C.
For determination of plant dry matter, the plants were
dried to a constant mass at 80 °C for 48 h.

Photosynthetic parameters: Content of chlorophyll (Chl)
a, Chl b, and total carotenoids (Car) were determined
according to Lichtenthaler (1987). The pigments were
extracted for 48 h from 0.2 g of fresh leaf tissue using
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head blight (Wiwart et al. 2013). However, several
environmental factors, such as drought, salinity, heavy
metals, and UV-B, throw a great threat to its survival.
Therefore, the present study was designed to explore the
role of SA, NO, and their combination in mediating
damaging effects of UV-B radiation and elucidate possible
physiological mechanisms in wheat.

25 cm® of 80 % (v/v) chilled acetone in the dark and then
measured with a spectrophotometer (UV-1700, Shimadzu,
Kyoto, Japan) by reading absorbances at 663, 646, and
470 nm.

Net photosynthetic rate (Py), intercellular CO, concen-
tration (c;), stomatal conductance (g), and transpiration
rate (E) were measured in the three fully expanded top
leaves from 09:00 to 11:00 using an LI-6400 portable
photosynthesis system (Li-Cor, Lincoln, NE, USA). All
the measurements were taken at a constant flow rate of
500 pumol s, a PFD of 500 pmol m? s, an ambient CO,
concentration of approximately 350 umol mol”, and a
temperature of about 25 °C.

Chlorophyll fluorescence images were taken with a
fluorometer Imaging-PAM (MAXI-version, Heinz Walz
GmbH, Effeltrich, Germany) after keeping leaf samples in
darkness for 15 min. Fluorescence intensities Fy and F,
were determined from PAM kinetics measured at the
central part of the fully expanded leaves before and after a
saturation pulse, respectively, and the maximal
photochemical quantum yield of photosystem (PS) II was
calculated from these values as F,/F, = (F.,-F,)/F.

Histochemical detection of O,” and H,0,: Superoxide
(0,") and H,0, in leaves were visualized based on the
method of Wang et al. (2011) with little modification.
Briefly, the fresh three fully expanded leaves were stained
in 0.25 mM nitroblue tetrazolium chloride (NBT) or 1 %
(m/v) 3,3-dimethoxybenzidine (DAB) for 10 h under a
PFD of about 100 pmol m™ s and a temperature of 25 °C
for wvisualizing O, and H,0,, respectively. After
incubation in NBT or DAB, the leaves were washed with
distilled water and then decolorized in boiling 95 % (v/v)
ethanol which allowed detection of blue insoluble
formazan (for O,") or deep brown polymerization product
(fOI‘ H202).

Examination of proline and malondialdehyde content:
Proline content was determined according to the method
of Bates et al. (1973). After extraction at room temperature
with a 3 % (m/v) 5-sulfosalicylic acid solution, proline
content was determined from a standard curve and
calculated on fresh mass basis.

The sample leaves (0.2 g) were soaked into 1 cm® of
distilled water, boiled for 30 min, and centrifuged at
5000 g for 4 min. Lipid peroxidation was measured as
2-thiobarbituric acid reactive metabolites, mainly malon-
dialdehyde (MDA), following the modified method of
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Heath and Packer (1968). The frozen samples were
homogenized in a pre-chilled mortar and pestle with two
volumes of ice cold 0.1 % (m/v) trichloroacetic acid (TCA)
and centrifuged at 15 000 g for 15 min. An assay mixture
containing 1 cm’ aliquot of the supernatant and 2 cm® of
0.5 % (m/v) 2-thiobarbituric acid in 20 % (m/v) TCA was
heated to 95 °C for 30 min and then rapidly cooled in an
ice-bath. After centrifugation (10 000 g and 4 °C for
10 min), supernatant absorbance was read at 532 nm and a
value corresponding to nonspecific absorption (600 nm)
was subtracted. Content of MDA was calculated using its
coefficient of absorbance of 155 mM™ cm™.

Determination of enzyme activities: Samples (0.3 g of
the frozen tissue) were homogenized on ice with 5 cm’ of
an ice-cold 50 mM Na-phosphate buffer (pH 7.8),
containing 0.1 mM EDTA and 1 % (m/v) polyvinyl
pyrrolidone. The mixture was then centrifuged at 15 000 g
and 4 °C for 20 min to obtain the supernatant for enzyme
activity determinations. Superoxide dismutase (SOD)
activity was assayed by monitoring the inhibition of
photochemical reduction of NBT according to the method

Results

Compared with the control, the plants treated with the
UV-B exhibited 14.0, 27.9, and 37.5 % reductions in plant
height, total biomass, and root/shoot ratio, respectively
(Table 1). However, there was no significant difference in
root length between the U and C treatments. The S and N
treatments reduced root dry mass and root/shoot ratio,
whereas the SN treatment increased root/shoot ratio as
compared to the C treatment. On the other hand, the US,
UN, and USN treatments induced increases in plant height,
shoot dry biomass, root dry biomass, and root/shoot ratio
compared with the U treatment. The greatest increases
were in plant height and root/shoot ratio (15.0 and 50.0 %,
respectively, under the USN treatment).

The UV-B stress significantly reduced Chl content
(Table 2). Also under the S, N, and SN treatments, the
wheat plants showed significant decreases in Chl @, Chl b,
and Car content compared with the C. Parallel changes in

of Beauchamp and Fridovich (1971). One unit of SOD
activity was defined as the amount of the enzyme that
inhibited 50 % of NBT photoreduction. Peroxidase (POD)
activity was measured by an increase in absorbance at
470 nm due to guaiacol oxidation (Nickel and
Cunningham 1969). One unit of POD activity was defined
as the amount of the enzyme which produced an
absorbance change of 0.1 per minute at 470 nm. Ascorbate
peroxidase activity determination followed the procedures
of Nakano and Asada (1981). Glutathione reductase
activity was assayed based on the description of Foyer and
Halliwell (1976) with minor modifications.

Statistical analysis: Each measurement was replicated at
least three times. Data are expressed as means + standard
deviations (SDs). Statistical comparisons were carried out
by the SPSS v. 19.0 software. Before the statistical
analyses, homogeneity of variances and normality of
distributions were tested for each variable. Tukey’s test
was used to detect possible differences among the
treatments at a = 0.05.

Chl a and Chl b led to non-significant changes in Chl a/b
ratio under all the treatments. However, there was a higher
content of Chl a, Chl b and Car in the plants grown under
the US, UN and USN than in the plants grown under the
U alone.

Compared with the C treatment, the S and N treatments
significantly decreased Py, g;, and E (Table 3) but the
values of g, and E in the SN treatment were higher than
those in the C treatment. The wheat plants subjected to the
UV-B stress exhibited significant decreases in Py, c;, g,
and E by 30.4, 60.8, 16.2, and 52.5 %, respectively, in
comparison with the control. When compared to the
U treatment, the US, UN, and USN treatments
significantly increased these parameters.

The U treatment significantly decreased F,/F,
compared with the C treatment. However, the F,/F, under
the US, UN and USN treatments significantly increased

Table 1. Growth parameters of dwarf polish wheat seedlings treated with UV-B, salicylic acid (SA), sodium nitropruside (SNP), and
their combination. Means + SDs (n = 3). Different letters indicate significant differences at P < 0.05. C - control, S - 0.5 mM SA,
N - 0.5 mM SNP, SN - SA + SNP; U - UV-B, US - UV-B + SA, UN - UV-B + SNP, USN - UV-B + SA + SNP, R/S - root/shoot ratio.

Treatments Plant height [cm] Root length [cm]

Roots [g(d.m.) plant']  Shoots [g(d.m.) plant™] R/S ratio

C 57.05+4.00 a 26.40 +3.23 ab 0.28+0.01a 1.73£0.0 3a 0.16+0.01b
S 52.12+1.20 ab 23.19£1.02b 0.19+0.02 ¢ 1.80 £0.09 a 0.11 £0.02 ef
N 55.38+£2.74 ab 29.18+3.00 a 0.22+0.01b 1.75+0.03 a 0.13+0.05d
SN 53.07 £2.03 ab 2526 £2.07 ab 0.28+0.02 a 1.54+£0.07b 0.18£0.00 a
U 49.06 £1.00 b 27.19 £3.04 ab 0.13+0.01e 1.32+0.05¢ 0.10+£0.02 f
us 54.18 £3.00 ab 2332+£250b 0.16£0.01 ¢ 1.39+0.04 ¢ 0.12+0.03 de
UN 5431 £2.03 ab 27.23£2.95 ab 0.15+0.01 de 1.40+0.07 ¢ 0.11+0.01e
USN 56.41+£7.05a 30.38 £3.66a 0.24£0.02b 1.61 £0.06 b 0.15£0.02¢
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Table 2. Photosynthetic pigments in leaves of dwarf polish wheat seedlings treated with UV-B, salicylic acid, sodium nitropruside, and
their combination. Means + SDs (n = 3). Different small letters indicate significant differences at P < 0.05. Chl - chlorophyll,

Car - carotenoids. For treatment abbreviations see Table 1.

Treatments Chl a [mg g (f.m.)] Chl b [mg g (f.m.)] Chl a/b Car [mg g (fm.)]
C 2.12+0.02a 0.60+£0.03a 353+0.20a 0.44+0.02 a

S 2.02+0.03b 0.53+£0.02b 3.84+0.09a 0.41+0.00b

N 2.06£0.03b 0.54+£0.02b 384+0.13a 0.41+£0.00b

SN 2.06£0.02b 0.55+£0.04b 375+031a 0.41+£0.00b

U 1.74+£0.04d 0.46+0.03¢ 380+0.15a 0.35+0.01d

UsS 1.90+£0.03 ¢ 0.53+£0.04b 357+022a 0.38+0.02¢

UN 1.90+£0.03 ¢ 0.51+£0.02b 375+0.16 a 0.37+0.02¢
USN 2.05+£0.03b 0.53+£0.01b 385+0.07a 0.42 + 0.00 ab

Table 3. Photosynthesis and chlorophyll (Chl) fluorescence parameters of dwarf polish wheat seedlings treated with UV-B, salicylic
acid, sodium nitropruside, and their combination. Means + SDs (n = 3). Different small letters indicate significant differences at
P < 0.05. Py - net photosynthtic rate, g, - stomatal conductance; c; - intercellular CO, concentration; E - transpiration rate;
F,/F,, - variable to maximum fluorescence ratio. For treatment abbreviations see Table 1.

Treatments Py [pmol m> s‘l] g [mol m? s'l] ¢; [umol mol’l] E [mmol m? s'l] F./F,

C 2641+044a 0.51+0.02¢ 299.15+6.68d 3.94+0.04b 0.75+0.01a
S 20.92+096b 0.44+0.10d 309.38 +4.88 ¢ 3.64+0.10¢c 0.71+0.01 ¢
N 20.15+0.33 be 0.43+0.02d 307.69 +£3.03 ¢ 3.44+0.08¢c 0.69+0.01d
SN 2090+092b 0.54+0.20b 321.91 £ 1.96 ab 412+0.11b 0.69+0.01d
6] 18.37+0.37d 0.20+0.12 f 250.56 +245¢ 1.87+0.13 ¢ 0.66+0.01¢
us 18.60 £0.18 d 0.36 +0.06 ¢ 304.58 £2.44 cd 3.02+0.16d 0.68+0.01d
UN 19.22 +0.28 cd 0.44+0.10d 316.31£2.09b 3.56+0.14¢c 0.68+0.01d
USN 2558 £0.40a 0.72+0.01a 32462+3.12a 511%+0.11a 0.73£0.01b

when compared to the U treatment (Table 3, Fig. 1).

No significant difference in proline content was
observed among the S, SN, and C treatments, whereas
the N treatment significantly increased proline content
compared with the controls (Fig. 2). Compared with the
control, proline content significantly increased under the
UV-B stress. When SA, SNP, and their combination were
applied, proline content decreased approximately by 24.6,
10.3, and 46.3 %, respectively, in the plants under the

C S N SN

UV-B stress. Additionally, MDA content under the UV-B
stress was higher than in the controls (Fig. 2). There was
no significant difference in MDA between the US and UN
treatments, but MDA significantly decreased in the USN
treatment. Hydrogen peroxide (Fig. 34) and O, (Fig. 3B)
were over-produced as indicated by the scattered brown
polymerization products and dark blue spots, respectively,
in leaves of the UV-B-treated plants. Compared with the
plants under the UV-B stress, both H,O, and O,” were

0L 60 €0 (0 90 SO vO €0 O L0 O

us UN USN

Fig. 1. Representative fluorescence images of maximum efficiency of photosystem II - variable to maximum fluorescence ratio F,/F,, in
leaves of dwarf polish wheat seedlings treated with UV-B, salicylic acid, sodium nitropruside, and their combination. For treatment

abbreviations see Table 1.
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considerably diminished in the US, UN, and especially  and 53.3 %, respectively. Application of SA, SNP, or their
USN treatments. The UV-B stress changed activities of  combination led to a further increase in activities of APX,
antioxidant enzymes (Fig. 4). Compared with the  POD, SOD and GR. Moreover, the combined treatment
C treatment, the UV-B stress significantly increased  induced higher increases in activities of SOD, APX, and
activities of APX, POD, SOD, and GR by 73.2, 66.9, 23.0, GR than SA or SNP alone under the UV-B stress.
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Fig. 2. Free proline and malondialdehyde (MDA) content in dwarf polish wheat seedlings treated with UV-B, salicylic acid, (SA),
sodium nitropruside (SNP), and their combination. C - control, S - 0.5 mM SA; N - 0.5 mM SNP, SN - 0.5 SA + SNP. Means + SDs
(n =3). Different small letters indicate significant differences at P < 0.05.

c S N SN U US UN USN

Fig. 3. Histochemical detection of H,0O, with 3,3-dimethoxybenzidine (4) and of O, with nitroblue tetrazolium chloride (B) in leaves
of polish wheat seedlings treated with UV-B, salicylic acid, sodium nitropruside, and their combination. For treatment abbreviations
see Table 1.
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Discussion

It is generally accepted that enhanced UV-B is detrimental
to plants by reducing growth and biomass production (De
la Rosa et al. 2003) and affecting root/shoot ratio (Yang
et al. 2005, Xu et al. 2010). Moreover, a change in
biomass accumulation is a reliable measure to assess plant
sensitivity to UV-B stress (Smith et al. 2000). In the
present study, a reduction in dry mass of both shoots and
roots was observed in dwarf polish wheat grown under the
UV-B stress (Table 1). A higher concentration of SA or
SNP has a negative effect on growth of roots of maize
seedlings (Gouvea et al. 1997) and chamomile plants
(Kovacik et al. 2009). In our study, we found that SA or
SNP significantly decreased root dry mass, however, the
treatments with SA + SNP increased dry mass of shoots
and plant height under the UV-B stress (Table 1). These
results are in agreement with growth stimulation by SA in
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mung bean seedlings (Singh ef a/. 2014) and alleviation of
UV-B stress by NO in wheat (Fu ez al. 2013). It is possible
that under the UV-B stress, the better performance of the
plants treated with SA, SNP, or SA + SNP was mainly
associated with higher activities of antioxidant enzymes
and direct ROS scavenging capacities.

Under the UV-B stress, significant decreases in Chl a,
Chl b, and Car content (Table 2) were observed in our
study. It has been well documented that ROS produced
under stress conditions cause pigment degradation (Anjum
et al. 2011). Application of SA scavenges ROS and then
inhibits Chl degradation under abiotic stress (Sheng et al.
2015). In addition to SA, NO is believed to be a signaling
molecule and it enhances antioxidant defense ability in
plants exposed to UV-B radiation (An et al. 2005). Correia
et al. (2005) reported that an enhanced UV-B reduces
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Fig. 4. Activities of ascorbate peroxidase (APX), peroxidase (POD), superoxide dismutase (SOD), and glutathione reductase (GR) in
leaves of gwarf polish wheat seedlings treated with UV-B, salicylic acid (SA), sodium nitropruside (SNP), and their combination.
C - control, S - 0.5 mM SA, N - 0.5 mM SNP, SN - SA + SNP. Means + SDs (n = 3). Different small letters indicate significant

differences at P < 0.05.

Py, g, and E; and increases c; of maize. In our study, the
UV-B treatment resulted in a significant decrease of all
photosynthetic parameters. The decreases in Py, g, ¢, E,
F,/Fn, and pigment content of the dwarf polish wheat

seedlings exposed to the UV-B stress may have been due
to damage to chloroplasts. Compared with the controls, the
S and N treatments decreased Py, g, E, and F,/F,, but
increased c; (Table 3). This implies that the reductions in
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photosynthesis were probably nonstomatal. Salicylic acid
reduces the capacity for CO, fixation independently of
diffusion limitations (Pancheva et al. 1996). Nitric oxide
has been found to decrease activity of enzymes that
regulate photosynthesis in wheat (Tu et al. 2002) and also
to reduce F,/F,, in potato leaves (Yang et al. 2004). When
SA or NO are applied to plants exposed to stress
conditions, Py, g, and E in Brassica juncea are
significantly ameliorated (Fariduddin et al. 2003). In our
experiments, the application of SA, SNP, or their
combination increased Py, g, ¢;, E, and F,/F,, of the wheat
plants under the UV-B stress (Table 3, Fig. 1). These
results indicate that SA, SNP, and especially their
combination might improve photosynthesis in plants
exposed to UV-B stress.

The dwarf polish wheat seedlings responded to the
UV-B stress by accumulation of proline (Fig. 2). Proline
accumulated in shoots of rice, mustard, and mung bean
seedlings exposed to UV-B irradiation could protect plant
cells against peroxidation (Saradhi et al. 1995). It is also
known that proline acts as compatible solute, plasma
membrane protector, and hydroxyl radical scavenger. The
observed decrease in proline content under the SA, SNP,
and SA + SNP treatments suggests a partial relief from the
UV-B stress. Malondialdehyde, as the final product of
lipid peroxidation, is widely used as indicator of oxidative
stress (Tayebimeigooni et al. 2012). The UV-B stress
significantly increased MDA content in our study (Fig. 2)
indicating oxidative damage. Content of MDA in the
presence of SA, SNP or SA + SNP under the UV-B stress
was much lower than under the UV-B stress alone
indicating reduction in lipid peroxidation. Therefore, SA,
SNP or SA + SNP contribute to amelioration of UV-B
stress. The results are in agreement with other studies
(Alexieva et al. 2001, Yao and Liu 2007).

The UV-B radiation increases ROS production in
plants (Santos et al. 2004). Previous studies have shown
that SA is direct scavenger that protects plants from
oxidative damage (Li ez al. 2014, Singh et al. 2014, Sheng
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et al. 2015). Additionally, NO protects plants from
oxidative damage by maintaining cellular redox
homeostasis and promoting transformation of O, to H,0,
and O, and also by enhancing activities of enzymes
scavenging H,0, (Zheng et al. 2009). NO is involved in
various UV-B signaling pathways leading to protective
mechanisms (Beligni and Lamattina 1999). In our study,
the excess UV-B radiation caused a dramatic increase of
H,0, and O,” accumulation in leaves of dwarf polish
wheat (Fig. 3). We also found that SA and SNP increased
accumulation of H,O, and O, compared with the control.
However, SA, SNP, and especially SA + SNP
significantly counteracted the increase in H,O, and O,"
accumulation induced by the UV-B (Fig. 3).

A number of enzymatic antioxidants are produced in
plants in response to abiotic stresses. They save them from
oxidative damage caused by ROS (Ashraf 2009). The
UV-B radiation promotes ROS formation significantly
and exerts oxidative stress to plants (Chen et al. 2003).
Activities of SOD, APX, POD, and GR show that they
significantly increased under the UV-B stress (Fig. 4).
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