

Cloning cDNA and functional characterization of UDP-glucose pyrophosphorylase in *Dendrobium officinale*

R.-L. WAN^{1,2,3}, J. SUN^{1,3}, T. HE¹, Y.-D. HU¹, Y. ZHAO², Y. WU¹, and Z. CHUN^{1*}

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P.R. China¹

College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China²

Graduate University of the Chinese Academy of Sciences, Beijing 100039, P.R. China³

Abstract

Dendrobium officinale is a traditional Chinese medicinal herb that produces promising bioactive polysaccharides. However, the biosynthetic pathway of polysaccharides in this herb remains to be elucidated. The uridine diphosphate glucose pyrophosphorylase (UGPase) is a key enzyme for the production of uridine diphosphate glucose, which is a major glycosyl donor for synthesis of polysaccharides. This study identified a novel *UGPase* gene from *D. officinale* termed as *DoUGP*. Bioinformatics and subcellular-localization of the *DoUGP* protein indicate that it belongs to the UGPase-A type and was localized in cytoplasm. The *DoUGP* was revealed to be constitutively expressed in all organs, and the highest mRNA content was detected in stems, the organs with the highest polysaccharide content. Furthermore, sucrose feeding experiments in *D. officinale* demonstrate that sucrose addition could increase *DoUGP* transcription significantly and enhance polysaccharide accumulation accordingly. Together, we conclude that *DoUGP* probably plays an important role in polysaccharide biosynthesis of *D. officinale* and is a potential target for quality breeding of this orchid.

Additional key words: gene expression, polysaccharide synthesis, subcellular localization.

Introduction

Dendrobium officinale is an endangered traditional Chinese medicinal herb (Chen *et al.* 2011, Xia *et al.* 2012). Previous studies (Xing *et al.* 2013) have primarily focused on the extraction of polysaccharides, structure determination, and analysis of their bioactivity, whereas biosynthetic pathways remain to be elucidated. *D. officinale* polysaccharides are water-soluble and are composed of more than 60 % of glucose and a small proportion of other monosaccharides such as galactose, mannose, arabinose, *etc.* (Huang *et al.* 1997, Yang *et al.* 2004). Thus, presumably consistent with common sugar metabolic pathways in this herb, the core biosynthesis pathway of polysaccharides occurs in cytosol with uridine

diphosphate glucose (UDPG), being an important direct or indirect donor of the glycosyl moiety (Delmer and Amor 1995). Uridine diphosphate glucose pyrophosphorylase (UGPase) catalyze reversible production of UDPG and pyrophosphate from glucose-1-phosphate (Glc-1-P) and uridine triphosphate (Kleczkowski 1994). Extensive studies have revealed that UGPase is a key enzyme in synthesis of structural or storage polysaccharides such as cellulose and starch (Johansson 2003, Kleczkowski *et al.* 2004). Furthermore, several studies have revealed that it is also involved in synthesis of bioactive polysaccharides in *Zizyphus vulgaris* (Tomoda *et al.* 1973), *Astragalus membranaceus* (Wu

Submitted 4 December 2015, last revision 28 March 2016, accepted 31 March 2016.

Abbreviations: Glc-1-P - glucose-1-phosphate; RACE - rapid amplification of DNA ends; qPCR - quantitative PCR; UAGPase - UDP-N-acetyl-glucosamine pyrophosphorylase; UDPG - uridine diphosphate glucose; UGPase - uridine diphosphate glucose pyrophosphorylase; USPase - UDP-sugar pyrophosphorylase.

Acknowledgments: This work was supported by the Sichuan Platform Construction Project for Science and Technology Condition, the Sichuan “13th Five-year Plan” Project of Chinese Herbal Breeding Research (2016NZY0036), the Applied Basic Research Project of Sichuan (2015JY0265), and the Science and Technology Pillar Program of Sichuan (2014FZ0086, 2016JZ0015). We express heartfelt thanks to Xin-Rong Ma, Song-Hu Wang, and Xiang Tao (all from the Chengdu Institute of Biology, Chinese Academy of Sciences) for their serious revision of the manuscript. The first two authors contributed equally to this work.

* Corresponding author; fax: (86+) 28 82890967, e-mail: chunze@cib.ac.cn

et al. 2002), etc. Activity of UGPase is positively correlated with polysaccharide content in hairy roots of *Astragalus membranaceus* (Wu *et al.* 2000). The UGPases are divided into two distinct subclasses, UGPase-A and UGPase-B, both of which show the same catalytic function but have low homology (Kleczkowski *et al.* 2010). The UGPase-A type, mainly located in cytosol, Golgi apparatus, and cell wall, is involved in sucrose synthesis and degradation and convert Glc-1-P to UDPG for synthesis of polysaccharides (Kleczkowski *et al.* 2010). UGPase-B type, with a distinct chloroplastic location, mainly participates in biosynthesis of the precursor of the polar head of sulfolipids by producing UDPG (Okazaki *et al.* 2009, Kleczkowski *et al.* 2010).

Despite many investigations focusing on its role in

sugar metabolism in various plant species, studies on the UGPase gene (*UGP*) in *D. officinale* have been limited, and its role in *D. officinale* polysaccharide synthesis remains unclear. Accordingly, in order to understand the *D. officinale* polysaccharide biosynthesis better, the first step was to check UGPase-A which is involved in synthesis of the main polysaccharide precursor UDPG. Our specific approaches included cloning a novel *UGP* from *D. officinale* (designated as *DoUGP*) and subsequently characterizing its structure, cellular localization, phylogenetic position, and expression patterns in different organs, and finally determining the correlation between its expression and polysaccharide content concomitant to sucrose feeding.

Materials and methods

Plants and treatments: *Dendrobium officinale* Kimura & Migo plantlets were derived from plants grown in a greenhouse in Sichuan Province, China and whose provenance was a wild individual from Yunnan Province, China. The seeds were cultivated in a growth chamber (a 12-h photoperiod, an irradiance of 40 $\mu\text{mol m}^{-2} \text{s}^{-1}$, and a temperature of 25 °C) *in vitro* on half strength Murashige and Skoog (1962) medium supplemented with 2.0 mg dm^{-3} naphthaleneacetic acid, 0.5 mg dm^{-3} benzyladenine, 6 g dm^{-3} agar, 2 g dm^{-3} activated carbon, and 30 g dm^{-3} sucrose, with pH adjusted to 5.8. After two months, protocorms emerged from the seeds and later formed plantlets. After seven months, the plantlets were harvested for cloning and expression analysis. For sucrose feeding experiments, uniform plantlets of *D. officinale* at the age of 10 months were subcultured on a medium described above, supplemented with varying concentrations of sucrose (0, 30, and 50 g dm^{-3}). The plantlets were cultured in 10 bottles for each treatment, with 6 plantlets per bottle. The stems of each treatment were sampled after bimestrial cultivation for determination of water-soluble polysaccharide content and *DoUGP* expression. For subcellular localization experiments, plants of *Nicotiana benthamiana* Domin and *Arabidopsis thaliana* L. (ecotype Columbia-0, Col-0) were grown in a culture room for four weeks at approximately 25 °C, a 14-h photoperiod, and an irradiance of 80 $\mu\text{mol m}^{-2} \text{s}^{-1}$.

Amplification, isolation, and cDNA cloning *DoUGP*: The total RNA was extracted from leaves of *D. officinale* using a plant RNA isolation mini kit (*Omega*, Beijing, China) according to the manufacturer's recommendation. The RNA was treated with *RNase-free DNase I* (*TaKaRa*, Tokyo, Japan) to remove genomic DNA contamination. First-strand cDNA synthesis was achieved by an *iScript*™ cDNA synthesis kit (*Bio-Rad*, Hercules, USA) and the resulting cDNA was stored at

-20 °C. Degenerate primers (Table 1 Suppl.) were designed based on the multiple sequence alignment of the known *UGP* gene sequences of *Oryza sativa* (GenBank accession No. NM-001070414), *Bambusa oldhamii* (acc. No. AY178448.1), *Saccharum officinarum* (acc. No. NM-001070414), *Dendrocalamus sinicus* (acc. No. EU195533), *Brachypodium distachyon* (acc. No. XM-003578553), *Musa acuminate* (acc. No. AF203909.1), *Solanum tuberosum* (acc. No. AY082622.1), *Gossypium hirsutum* (acc. No. GU067484.1), and *Eucalyptus grandis* (acc. No. EU737107). The primers were synthesized by *Invitrogen Biotechnology* (Shanghai, China). The amplified cDNA fragments were cloned into the pMD19-T vector (*TaKaRa*) and transformed into the *Escherichia coli* strain DH5α. Recombinant colonies were selected for ampicillin resistance, identified by blue/white screening and verified by PCR. Positive clones were confirmed by sequencing (*Sangon Biotech*, Shanghai, China).

A rapid amplification of cDNA ends (RACE) technique was employed to isolate the full-length cDNA of *DoUGP*. Gene-specific primers (Table 1 Suppl.) were designed by the *Primer Premier 5.0* software (*Premier Biosoft International*, Palo Alto, CA, USA) based on sequence information obtained from a previously cloned fragment. The total RNA of leaves was used as template to amplify the *DoUGP* cDNA. Both 3' RACE and 5' RACE were carried out by a *SMARTer*™ RACE cDNA amplification kit (*Clontech*, Beijing, China). The full length cDNA of *DoUGP* was obtained by splicing and verified by cloning and sequencing.

Sequence and phylogenetic analyses: The full-length cDNA of *DoUGP* was translated *in-silico* by the *ORF Finder* tool (<http://www.ncbi.nlm.nih.gov/gorf/gorf.html>) for open reading frame analysis. After homology analyses by *BLAST* (<http://www.ncbi.nlm.nih.gov/blast>), *RefSeq* protein sequences from some well-conserved and most

identified isoforms from different typical species with completely sequenced genomes on GenBank were chosen for phylogenetic analysis. These species consist of human and mono-/di-cotyledons including model plants as *Arabidopsis thaliana* and *Populus euphratica*, food crops as *Oryza sativa*, *Glycine max*, and *Solanum tuberosum*, fruit crops as *Vitis vinifera* and *Cucumis melo*, and an industrial crop *Gossypium raimondii*, most of which were analyzed for AtUGP3 classification by Okazaki *et al.* (2009). After aligning by the *ClustalW* program, these sequences were used to construct a phylogenetic tree in the *MEGA 6.05* program using the neighbor-joining method followed by phylogeny test options of 1 000 bootstrap replicates.

Subcellular localization: A C-terminal green fluorescent protein (GFP) fusion of *DoUGP* was assembled into the pCamv35SGFP vector at *Xba*I/*Sma*I sites using T4 DNA ligase (*TaKaRa*) with primers Pxbalf and PSmalr (Table 1 Suppl.). The resulting vector pCamv35S:DoUGP:GFP was confirmed by sequencing and transformed into the *Agrobacterium tumefaciens* strain EHA105, which was subsequently used for infiltrating leaves of *N. benthamiana* as per the methods reported by Sparks *et al.* (2006). The plasmid vector pCamv35S:DoUGP:GFP was introduced into protoplasts of *Arabidopsis* Col-0 according to the methods described earlier (Yoo *et al.* 2007). The subcellular localizations of the fused protein and chlorophylls were visualized using laser confocal fluorescence microscopy (*Leica TCS SP8*, Bensheim, Germany) at excitation wavelengths of 488 and 552 nm, respectively.

Expression analysis of *DoUGP*: The real time or reverse transcription (RT)-qPCR was performed on an *iCycler IQ* detection system (*Bio-Rad*) with an *IQ SYBR Green Supermix* kit (*Bio-Rad*). Samples were collected from roots, stems, and leaves, and each sample was analyzed in triplicate. Extraction of RNA and cDNA synthesis were performed as above mentioned. Primers used are listed in Table 1 Suppl. Each PCR reaction was performed in a final volume of 20 mm³ containing 10 mm³ of *SYBR*

Supermix (2×), 2 mm³ of cDNA, 6 mm³ of sterilized double-distilled H₂O, and 1 mm³ of each of the primers. The amplification conditions were: an initial denaturation at 95 °C for 3 min followed by 39 cycles of denaturation at 95 °C for 10 s, annealing at 60 °C for 15 s, and elongation at 72 °C for 15 s. The *D. officinale* *Actin* gene (GenBank accession number: KC831582.1) was chosen as reference gene based on a previous study (Jin *et al.* 2013).

Determination of polysaccharide content: Roots, stems, and leaves of the *D. officinale* seedlings were thoroughly washed with distilled water, dried at 60 °C, and powdered with a pulverizer. The powder was extracted with petroleum ether at 70 °C for 2 h to remove lipids. The extract was filtered, the residues were air-dried, refluxed again with 80 % (v/v) ethanol at 90 °C for 2 h, extracted with double-distilled water at 100 °C for 2 h three times, and the resulting solution was finally filtered. The combined filtrate was precipitated by adding four volumes of 95 % (v/v) ethanol and incubating at 4 °C for 24 h. After filtration and centrifugation, the precipitate was dissolved in double-distilled water and deproteinized five times with the *Sevag* reagent. It was subsequently dialyzed against deionized water for 72 h and lyophilized to finally yield the desired crude water-soluble polysaccharides (Luo *et al.* 2011). Polysaccharide content was determined by the phenol-sulphuric acid method (Dubois *et al.* 1956) according to the procedure outlined by Xiao *et al.* (2004).

Statistical analysis: Data were analyzed using the *Microsoft Excel* and *SPSS 16.0* software. The relative expression level of each transcript was calculated using the 2^{-ΔΔCt} method (Pfaffl 2001). All results are reported as means of three independent experiments, each of which was done in triplicate. One-way *ANOVA* was used for significant difference analysis followed by the least significant difference (LSD) post hoc test ($\alpha = 0.05$ or 0.01). Pearson correlation coefficients were used to define relationships between *DoUGP* expression and polysaccharide content.

Results

Dendrobium officinale UGP deposited as KF711982 in the GenBank database contained a 1 419 bp open reading frame encoding 472 amino acid residues. All UGPases, UDP-sugar pyrophosphorylases (USPases, EC2.7.7.64), and UDP-N-acetyl-glucosamine pyrophosphorylases (UAGPases, EC2.7.7.23) belong to the nucleotidyl transferase superfamily (EC2.7.7). These enzymes contain a pyrophosphorylase consensus motif and a nucleotide binding motif involved in activating hexose, thereby resulting in formation of a nucleotide hexose, and all of the three can produce UDPG (Kleczkowski and

Decker 2015). Based on the amino acid sequences of the three pyrophosphorylases obtained from different model species, a phylogenetic tree was constructed for classification and functional prediction of DoUGP (Fig. 1). The phylogenetic analyses reveal that USPases, UGPases (either A or B type), and UAGPases were categorized into distinct groups. The DoUGP protein belongs to the UGPase-A type, which is distinct from the previously characterized subfamilies constituting USPases, UAGPases, as well as another type of UGPase, UGPase-B. Furthermore, DoUGP had the closest

evolutionary relationship with a monocotyledon of the same kind, *O. sativa* UGP (confidence coefficient = 94 %).

To confirm cytoplasmic targeting the DoUGP protein, DoUGP-GFP transient expression was performed in *N. benthamiana* leaves and *A. thaliana* (Col-0) protoplasts, respectively. In cells of both the plants, fluorescence

derived from GFP was targeted to cytoplasm and was not associated with chloroplasts as indicated by red autofluorescence from their chlorophyll molecules (Fig. 2). Our results demonstrate that DoUGP was localized in cytoplasm as expected. Its cytosolic localization further confirmed that it was indeed a UGPase-A protein.

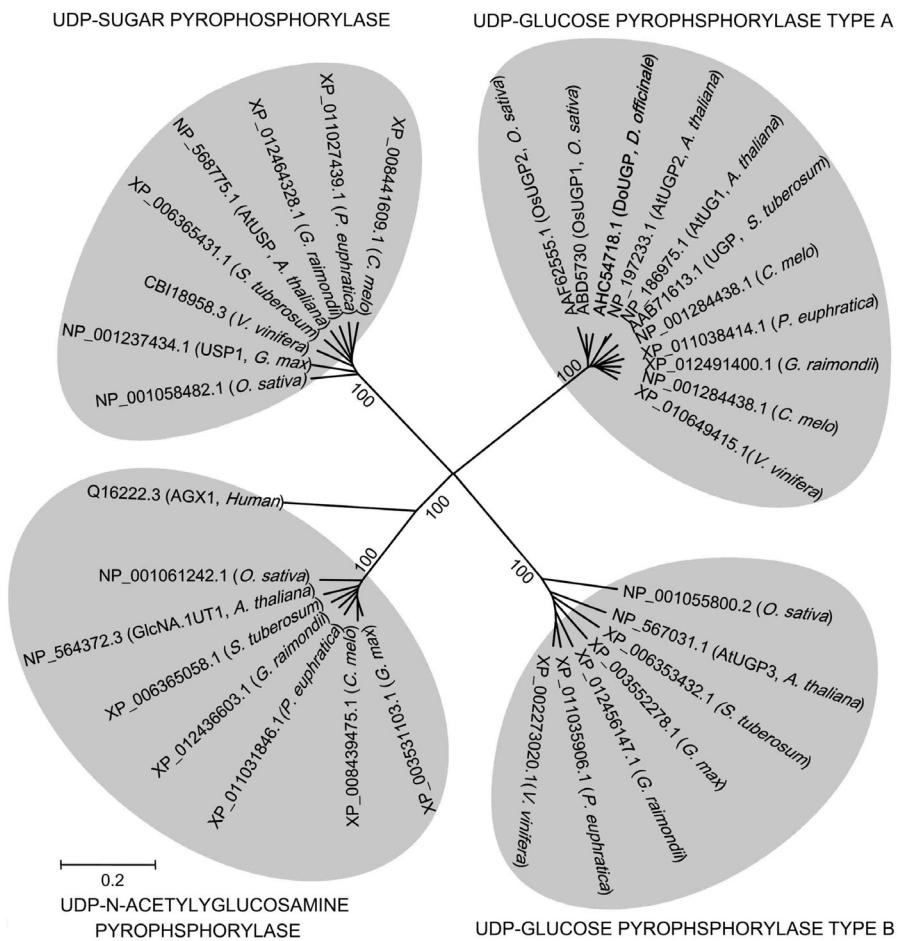


Fig. 1. An unrooted phylogenetic tree of UDP-hexose pyrophosphorylases. The phylogenetic tree was constructed by the neighbor-joining method using MEGA 6.05. The numbers on the branches represent bootstrap support for 1 000 replicates. The sequence number of every protein from human and plant species is shown, followed by the name of the reported protein, and the name of respective species in parentheses.

The expression patterns of *DoUGP* in roots, stems, and leaves from *D. officinale* were examined and polysaccharide content in the corresponding organs was measured. The results reveal that *DoUGP* was differentially expressed in the three organs, with the highest expression in stems, followed by leaves, and the lowest in roots (Fig. 3A). Polysaccharide content in stems was more than 3-fold higher than in roots and leaves, and roots and leaves had similar content (Fig. 3B). Therefore, the results suggest that the organ with a high expression of *DoUGP* also showed the highest polysaccharide content.

Previous studies have found that sucrose could be used as a specific elicitor for induction of upregulated

expression of *UGP* via a hexokinase-independent pathway (Ciereszko *et al.* 2001) and promote synthesis of polysaccharides (Spychala *et al.* 1994, Yang and Sun 2014). To further clarify functional correlation between *DoUGP* and polysaccharide biosyntheses, the tissue-cultured plantlets of *D. officinale* were fed with sucrose at different concentrations and the expression of *DoUGP* and polysaccharide content in stems were measured. The results indicate that *DoUGP* was strongly upregulated by increasing sucrose concentrations and reached the highest expression at 50 g dm⁻³ sucrose, which was about two times higher than without sucrose feeding (Fig. 3C). Polysaccharide content at 30 g dm⁻³ sucrose significantly increased ($P < 0.05$) and polysaccharide content at

50 g dm⁻³ sucrose remarkably increased ($P < 0.01$), as compared with that at 0 g dm⁻³ sucrose (Fig. 3D). The Pearson correlation analysis showed significant positive

correlations between the expression of *DoUGP* and polysaccharide content ($R^2 = 0.904$).

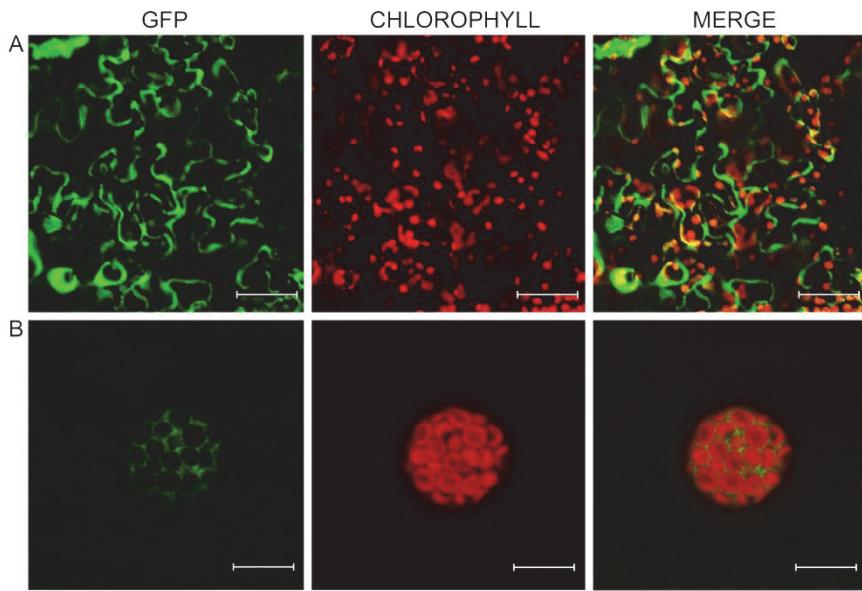


Fig. 2 The subcellular localization of DoUGP-GFP fusion protein transiently expressed in *Nicotiana benthamiana* leaves (A) and *Arabidopsis thaliana* Col-0 protoplasts (B). The first column shows a green fluorescence image derived from green fluorescent protein, the second shows red autofluorescence from chlorophyll, and the third shows an overlay of the two channels. The bars = 50 μ m (A) and 15 μ m (B).

Discussion

In order to elucidate the core biosynthesis pathway of *D. officinale* polysaccharides, we isolated a *UGP* in *D. officinale* by RACE because of its important function in saccharide metabolism. Functional motif analyses (data not shown) indicate that DoUGP is similar to UGPase from other species with several conservative catalysis/substrate binding sites (Katsube *et al.* 1991, Martz *et al.* 2002, Wang *et al.* 2011). A 3D structure model of DoUGP is a typical bowl-shaped monomer, contains three large domains: an N-terminal domain, a centrally located catalytic domain including a nucleotide binding loop, and a C-terminal domain that includes an insertion loop (data not shown). It shows that the structure of DoUGP has a high degree of conservation (Geisler *et al.* 2004, McCoy *et al.* 2007) as previously described in other species (Chen *et al.* 2007, Meng *et al.* 2008). Additionally, phylogenetic analyses also indicate that DoUGP serves as a typical UGPase-A type, contrasting to other pyrophosphorylases, which is consistent with conclusions from previous studies (Geisler *et al.* 2004, Litterer *et al.* 2006a,b, Okazaki *et al.* 2009, Kleczkowski *et al.* 2010, 2011). Furthermore, the cytosolic location of DoUGP is consistent with its functional annotation. Thus, our results demonstrate that DoUGP belongs to the UGPase-A type, which prefers to react with Glc-1-P to

produce UDPG providing an activated glycosyl donor for polysaccharide biosynthesis.

It is widely acknowledged that *UGP* is highly expressed both in source organs and in sink organs, resulting in a high enzymatic activity, protein content, and mRNA abundance in several plant species, *e.g.*, barley (Eimert *et al.* 1996), rice endosperm (Abe *et al.* 2002, Chen *et al.* 2007), *Arabidopsis* (Ciereszko *et al.* 2001), and aspen (Meng *et al.* 2007). Stems, as an important sink organ of *D. officinale*, have the highest content of polysaccharides and are the preferred organs of medicinal use. Our results show that *DoUGP* expression was highest in stems and positively correlated with the highest polysaccharide content. A similar result has also been reported in *Astragalus membranaceus* (Wu *et al.* 2000). Expression of genes varies among species and organs within a species, being usually consistent with its function (Pua *et al.* 2000). Therefore, *DoUGP* may play an important role in biosynthesis of *D. officinale* polysaccharides.

It has been characterized that the UGPase reaction is channeled towards formation of Glc-1-P or UGPG, involved either in synthesis or in degradation of sucrose, respectively (Kleczkowski *et al.* 2004). Catalytic activity of UGPase appears to be triggered by binding of UTP or

UDPG prior to binding of Glc-1-P or pyrophosphate (Tsuboi *et al.* 1969). Therefore, with a sufficient sucrose supply, UDPG is likely to be produced from sucrose by sucrose synthase, which subsequently forms Glc-1-P by UGPase, and then, Glc-1-P is finally utilized in synthesis of polysaccharides by glycosyltransferases (Kleczkowski and Decker 2015). Previous studies revealed that polysaccharide production both from protocorms of *D. officinale* and from protocorm-like bodies of *D. huoshanense* increases in suspension cultures by feeding sucrose (Zha *et al.* 2007, He *et al.* 2007b).

Likewise, in our study, when fed with sucrose, *DoUGP* transcription in stems of *D. officinale* was upregulated and positively correlated with *D. officinale* polysaccharide content. Yang *et al.* (2012) found that sucrose synthase and invertases are the most important enzymes in biosynthesis of polysaccharides in *D. officinale*, and also that degradation of sucrose to monosaccharides is a starting point in this pathway. Based on the above, *DoUGP*, at the center position in the sucrose metabolic pathway, is probably involved in polysaccharide biosynthesis of *D. officinale*.

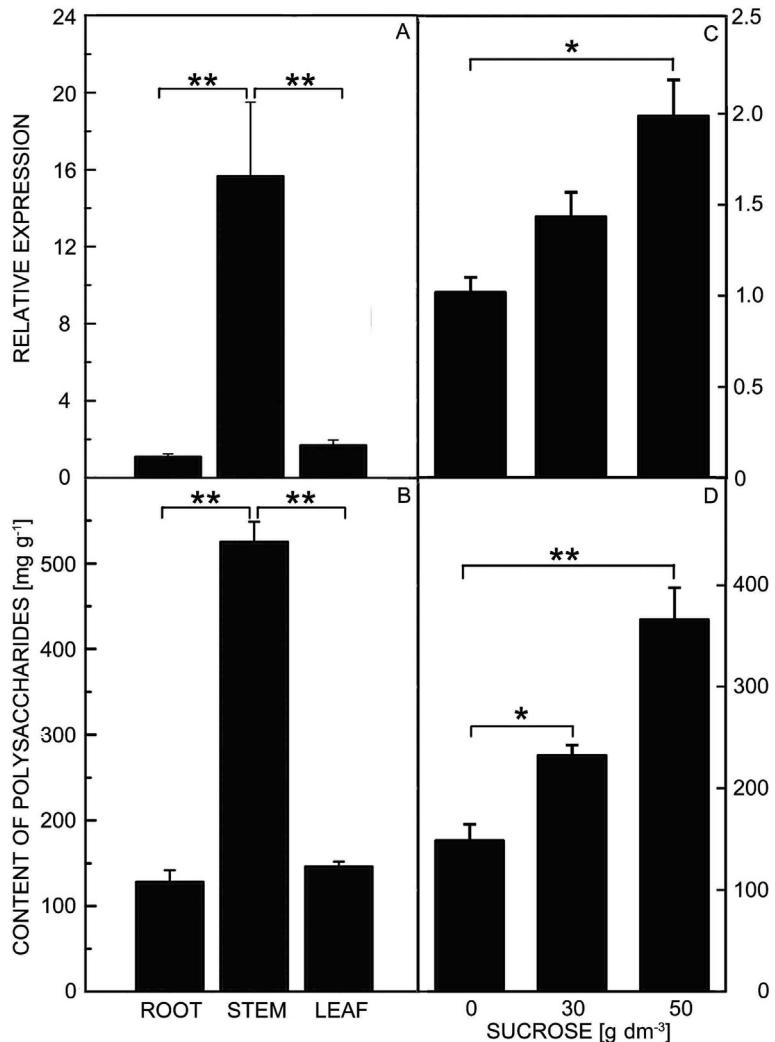


Fig. 3. The relative expression of *DoUGP* and the content of *D. officinale* polysaccharides in different organs (A, B) or in stems under sucrose feeding at different concentrations (C, D). The expression of *DoUGP* was normalized to that of *Actin*. The expression of *DoUGP* in roots was set to 1 and also in the control without sucrose treatment. Means \pm SDs, $n = 9$. *, ** significant differences at $P < 0.05$ and $P < 0.01$, respectively.

Additionally, 30 g dm⁻³ sucrose is usually used for tissue culture plantlet production. However, in our studies, compared with the 30 g dm⁻³ sucrose treatment, the 50 g dm⁻³ sucrose treatment not only promoted accumulation of *D. officinale* polysaccharides, but also

enhanced stem diameter enlargement with none negative growth effects (data not shown). Therefore, we suggest that sucrose content needs to be appropriately increased for high quality *in vitro* seedlings of *D. officinale*.

In conclusion, a novel *DoUGP* in *D. officinale* was

cloned, located in cytoplasm, and corresponding UGP showed the functional characteristic of the UGP-A type. It predicts to be of a vital importance in biosynthesis of polysaccharides. Polysaccharide composition represents an important parameter of *D. officinale* quality. Our work

may extend our knowledge towards understanding the poorly-studied polysaccharide biosynthesis process in *D. officinale* and facilitate breeding of the *Dendrobium* for improved economic properties.

References

- Abe, T., Niiyama, H., and Sasahara, T.: Cloning of cDNA for UDP-glucose pyrophosphorylase and the expression of mRNA in rice endosperm. - *Theor. appl. Genet.* **105**: 216-221, 2002.
- Chen, R., Zhao, X., Shao, Z., Zhu, L., He, G.: Multiple isoforms of UDP-glucose pyrophosphorylase in rice. - *Physiol. Plant.* **129**: 725-736, 2007.
- Chen, Y.S., Liu, W.H.: [Optimal extraction procedure of polysaccharides from *Dendrobium candidum* and effects of polysaccharides on overexpression of NF- κ B agent in vascular endothelial cells induced by high glucose.] - *J. Shanxi Coll. Tradit. Chin. Med.* **12**: 28-31, 2011. [In Chin.]
- Ciereszko, I., Johansson, H., Kleczkowski, L.: Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in *Arabidopsis*. - *Biochem. J.* **354**: 67-72, 2001.
- Delmer, D.P., Amor, Y.: Cellulose biosynthesis. - *Plant Cell* **7**: 987-1000, 1995.
- Dubois, M., Gilles, K.A., Hamilton J.K., Rebers P.A., Smith F.: Colorimetric method for determination of sugars and related substances. - *Anal. Chem.* **28**: 350-356, 1956.
- Eimert, K., Villand, P., Kilian, A., Kleczkowski, L.A.: Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (*Hordeum vulgare*) tissues. - *Gene* **170**: 227-232, 1996.
- Geisler, M., Wilczynska, M., Karpinski, S., Kleczkowski, L.A.: Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses. - *Plant mol. Biol.* **56**: 783-794, 2004.
- He, T.G., Yang, L.T., Li, Y.R., Wang, C.Q., Su, J.: [Effect of sucrose on growth of protocorms of *Dendrobium candidum* and accumulation of polysaccharide.] - *J. Anhui Agr. Sci.* **35**: 3817-3819, 2007b. [In Chin.]
- Huang, M., Cai, T., Liu, Q.: [Effects of polysaccharides from *Dendrobium candidum* on white blood cells and lymph cell moving inhibition factor of mice.] - *Nat. Prod. Res. Dev.* **8**: 39-41, 1996. [In Chin.]
- Jin, Q., Yao, Y., Cai, Y., Lin, Y.: Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from *Dendrobium*. - *PLoS ONE* **8**: e62352, 2013.
- Johansson, H.: Gene Regulation of UDP-glucose Synthesis and Metabolism in Plants. - Thesis. Umeå University, Umeå, 2003.
- Katsube, T., Kazuta, Y., Tanizawa, K., Fukui, T.: Expression in *Escherichia coli* of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site. - *Biochemistry* **30**: 8546-8551, 1991.
- Kleczkowski, L.A.: Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. - *Phytochemistry* **37**: 1507-1515, 1994.
- Kleczkowski, L.A., Decker, D.: Sugar activation for production of nucleotide sugars as substrates for glycosyltransferases in plants. - *J. appl. Glycosci.* **62**: 25-36, 2015.
- Kleczkowski, L.A., Geisler, M., Ciereszko, I., Johansson, H.: UDP-glucose pyrophosphorylase. An old protein with new tricks. - *Plant Physiol.* **134**: 912-918, 2004.
- Kleczkowski, L.A., Geisler, M., Fitzek, E., Wilczynska, M.: A common structural blueprint for plant UDP-sugar-producing pyrophosphorylases. - *Biochem. J.* **439**: 375-379, 2011.
- Kleczkowski, L.A., Kunz, S., Wilczynska, M.: Mechanisms of UDP-glucose synthesis in plants. - *Crit. Rev. Plant Sci.* **29**: 191-203, 2010.
- Litterer, L.A., Plaisance, K.L., Schnurr, J.A., Storey, K.K., Jung, H.J.G., Gronwald, J.W., Somers, D.A.: Biosynthesis of UDP-glucuronic acid in developing soybean embryos: possible role of UDP-sugar pyrophosphorylase. - *Physiol. Plant.* **128**: 200-211, 2006a.
- Litterer, L.A., Schnurr, J.A., Plaisance, K.L., Storey, K.K., Gronwald, J.W., Somers, D.A.: Characterization and expression of *Arabidopsis* UDP-sugar pyrophosphorylase. - *Plant Physiol. Biochem.* **44**: 171-180, 2006b.
- Luo, A.X., Ge, Z., Fan, Y.J., Luo, A.S., Chun, Z., He, X.J.: *In vitro* and *in vivo* antioxidant activity of a water-soluble polysaccharide from *Dendrobium denneanum*. - *Molecules* **16**: 1579-1592, 2011.
- Martz, F., Wilczynska, M., Kleczkowski, L.: Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylase. - *Biochem. J.* **367**: 295-300, 2002.
- McCoy, J.G., Bitto, E., Bingman, C.A., Wesenberg, G.E., Bannen, R.M., Kondrashov, D.A., Phillips, G.N.: Structure and dynamics of UDP-glucose pyrophosphorylase from *Arabidopsis thaliana* with bound UDP-glucose and UTP. - *J. mol. Biol.* **366**: 830-841, 2007.
- Meng, M., Geisler, M., Johansson, H., Mellerowicz, E.J., Karpinski, S., Kleczkowski, L.A.: Differential tissue/organ-dependent expression of two sucrose-and cold-responsive genes for UDP-glucose pyrophosphorylase in *Populus*. - *Gene* **389**: 186-195, 2007.
- Meng, M., Wilczynska, M., Kleczkowski L.A.: Molecular and kinetic characterization of two UDP-glucose pyrophosphorylases, products of distinct genes, from *Arabidopsis*. - *Biochim. biophys. Acta* **1784**: 967-972, 2008.
- Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - *Physiol. Plant.* **15**: 473-497, 1962.
- Okazaki, Y., Shimojima, M., Sawada, Y., Toyooka, K., Narisawa, T., Mochida, K., Tanaka, H., Matsuda, F., Hirai, A., Hirai, M.Y.: A chloroplastic UDP-glucose pyrophosphorylase from *Arabidopsis* is the committed enzyme for the first step of sulfolipid biosynthesis. - *Plant Cell* **21**: 892-909, 2009.
- Pfaffl, M.W.: A new mathematical model for relative

- quantification in real-time RT-PCR. - *Nucl. Acids Res.* **29**: e45-e45, 2001.
- Pua, E.C., Lim, S.S.-W., Liu, P., Liu, J.Z.: Expression of a UDPglucose pyrophosphorylase cDNA during fruit ripening of banana (*Musa acuminata*). - *Funct. Plant Biol.* **27**: 1151-1159, 2000.
- Sparkes, I.A., Runions, J., Kearns, A., Hawes, C.: Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. - *Nat. Protoc.* **4**: 2019-2025, 2006.
- Spychalla, J.P., Scheffler, B.E., Sowokinos, J.R., Bevan, M.W.: Cloning, antisense RNA inhibition, and the coordinated expression of UDP-glucose pyrophosphorylase with starch biosynthetic genes in potato-tubers. - *J. Plant Physiol.* **144**: 444-453, 1994.
- Tomoda, M., Takahashi, M., Nakatsuka, S.: Water-soluble carbohydrates of Zizyphi Fructus(2): isolation of two polysaccharides and structure of an arabinan. - *Chem. Pharm. Bull.* **21**: 707-711, 1973.
- Tsuboi, K.K., Fukunaga, K., Petricciani, J.C.: Purification and specific kinetic properties of erythrocyte uridine diphosphate glucose pyrophosphorylase. - *J. biol. Chem.* **244**: 1008-1015, 1969.
- Xia, L., Liu, X., Guo, H., Zhang, H., Zhu, J., Ren, F.: Partial characterization and immunomodulatory activity of polysaccharides from the stem of *Dendrobium officinale* (Tiepishihu) *in vitro*. - *J. Funct. Foods* **4**: 294-301, 2012.
- Xiao, J.H., Chen, D.X., Xiao, Y., Liu, J.W., Liu, Z.L., Wan, W.H., Fang, N., Tan, B.B., Liang, Z.Q., Liu, A.Y.: Optimization of submerged culture conditions for mycelial polysaccharide production in *Cordyceps pruinosa*. - *Process Biochem.* **39**: 2241-2247, 2004.
- Xing, X.H., Cui, S.W., Nie, S.P., Phillips, G.O., Douglas Goff, H., Wang, Q.: A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from *Dendrobium* plants. - *Bioact. Carbohydr. Diet. Fibre* **1**: 131-147, 2013.
- Yang, H., Wang, S.C., Wang, Z.T., Hu, Z.B.: Structural analysis of polysaccharides from *Dendrobium candidum*. - *Chin. Pharm. J.* **40**: 254-255, 2004.
- Yang, J., Meng, H.L., Yang, S.C., Zhang, W., Zha, Y.H., Wen, G.S.: [Correlation between soluble polysaccharide and sucrose metabolic enzymes in *Dendrobium officinale*.] - *J. West Chin. Forest. Sci.* **41**: 62-67, 2012. [In Chin.]
- Yang, J., Sun, H.: [Effect of different elicitors on accumulation of astragalus polysaccharides in the suspension culture cell of *Astragalus membranaceus*.] - *J. Anhui Agr. Sci.* **42**: 8954-8956, 8959, 2014. [In Chin.]
- Yoo, S.D., Cho, Y.H., Sheen, J.: *Arabidopsis* mesophyll protoplasts: a versatile cell system for transient gene expression analysis. - *Nat. Protoc.* **2**: 1565-1572, 2007.
- Wang, Q., Zhang, X., Li, F., Hou, Y., Liu, X., Zhang, X.: Identification of a UDP-glucose pyrophosphorylase from cotton (*Gossypium hirsutum L.*) involved in cellulose biosynthesis in *Arabidopsis thaliana*. - *Plant Cell Rep.* **30**: 1303-1312, 2011.
- Wu, X., Liu, D., Hu, Z.: [Study on Relationship between uridine diphosphate glucose pyrophosphorylase activity and polysaccharide content in hairy root of *Astragalus membranaceus*.] - *Acta Univ. Tradit. Med. Sin. Pharm. Shanghai* **14**: 53-55, 2000. [In Chin.]
- Wu, X.J., Du, M., Weng, Y.Q., Liu, D., Hu, Z.B.: UGPase of *Astragalus membranaceus*: cDNA cloning, analyzing and expressing in *Escherichia coli*. - *J. Integr. Plant Biol.* **6**: 009, 2002.
- Zha, X.Q., Luo, J.P., Jiang, S.T., Wang, J.H.: Enhancement of polysaccharide production in suspension cultures of protocorm-like bodies from *Dendrobium huoshanense* by optimization of medium compositions and feeding of sucrose. - *Process Biochem.* **42**: 344-351, 2007.