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Abstract

Both lignin and silicon (Si) are major players in the resistance of plants to mechanical stress (MS). Focusing on the
phenolic metabolism, here we studied the short-term effects of a local MS on tobacco (Nicotiana rustica L. cv. Basmas)
plants with Si (+Si, 1 mM Na,SiO;) and without Si (—Si) treatments in order to see how Si may modify local and
systemic responses. One week after starting the Si treatment, a half of the plants were exposed to a mechanical pressure
applying 980 Pa for 24 h on the upper side of the 3™ leaf of each plant (+MS). The rest of the plants remained
unstressed (-MS). Plants were harvested 24 h and 72 h after starting the MS and the leaves directly exposed to the
mechanical stress (DMS) and those indirectly exposed to the mechanical stress (IMS) from below and above the DMS
leaf were analyzed for phenolic metabolism along with the corresponding leaves from —MS plants. In the DMS leaf, the
activities of polyphenol oxidase, phenylalanine ammonia lyase, and cytosolic and covalently-bound peroxidases
increased by the MS, while decreased by Si. In accordance with this in the DMS leaf, the content of soluble and cell
wall-bound phenolics and lignin were enhanced by the MS but decreased by Si. Interestingly, Si influenced the pattern
of response to the MS depending on whether the leaves were directly treated by the MS or not. Silicon treatment
augmented MS-induced lignin accumulation in the DMS leaf while rather inhibited lignin formation in the IMS leaves.
These data show that Si modified MS-mediated changes in the phenolic metabolism differently in local and systemic
leaves.

Additional key words: cell wall-bound phenolics, lignin, Nicotiana rustica, peroxidase, phenylalanine ammonia lyase, polyphenol
oxidase.

Plant growth and development are affected not only by the
usual environmental factors but also by those of
mechanical nature. Our knowledge on the effect of
mechanical stress (MS) is much more limited than that for
other stress factors. It is well known that biotic and abiotic
stresses induce defense responses in plants including
activation of secondary metabolite pathways (Dixon and
Paiva 1995). Activation of the phenylpropanoid pathway
as the main metabolic route for the synthesis of natural
secondary metabolites, such as phenolics, flavonoids,
lignin, etc., has been reported under low temperature,
drought, and exposure to high photosynthetically active or
UV-radiation (Dixon and Paiva 1995, Weaver and
Herrmann 1997, Moura et al. 2010).

Besides defenses based on organic compounds, Si
plays an important role in plant tolerance to abiotic and
biotic stresses (Currie and Perry 2007, Hajiboland 2012).
In response to pathogen attack, plants supplied with Si
produce phenolics and phytoalexins (Van Bockhaven
et al. 2012), have higher activities of peroxidases,
polyphenol oxidases, and other enzymes of the phenyl-
propanoid pathway (Chérif et al. 1994, Shetty et al.
2011). The influence of Si on plant structural resistance
has been studied in Si-accumulators and only under long-
term growth under field conditions (Guntzer ef al. 2012).
However, the effect of Si on the enhancement of
structural support through modification of phenolic
metabolism under MS has not been studied so far.
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In this work, using the phenolic metabolism as
indicator of plant response to stress, we studied the short
term effect of MS on the leaves of plants grown in the
absence or presence of Si. In order to investigate the local
vs. systemic response to MS and the influence of Si on
this response, the phenolic metabolism was investigated
in a time-dependent manner using both the leaves
receiving the direct pressure stress treatment (DMS) and
the indirectly stressed leaves (IMS) located below and
above the DMS leaf.

Four-week-old tobacco (Nicotiana rustica L. cv.
Basmas) plants were transferred to a hydroponic culture
containing Hoagland nutrient solution and precultured for
further one week. Thereafter, 1 mM Si (as Na,SiO;;
Sigma, St. Louis, USA) was applied (+Si) or not (-Si).
One week after the Si addition, mechanical stress (MS)
was applied on the 3™ fully expanded leaf (the DMS
leaf). For induction of MS, a 40-g stone (2x2 cm)
providing a mechanical pressure of 10 g cm? (980 Pa)
(Wang et al. 2006) was gently placed on the upper side of
the leaves and left for 24 h. A double layer of filter paper
was placed between the stone and the leaf surface and the
leaf back was sustained. The plants were harvested 24
and 72 h after starting the MS, and in addition of the
DMS leaves, the upper and lower indirectly stressed
leaves (IMS leaves) were analyzed. In analogy with the
+MS plants, the leaves of similar position were analyzed
in the -MS plants. Extractions and assays of polyphenol
oxidase (PPO, EC 1.14.18.1), phenylalanine ammonia
lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7),
and phenolic compounds in the soluble and cell wall
(CW)-bound fractions, and extraction and assay of lignin
were performed according to the methods described
previously (Hajiboland er al. 2015). After autoclave-
induced digestion, Si content was determined by a
colorimetric method using ammonium molybdate (Elliott
and Snyder 1991). The experimental design was a
complete randomized block with two factors and four
independent replications. Comparisons of means were
performed by Tukey’s test (a = 0.05).

In the treated leaf (DMS), activity of PPO increased
by the MS in both the —Si plants and the +Si plants. The
mechanical stress-mediated induction of PPO activity
appeared already 24 h after the stress treatment and
increased further at the subsequent time interval. Silicon
treatment decreased PPO activity in both the —-MS
treatment and the +MS treatment. Consequently, the
extent of the MS effect on the induction of PPO activity
was considerably lower in the +Si plants compared with
the —Si plants. In the leaves of upper and lower positions
(IMS), in contrast, MS-induced PPO activity occurred
more prominently in the +Si plants. In the IMS leaves of
the —Si plants, PPO activity even declined by the MS 24 h
after the treatment (Table 1).

A similar trend was observed for PAL activity. In the
DMS leaves from the —Si plants, PAL activity increased
much more in response to the MS treatment, while the
response of the IMS leaves was considerably higher in
the +Si ones (Table 1). In the DMS leaf, the MS-induced
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increase of soluble POD activity was significantly higher
in the —Si plants than in the +Si plants at both time
intervals. In the IMS leaves 24 h after the MS treatment,
soluble POD activity rather decreased under the MS in
the —Si plants while increased in the +Si ones. The
induction of soluble POD activity in the IMS leaves 72 h
after the MS treatment was much greater in the +Si plants
compared to the —Si ones (Table 1).

Ionically CW-bound POD responded differently to
the MS than the soluble POD. In the DMS leaf, ionically
CW-bound POD activity decreased by the MS in both the
—Si plants and the +Si plants and at both reported time
intervals. In the IMS leaves, the —Si plants responded
consistently to the MS by the induction of ionically
CW-bound POD. In the +Si plants, in contrast, ionically
CW-bound POD activity decreased 24 h after the MS
treatment. The observed increase in activity of ionically
CW-bound POD in the +Si plants at 72 h was lower
compared to the —Si plants and was not statistically
significant (Table 1).

In the DMS Ileaf, an induction of about 8-fold was
observed in activity of covalently CW-bound POD 72 h
after the treatment only in the —Si plants. In the upper
leaves, MS-responsiveness as a reduction (24 h) or an
increase (72 h) in activity of the covalently CW-bound
POD was only observed in the +Si plants. In the lower
leaf, an induction of covalently bound POD was observed
only 72h after the treatment without any difference
between the +Si and —Si plants (Table 1).

Content of soluble phenolics increased by the MS
treatment in both tested time intervals. Accumulation of
soluble phenolics was consistently higher in the —Si
plants compared to the +Si ones not only in the DMS but
also in the IMS leaves. Cell wall-bound phenolics
increased by the MS treatment in the DMS leaf.
However, Si influenced this parameter differently
depending on the time interval. At 24 h after the MS
treatment, the Si-treated plants had a slightly higher
CW-bound phenolics while the opposite was observed
after 72 h. In the IMS, the MS-treatment resulted in a
slight or significant reduction of CW-bound phenolics in
the +Si plants at both time intervals. However, in the IMS
leaves of the —Si plants, similar to the DMS Ileaf,
CW-bound phenolics increased upon the MS treatment.
Lignin concentration of the DMS leaf increased by the
MS and this effect was higher in the +Si (20 %)
compared with the —Si (12 %) plants. In the upper and
lower leaves, lignin content decreased by the MS in both
the +Si plants and the —Si plants 24 h after the MS
treatment. At the subsequent time interval, however,
lignin content increased in response to the MS in
the —Si plants while diminished in the +Si ones (Table 1).

Silicon content in all analyzed fractions was in the
range of 70 - 150 pg kg'(d.m.) depending on plant
fraction, thus, expectedly higher in the +Si compared
with —Si plants (Table 1).

Severe mechanical stress damages plants and may
have a considerable impact on its ecological adaptation
and survival. The phenylpropanoid pathway is activated



under stresses such as freezing and wounding (Dixon and
Paiva 1995, Weaver and Herrmann 1997, Moura et al.
2010). These stresses are associated mainly with
damaged cell structure implying the irreplaceable role of
phenolics and lignin in plant resistance to mechanical
injuries. A coherent response of different components of
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the phenylpropanoid pathway to the MS observed in this
work highlights the important role of CW-bound
phenolics and lignin in the structural defense against
mechanical perturbations. Higher lignin content was
detectable as early as 24 h after the MS treatment in this
work. In A. thaliana in response to injury caused by

Table 1. Effect of a mechanical stress (MS) on the activities of polyphenol oxidase [PPO, mmol(caffeic acid) mg™(protein) min™],
phenylalanine ammonia lyase [PAL, pmol(cinnamic acid) mg™ (protein) min™'], three cell fractions of peroxidases (PODs) including
soluble POD [umol(tetraguaiacol) mg™ (protein) min™], ionically cell wall (CW)-bound POD [umol(syringaldazine) mg™ (protein)
min™'] and covalently CW-bound POD [umol(syringaldazine) mg™'(wall fm.) min™'], content of phenolic compounds in the soluble
[mg(eq. gallic acid) g"'(f.m.)] and cell wall (CW)-bound fractions [mg(eq. gallic acid) g(fm.)], and lignin [ug mg'(wall d.m.)] at
two time intervals, and concentration of Si [mg kg™'(d.m.)] in a leaf directly exposed to the MS (the DMS leaf) and in its upper and
lower leaves (IMS) in tobacco plants grown in a hydroponic medium in the absence (—Si) or presence (+Si) of 1 mM Na,SiO;. Data
are means + SDs from four independent replications. Data of each column within each parameter indicated by the same letter are not

statistically different (P > 0.05).

Parameter  Treatments DMS leaf IMS (upper) leaf IMS (lower) leaf
24h 72 h 24h 72 h 24h 72 h
PPO -Si  -MS 113 £0.59° 105 +£0.98° 202 +0.63° 64 +0.89° 97 +080° 7.9 +0.75°
-Si  +MS 22.3+1.25% 332 +0.89% 192 +1.16° 8.1 +0.53° 58 +0.81° 9.7 +0.82°
+Si -MS 81 +0.17° 57 +0.98° 181 +1.07° 4.0 +0.54¢ 50 £0.71° 69 +0.30°
+Si +MS 121 £0.14°> 117 £1.96° 350 +£2.76° 98 +045° 82 +1.07* 163 +0.75%
PAL -Si  -MS 28 +2° 32 +2° 54 +6° 43 +6® 28 +3° 37 +4°
-Si  +MS 33 +6° 43 +4° 48  +2° 39 +3° 25  +5° 40 +4°
+Si -MS 24 +7° 29  +5° 30 +4° 36 +1° 14 +5° 35 +6°
+Si +MS 23 +3° 31 +4° 48  +6° 50 +2° 24 +2° 61 +3*
Soluble -Si  -MS 100 +1.8° 6.6 £19° 104 +15° 6.5 +22° 105 £39* 89 +15°
POD -Si  +MS 166 £0.9° 429 +12° 66 +12° 98 +0.5% 59 +03% 212 +6.2°
+Si -MS 73 +1.2°¢ 49 +07° 54 +09° 1.5 £04° 79 +06%® 62 +12°
+Si +MS 86 £09% 179 +3.7° 114 +14° 11.8 £2.2° 103 £1.2% 266 +2.1°
Ionically  -Si  -MS 6.10+£0.56° 4.73+0.22° 0.58+0.08° 231+022° 083+059¢ 7.45+1.27°
bound POD -Si ~ +MS 1.12+0.18°  1.69+0.16% 0.86+0.02°  3.02+0.77° 137+0.14° 14.17+1.14?
+Si —MS 634+1.67° 1476+141% 6.01+1.24°  529+096° 1124+137% 17.35+526%
+Si +MS 479+051* 10.64+1.02° 0.85+0.04°  648+1.05*  4.60+022° 19.97+2.19°
Covalently -Si  -MS 146+042%  0.88+0.02° 1.11+0.19° 0.72 +0.04° 1.62+£0.36% 1.57+0.14®
bound POD -Si  +MS 1.13+£0.40* 455+0.67% 1.03+0.25° 0.68 +0.02° 1.524£0.12%  1.92+0.60%
+Si -MS 142+048*  046+0.03° 1.65+0.25° 0.58 +0.02° 1.18+0.16* 1.33+0.30°
+Si +MS 140+1.13*  042+0.07° 0.54+0.07° 1.55+0.29° 1.12£0.70*  2.29+0.28%
Soluble -Si  -MS 2514025°  322+022° 4.1140.06° 535+025%® 329+030° 3.15+0.21°
phenolics  -Si  +MS 3124025 6.04+0.74* 576+1.03° 577+1.19°  3.72+024 5.0240.16°
+Si -MS 1.07+0.089  2.04+034° 2.00+0.08°  2.29+0.06° 1.67+0.18° 2.63+0.17¢
+Si +MS 1.98+0.16° 4.10£0.50° 3.00£021°  4.05+0.40°  242+0.02° 509+0.25°
Cell wall-  -Si  -MS 233+0.15%  2.67+032° 331+0.11° 251+£023° 2.18+030% 2.39+0.59°
bound -Si  +MS 257+0.11*  586+038° 3.73+0.13*  530+1.08* 2.75+0.51% 473+1.51°
phenolics  +Si  -MS 222+028* 1.76+£0.10° 3.17+0.18° 1.86+0.16° 1.09+0.11° 1.63+0.15°
+Si +MS 3.03+0.70°  222+0.21% 2.17+0.04¢ 1.59 £ 0.06° 0.87+0.08° 1.16+£0.05%
Lignin -Si  -MS 289 £15™ 269 +16° 257 +18* 231 +£26° 347 +£34% 292 +48°
-Si  +MS 324 +18* 302 +17% 216 +22° 280 +26% 286 +26% 334 +45°
+Si -MS 255 +17° 197 +11Y 96 +19° 196 +19% 321 +4%® 273 +26°
+Si +MS 307 +15% 233 +8° 75 +£14° 174  +£10° 241 +£25° 232  +16?
Sicontent  -Si 64 +6° 64 +6° 84 +10° 65 +5° 64 +6° 64 +6°
+Si 124 +28* 140 +19* 100 +13* 131 +35% 124 +28* 140 +19°
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perforation of a leaf with the tip of a pipette, the
expression of genes encoding enzymes of the lignin
biosynthetic pathway occurred during two distinct phases,
at 2.5 h (the early phase) and 48 -72 h (the late phase)
after injury (Soltani er al. 2006). In a woody species
Chamaecyparis obtusa, however, the content of lignin
measured in the CW of necrotic tissue was significantly
higher at 28 and 56 d after injury (Kusumoto 2005).
Up-regulation of lignin biosynthesis in the cells
surrounding the wound site forming a “barrier zone” has
been considered as a strategy to avoid pathogen infection
and water loss (Moura et al. 2010).

The activation of the phenylpropanoid pathway in the
IMS leaves soon after 24 h of the MS treatment in this
work imply the involvement of a phloem-mobile
molecule for communication between the treated and
non-treated leaves. In contrast to other factors involved in
the systemic regulation of shoot and root growth, such as
nutritional status, our knowledge on the phloem-mobile
signaling molecules after MS is much more limited and
mostly restricted to evidence found in studies on the
response of wounded tissue following insect feeding
(Lukaszuk and Ciereszko 2012). The exact nature of a
signaling molecule mediating communication between
treated and non-treated leaves after MS needs to be
characterized, and a question should be addressed if that
is different from the wound-induced signaling molecule.

Reduction of activities of PAL, PPO, and soluble and
covalently bound POD, as well as content of CW-bound
phenolics and lignin in the +Si plants was a distinct
evidence for down-regulation of the phenylpropanoid
pathway by Si. This effect was not affected by the MS
treatment and down-regulation of this pathway was
observed by Si in the MS plants, too. Post-transcriptional
and/or allosteric regulation of enzymes (Van Bockhaven
et al. 2012) and/or a Si effect via hormone signaling as
was observed in the leaves challenged with pathogens
(Fauteux et al. 2006, Cabot et al. 2013) were probably
involved in the Si-mediated modifications in the
phenylpropanoid pathway of the leaves. Lower lignin
content in the Si-treated plants may reflect the role of Si
enhancing the mechanical strength of CW, allowing a
trade-off between lignin and Si accumulation that results
in down-regulation of lignin synthesis. Such a trade-off
between Si and lignin may be of advantage because Si as
a structural material is a cheaper source for cell structural
resistance than lignin. Cell wall lignification is a highly
energy-consuming process, whereas Si deposition
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