

Inhibition of putrescine biosynthesis enhanced salt stress sensitivity and decreased spermidine content in rice seedlings

A. YAMAMOTO^{1,2*}, I.-S. SHIM^{1,3}, and S. FUJIHARA^{1,4}

*Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan*¹

*Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan*²

*Department of Environmental Horticulture, University of Seoul, Seoul 130-743, Korea*³

*National Agriculture Research Center, Tsukuba, Ibaraki 305-8666, Japan*⁴

Abstract

The effect of polyamine biosynthesis inhibitors on the salt stress response of rice seedlings was investigated. For this, DL- α -difluoromethylarginine (DFMA) and DL- α -difluoromethylornithine (DFMO), two competitive inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), were used. The ADC and ODC are rate-limiting enzymes involved in synthesis of putrescine. The effective quantum yield of photosynthetic energy conversion (Φ_{PSII}) decreased with the salt stress, and this decrease was highly significant in the treatments with DFMA and DFMO. Interestingly, addition of exogenous putrescine reduced the decline of Φ_{PSII} . Putrescine content strongly decreased after one day of the inhibitor treatment. Although the content of spermidine (converted from putrescine) also showed an initial decrease in response to the inhibitors, it recovered to a similar level to that in the control after 3 d of treatment. Under the salt stress, the effect of the inhibitors on the different compounds was similar. Moreover, the addition of exogenous putrescine partially suppressed the decrease in spermidine and spermine content. A positive correlation between the spermidine and spermine content and the Φ_{PSII} was observed. The results suggest that, under salt stress, a decrease in polyamine biosynthesis and/or polyamine content has a strong negative effect on leaves and increases salt stress sensitivity.

Additional key words: arginine decarboxylase, chlorophyll fluorescence, ornithine decarboxylase, polyamines, spermine.

Soil salinization is one of the causes of desertification. Under conditions of excess salinity, plant growth is strongly inhibited (Boyer 1982, Yancey *et al.* 1982). Therefore, understanding the mechanisms behind salt tolerance in plants is important to be able to increase salt stress tolerance and prevent loss of vegetation in salinized soils. Polyamines, such as putrescine, spermidine, and spermine, are basic nitrogen compounds that are involved in many physiological processes in higher plants (Bouchereau *et al.* 1999, Martin-Tanguy 2001). Changes in polyamine content under various environmental stresses have been reported in many species (Flores

1991). In the model plant *Arabidopsis thaliana*, it was found that environmental stress tolerance is related to polyamine content (Yamaguchi *et al.* 2006, Cuevas *et al.* 2008, Alcázar *et al.* 2010). In our previous study, salt stress tolerance in rice seedlings increases under a low nitrogen supply (Yamamoto *et al.* 2004). In the leaf blade of rice seedlings with a high salt tolerance, the content of proline (a compatible solute) and polyamines is higher than in the leaf blades of seedlings sensitive to salt. Furthermore, in leaf blades exposed to salt stress, a correlation between the chlorophyll fluorescence parameter effective quantum yield of photosynthetic

Submitted 13 January 2016, last revision 1 May 2016, accepted 30 May 2016.

Abbreviations: ADC - arginine decarboxylase; DFMA - DL- α -difluoromethylarginine; DFMO - DL- α -difluoromethylornithine; ODC - ornithine decarboxylase; Φ_{PSII} - effective quantum yield of photosynthetic energy conversion.

Acknowledgements: The authors are grateful to Prof. Dr. Akira Shirahata of the Josai University for kindly providing inhibitors DFMA and DFMO. The authors are also grateful to Prof. Tadakatsu Yoneyama from the University of Tokyo and Prof. Kenji Usui from the University of Tsukuba for instructive comments on the manuscript.

* Corresponding author; e-mail: ahyama@cc.miyazaki-u.ac.jp

energy conversion (Φ_{PSII}) and polyamine content was found suggesting that polyamines might play an important role in salt tolerance. In the present study, polyamine content in rice seedlings was controlled using DL- α -difluoromethylarginine (DFMA) and DL- α -difluoromethylornithine (DFMO), which are competitive inhibitors of enzymes involved in polyamine biosynthesis, such as arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) (Metcalfe *et al.* 1978, Kallio *et al.* 1981). Leaf blades of rice seedlings were treated with inhibitors, and a change in sensitivity to salt stress was investigated by analyzing whether a decline in polyamine content due to the effect of the inhibitors was alleviated by exogenous polyamines.

Rice (*Oryza sativa* L. cv. Nipponbare) seeds were disinfected, germinated at 30 °C in an incubator for 48 h, and grown in a chamber at day/night temperatures of 25/20 °C, a relative humidity of 60 %, a 14-h photoperiod, and an irradiance of 270 $\mu\text{mol m}^{-2} \text{s}^{-1}$. The seedlings were grown in modified Kasugai's nutrient solution (Kasugai 1939) until the second leaf stage (about two-week-old plants). Ammonium sulfate was used as a nitrogen source in the concentration of 10 mg N dm^{-3} (Yamamoto *et al.* 2004). After the appearance of the second leaf, inhibitors of polyamine biosynthesis, 2 mM DFMA and 2 mM DFMO with 0.05 % (v/v) detergent *Tween 20* (pH 7.0), were applied to the leaves using atomizer bottles. The seedlings were further treated with 100 mM NaCl added to the nutrient solution for 3 d. Experimental treatments were: I - control (only the detergent); II - the inhibitors (2 mM DFMA + DFMO); III - 100 mM NaCl; IV - the inhibitors + NaCl; V - the inhibitors + NaCl + 2 mM putrescine (2 mM). Each experimental plot contained 20 - 30 rice seedlings. The plants were weighed at the beginning of the experiment (0 d) and 3 d later. Intact second-leaf blades were used for measurements of chlorophyll fluorescence with a chlorophyll fluorometer (*Mini-PAM*, Walz, Effeltrich, Germany). The effective quantum yield of photosynthetic energy conversion (Φ_{PSII}) was calculated as $(F_m' - F_t)/F_m'$, where F_m' is maximum chlorophyll fluorescence yield in the light adapted state and F_t is actual chlorophyll fluorescence yield in the light adapted state. The remaining leaves were frozen in liquid nitrogen and lyophilized (*FD-550R*, Tokyo Rikakikai, Tokyo, Japan). The freeze-dried tissue was used for extraction and determination of polyamine content by high performance liquid chromatography (HPLC) according to Flores and Galston (1982). The freeze-dried leaf tissue (0.1 g dry mass) was homogenized in 4 cm³ of 0.5 M HClO₄ at about 65 °C for 16 - 17 h and centrifuged at 10 000 g for 15 min. Extracted polyamines were converted to benzoyl derivatives and separated by the HPLC system (Shimadzu, Kyoto, Japan) as described previously (Yamamoto *et al.* 2004). Two independent experiments with three replicates each were performed for each treatment. Differences in values between treatments were

analyzed using Tukey's honestly significant difference (HSD) test ($\alpha = 0.05$) using *KaleidaGraph 4.11 (Synergy Software, Reading, PA, USA)*. Linear regression analysis was used to analyze a relationship between Φ_{PSII} and polyamine content after 3 d of the treatment.

Marler and Mickelbart (1993) and Yamamoto *et al.* (2011) shown that a change in Φ_{PSII} is a good indicator of salt stress. In the present study, no significant differences in Φ_{PSII} were observed between the control plants and plants treated with the inhibitors only (Fig. 1). Although Φ_{PSII} decreased with the salt stress, this decline was significant only when the inhibitors were used. Interestingly, the addition of putrescine reduced the decline of Φ_{PSII} . Smith *et al.* (1985) reported that a long-term treatment with DFMA and DFMO inhibits pea plant growth. However, in the present study, significant differences in plant growth between the treatments were not observed (data not shown).

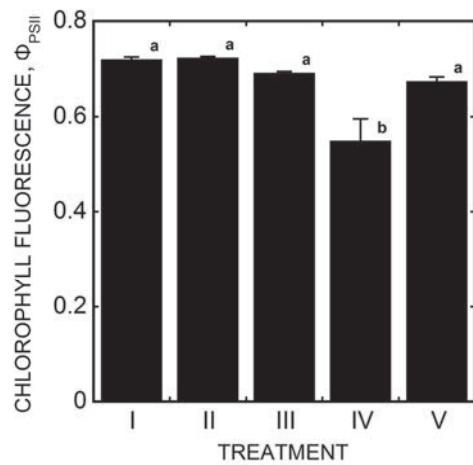


Fig. 1. Effect of inhibitors, salt stress, and putrescine on effective quantum yield of photosynthetic energy conversion (Φ_{PSII}) in the 2nd leaf blades of rice seedlings after 3 d of treatment. I - control, II - inhibitors (2 mM DFMA + DFMO), III - 100 mM NaCl, IV - inhibitors + NaCl, V - inhibitors + NaCl + 2 mM putrescine. Means \pm SEs, $n = 3$. Treatments marked with the same letter are not significantly different from the control (Tukey's HSD test, $P > 0.05$).

The effect of the inhibitors and salt stress treatments on the content of polyamines in leaf blades is shown in Fig. 2. Putrescine content drastically decreased after one day of the treatment with the inhibitors (Fig. 2A). Although the leaf surfaces were carefully washed before quantification, the measured putrescine content in treatment V was very high, possibly due to adhering exogenous putrescine. A similar decrease in spermidine content was observed after one day of the inhibitors treatment, however, its content increased after day one, reaching a similar level to the control at day three (Fig 2B). Spermine content, on the other hand, increased after the treatment with the inhibitors (Fig. 2C). The treatment with inhibitors under the salt stress caused a

decrease in all compounds, and spermidine content was lowest throughout the treatment period. The addition of putrescine to the inhibitors clearly ameliorated the decline in spermidine and spermine content.

It is known that DFMA and DFMO are competitive inhibitors of ADC and ODC, respectively (Metcalf *et al.* 1978, Kallio *et al.* 1981). Since spermidine uses putrescine as a precursor, DFMA and DFMO also strongly influence spermidine content by preventing putrescine biosynthesis (Metcalf *et al.* 1978, Kallio *et al.* 1981). Higher plants synthesize putrescine *via* two pathways, through decarboxylation of ornithine or arginine. Therefore, in order to inhibit the two pathways simultaneously, the mixed solution of DFMA and DFMO was applied to the leaves. As a result, leaf blades showed a remarkable reduction of putrescine and spermidine content after one day of the treatment with the inhibitors (Fig. 2A,B).

Under the salt stress, the addition of the inhibitors

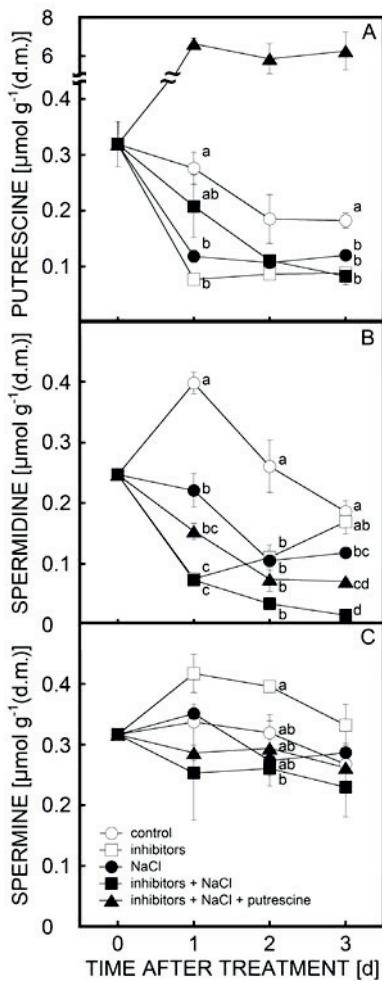


Fig. 2. The effect of inhibitors, salt stress, and exogenous putrescine on polyamine content (A - putrescine, B - spermidine, C - spermine) in the 2nd leaf blades of rice seedlings. Means \pm SEs, $n = 3$. Treatments marked with the same letter are not significantly different from each other (Tukey's HSD test, $P > 0.05$).

accelerated the reduction of Φ_{PSII} caused by the salt stress, and after the addition of putrescine, Φ_{PSII} partially recovered. These results suggest that polyamine biosynthesis and/or polyamine content highly affect salt stress sensitivity. Lee (1997) observed that growth inhibition in rice roots due to chilling stress recovers after treatment of exogenous putrescine with DFMA and DFMO. Under salt and chilling stresses, a correlation between polyamine content in leaf blades and Φ_{PSII} has been found (Yamamoto *et al.* 2004, 2012). In the present study, a significant positive correlation was observed between spermidine content and Φ_{PSII} (Fig. 3). The same was observed between spermine content and Φ_{PSII} but not between putrescine content and Φ_{PSII} (data not shown).

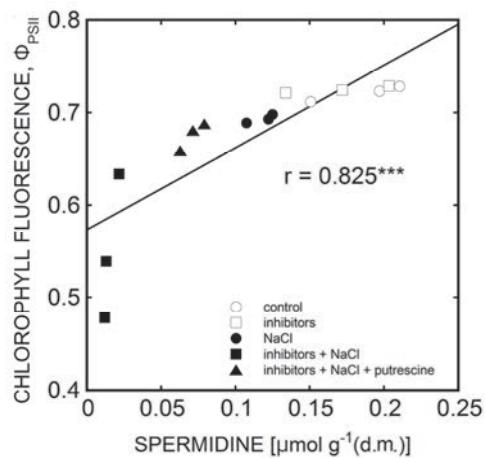


Fig. 3. Correlation between effective quantum yield of photosynthetic energy conversion (Φ_{PSII}) and spermidine content in the 2nd leaf blades of rice seedlings after three days of various treatments. *** - Correlation coefficient significant at $P < 0.001$.

Roy and Wu (2002) reported that in rice plants with the overexpression of *S*-adenosylmethionine decarboxylase (a biosynthetic and rate-limiting enzyme for biosynthesis of spermidine and spermine), polyamine content increases under salt stress, and salt tolerance is improved. Moreover, it has been reported that salt tolerance of a salt-sensitive rice cultivar improves after a long-term addition of spermidine and spermine (Chattopadhyay *et al.* 2002). The above studies also showed that treatments in which a polyamine content change causes a change in plant stress sensitivity. It has been recently reported that the addition of exogenous polyamines enhances the antioxidant system of some plants, reducing environmental stress injury (Fu *et al.* 2015, Li *et al.* 2015, Mirdehghan and Rahimi 2015, Nahar *et al.* 2015). The increase in salt stress sensitivity due to the reduction of polyamines content in leaf blades and the high correlation found between spermidine content and Φ_{PSII} (this study) suggest that polyamines may protect the leaves from a decline in photosynthesis

and from oxidative damage. This study clarify the positive effect of polyamines, mainly spermidine, on rice seedlings against salt-stress injury although further

research is required to elucidate other functions of polyamines under salt stress conditions.

References

Alcázar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., Bitrián, M., Tiburcio, A.F., Altabella, T.: Putrescine accumulation confers drought tolerance in transgenic *Arabidopsis* plants over-expressing the homologous *Arginine decarboxylase 2* gene. - *Plant Physiol. Biochem.* **48**: 547-552, 2010.

Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, J.: Polyamines and environmental challenges: recent development. - *Plant Sci.* **140**: 103-125, 1999.

Boyer, J.S.: Plant productivity and environment. - *Science* **218**: 443-448, 1982.

Chattopadhyay, M.K., Tiwari, B.S., Chattopadhyay, G., Bose, A., Sengupta, D.N., Ghosh, B.: Protective role of exogenous polyamines on salinity-stressed rice (*Oryza sativa*) plants. - *Physiol. Plant.* **116**: 192-199, 2002.

Cuevas, J.C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., Salinas, J., Tiburcio, A.F., Ferrando, A.: Putrescine is involved in *Arabidopsis* freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. - *Plant Physiol.* **148**: 1094-1105, 2008.

Flores, H.E.: Changes in polyamine metabolism in response to abiotic stress. - In: Slocum, R.D., Flores, H.E. (ed.): *Biochemistry and Physiology of Polyamines in Plants*. Pp. 213-228. CRC Press, Boca Raton 1991.

Flores, H.E., Galston, A.W.: Analysis of polyamines in higher plants by high performance liquid chromatography. - *Plant Physiol.* **69**: 701-706, 1982.

Fu, X.Z., Xing, F., Wang, N.Q., Peng, L.Z., Chun, C.P., Cao, L., Ling, L.L., Jiang, C.L.: Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress *in vitro* in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. - *Biotechnol. Biotech. Eq.* **28**: 192-198, 2015.

Kallio, A., McCann, P.P., Bey, P.: DL-difluoromethyl arginine: a potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylases. - *Biochemistry* **20**: 3163-3166, 1981.

Kasugai, S.: Studies on the hydroponic cultures. - *J. Sci. Soil Manure* **13**: 669-822, 1939.

Lee, T.M.: Polyamine regulation of growth and chilling tolerance of rice (*Oryza sativa* L.) roots cultured *in vitro*. - *Plant Sci.* **122**: 111-117, 1997.

Li, J., Hu, L., Zhang, L., Pan, X., Hu, X.: Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. - *BMC Plant Biol.* **15**: 303, 2015.

Marler, T.E., Mickelbart, M.V.: Growth and chlorophyll fluorescence of *Spondias purpurea* L. as influenced by salinity. - *Trop. Agr.* **70**: 245-247, 1993.

Martin-Tanguy, J.: Metabolism and function of polyamines in plants: recent development (new approaches). - *Plant Growth Regul.* **34**: 135-148, 2001.

Metcalf, B.W., Bey, P., Danzin, C., Jung, M.J., Casara, P., Vevert, J.P.: Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. 4.1.1.17) by substrate and product analogues. - *J. amer. chem. Soc.* **100**: 2551-2553, 1978.

Mirdehghan, S.H., Rahimi, S.: Pre-harvest application of polyamines enhances antioxidants and table grape (*Vitis vinifera* L.) quality during postharvest period. - *Food Chem.* **196**: 1040-1047, 2015.

Nahar, K., Hasanuzzaman, M., Alam, M.M., Fujita, M.: Exogenous spermidine alleviates low temperature injury in mung bean (*Vigna radiata* L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. - *Int. J. mol. Sci.* **16**: 30117-30132, 2015.

Roy, M., Wu, R.: Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine levels and enhances sodium chloride-stress. - *Plant Sci.* **163**: 987-992, 2002.

Smith, M.A., Davies, P.J., Reid, J.B.: Role of polyamines in gibberellin-induced internode growth in peas. - *Plant Physiol.* **78**: 92-99, 1985.

Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., Michael, A., Kusano, T.: The polyamine spermine protects against high salt stress in *Arabidopsis thaliana*. - *FEBS Lett.* **580**: 6783-6788, 2006.

Yamamoto, A., Shim, I.S., Fujihara, S., Yoneyama, T., Usui, K.: Effect of difference in nitrogen media on salt-stress response and contents of nitrogen compounds in rice seedlings. - *Soil Sci. Plant Nutr.* **50**: 85-93, 2004.

Yamamoto, A., Sawada, H., Shim, I.S., Usui, K., Fujihara, S.: Effect of salt stress on physiological response and leaf polyamine content in NERICA rice seedlings. - *Plant Soil Environ.* **57**: 571-576, 2011.

Yamamoto, A., Shim, I.S., Fujihara, S.: Chilling-stress responses by rice seedlings grown with different ammonium concentrations and its relationship to leaf spermidine. - *J. Plant Biol.* **55**: 191-197, 2012.

Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, P.D., Somero, G.N.: Living with water stress: evolution of osmolyte systems. - *Science* **217**: 1214-1217, 1982.