Molecular characterization and subcellular localization of salt-inducible lipid transfer proteins in rice

K.-C. LIN¹, T.-M. WU¹,², N.N.P. CHANDRIKA¹, S.-J. CHOU³, and C.-Y. HONG¹*

Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan

Abstract

Rice (Oryza sativa L.) is a salt-sensitive species. Salt stress can cause injury to the plant cellular membrane. Plant lipid transfer proteins (LTPs) are abundant lipid binding proteins that are important in membrane vesicle biogenesis and trafficking; however, the biological importance of LTPs on salt-stress response in rice remains unclear. Therefore, salt-responsive rice LTPs were identified and characterized in this study. Microarray analysis showed seven genes positively regulated by salinity, including five Ltp genes (LtpII.3, LtpII.5, LtpII.6, LtpV.1, and LtpV.2) and two Ltp-like (LtpL; LtpL1, and LtpL2) genes. Amino acid alignment revealed that all these Ltp and LtpL genes contained the N-terminal signal peptide. Apart from LtpL1, all salt-inducible Ltp genes had the conserved eight cysteine residue motifs backbone. Verification of gene expression to different stimuli in rice seedlings revealed that salt-regulated Ltp genes differentially responded to drought, cold, H2O2, abscisic acid (ABA) and CaCl2. Furthermore, the expression of Ltp and LtpL genes was tissue-specifically regulated by ABA-dependent and independent pathway. In silico analysis of a 1.5-kb 5'-upstream region of these genes showed regulatory cis-elements associated with ABA, calcium, and cold/drought responses. Three LtpII subfamily genes, including LtpII.3, LtpII.5, and LtpII.6, were strictly expressed in flowers and seeds, and LtpIII.1 mRNA strongly accumulated in stem tissue. Subcellular localization analysis of LTP-DsRed fusion proteins revealed that the five LTPs and two LTPLs localized at the endoplasmic reticulum. The results provide new clues to further understanding the biological functions of Ltp genes.

Additional key words: abscisic acid, calcium, cold, drought, gene expression, Oryza sativa, subcellular localization; salinity.

Introduction

Lipid transfer proteins (LTPs) are characterized by their ability to transfer phospholipids across membranes in vitro (Kader 1996). They are small ubiquitous and highly abundant plant proteins (~9 kDa) that have high pI (~9) and contain eight-cysteine motif (8-CM) at conserved positions (Kader 1997). 3-D structure analysis showed that LTPs have a hydrophobic cavity enclosed by four α-helices held together by four disulfide bonds between the eight cysteine residues (Shin et al. 1995, Heinemann et al. 1996, Charvolin et al. 1999). Sequence analysis showed that LTPs contain a signal peptide driving the peptide insertion into the endoplasmic reticulum lumen (Madrid 1991). LTPs have been found in the medium of cell cultures, plasma membrane, cell wall, and glyoxysomes (Liu et al. 2015).

In a survey of Arabidopsis thaliana genes that may be involved in acyl lipid metabolism, Beisson et al. (2003) identified 71 LTP-like sequences on the basis of the conserved 8-CM. However, a more recent analysis of the Arabidopsis genome showed that the number of small cysteine-rich peptide such as LTPs may have been underestimated (Silverstein et al. 2007). Recent study revealed 52 Ltp genes in the rice genome (Boutrot et al. 2008, Edstam et al. 2011). So far, there are no conserved

Submitted 5 February 2016, last revision 17 June 2016, accepted 12 July 2016.

Abbreviations: ABA - abscisic acid; ABRE - ABA-responsive element; 8-CM - eight-cysteine motif; DRE/CRT - dehydration-responsive/C-repeat element; ER - endoplasmic reticulum; LTPs - lipid transfer proteins; LtpL - Ltp-like; MYB - MYB transcription factor recognition sequence; MYC - MYC transcription factor recognition sequence; ROS - reactive oxygen species; ROSE - ROS/oxidative stress-responsive element; RT - reverse transcription; TNG67 - Tainung 67.

Acknowledgments: We are grateful to the Joint Center for Instruments and Researches of the College of Bioresources and Agriculture at the National Taiwan University for confocal microscopy and technical support. This work was supported by a research grant (MOST 104-2313-B-002 -013 -MY3) from the Ministry of Science and Technology of Taiwan to C.-Y. Hong.
* Corresponding author; fax: (+886)23633123, e-mail: cyhong@ntu.edu.tw
functional perspective, systematic expression analysis, or clear gene expression profiles of members of LTPs or LTP-like proteins (LTPLs). In addition to LTPs, 8-CM containing proteins are largely distributed in plants and have different functions; examples are 2S-albumins, some protease inhibitors, and hybrid proline-rich proteins (Jose-Estanyol et al. 2004).

Several lines of evidence indicate that Ltp genes are implicated to modulate abiotic stress tolerance, plant defense, and development. In Arabidopsis, Ltp3 was found to be induced by abscisic acid (ABA) and drought stress and confers plant tolerance to cold, drought, and oxidative stress (See et al. 2011, Guo et al. 2013). Stress-activated Ltp genes from wheat increase both biotic and abiotic stress tolerance of transgenic Arabidopsis. The enhancement of wheat TaLTP3 in Arabidopsis increased the tolerance to NaCl, H2O2, and fungal resistance (Safi et al. 2015), whereas overexpression of wheat TaLTP3 in Arabidopsis showed higher thermostolerance than in control plants at the seedling stage (Wang et al. 2014). Rice OsC6 was expressed only in the tapetal cells of anther and was found important for postmeiotic anther development in rice (Zhang et al. 2010).

Expression patterns of Ltps have been elucidated in many plants. The cultivated potato StLtp7 is induced by salicylic acid, methyl jasmonate, ABA and calcium (Gao et al. 2009). The strawberry Fxaltp responds to ABA, SA, and wounding, and is repressed by cold stress (Yubero-Serrano et al. 2003). In wheat, the TaLtp1 gene was found to be induced by drought and salt stress (Jang et al. 2004), and type I Ltp genes, TaLtpb1.1 and TaLtpb5.5, were induced under chilling, wounding, and drought (Yu et al. 2014). In rice, the expression of rice Ltp1 was induced in scutellum cells after inoculation with Magnaporthe grisea (Guiderdoni et al. 2002). OsLtp2 transcripts were induced by ABA, mannitol, or NaCl (Garcia-Garrido et al. 1998). Strong OsLtp6 promoter activity was found in inflorescence, in particular in anthers, with no expression in germininated seeds, roots, and shoots of rice seedlings (Liu et al. 2013). Moreover, rice Ltp5 expression is prominent in stems and flowers and induced by cutin monomer (Kim et al. 2008).

Plant cell membranes are the first targets of many plant stresses. Various kinds of environmental stresses can directly or indirectly perturb the integrity and stability of the cell membrane and cause increased permeability and leakage of ions (Wahid et al. 2007). Salt stress has attracted attention recently because of increasing soil salinization and its deleterious effect on global crop production. At least 20 % of total irrigated agricultural lands in the world is affected by salt (Munns and Tester 2008). The negative effects of salinity on plants growth are associated with low osmotic potential of soil solution, nutritional deficiencies or imbalance (Grattan and Grieve 1999), ionic stress (Munns and Tester 2008), and oxidative stress (Mittler 2002) as salt stress induces the generation of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion, and hydroxyl radical, thereby triggering lipid peroxidation in both cellular and organellar membranes (Mittler 2002, Gill and Tuteja 2010). Membrane damage caused by salt stress-induced ROS was found a major cause of the cellular toxicity in various plant species such as rice, tomato, citrus, pea, and mustard (Gueta-Dahan et al. 1997, Dionisio-Sese and Tobita 1998, Mittova et al. 2004, Salama et al. 2007, Zamani et al. 2010, Ahmad et al. 2012.),. To protect against salt stress-induced damage in membranes, plants have evolved an effective membrane repair system to maintain the membrane integrity.

Salt stress can cause injury to the cellular membrane and limit rice production. Lipid transfer proteins were reported to have a function in repairing stress-induced damage in membranes by facilitating the transfer of phospholipids, glycolipids, fatty acids, and steroids between membranes (Torres-Schumann et al. 1992, Holmberg and Bulow 1998). Although the roles of a few rice LTPs have been elucidated, how Ltp genes are regulated by salinity at the molecular level during plant development is not well understood. Here, we aimed to identify and characterize potential Ltp genes that might be important for recovery after salt stress-induced damage in rice. To efficiently identify salt responsive Ltp genes, we used microarray assay. We also investigated the abiotic stress-responsive expression patterns and subcellular localization of salt-inducible LTPs/LTPLs to provide new clues about the possible roles of rice salt-inducible Ltps/LtpLs in plant development and stress response.

Materials and methods

Plant materials, growth conditions, and stress treatment: Seeds of rice (Oryza sativa L.) japonica type cv. Tainung 67 (TNG67) were surface-sterilized with 2.5 % (m/v) NaOCl for 15 min, washed extensively with sterile water, and germinated in the dark on wet filter paper in Petri dishes at 37 °C for 48 h. After incubation, uniformly germinated seeds were selected and cultivated in a 150 cm2 beaker containing half-strength Kimura B (Yoshida et al. 1972) solution replaced every 3 d. The hydroponically cultivated seedlings were grown in a Phytotron (Agricultural Experimental Station, National Taiwan University, Taipei) under natural irradiance and day/night temperatures of 30/25 °C and a 90 % relative humidity. Two-week-old seedlings underwent different treatments by replacing the medium with fresh medium supplemented with 200 mM NaCl, 200 mM mannitol, 10 mM H2O2, 20 μM ABA, or 10 mM CaCl2. For cold stress, the seedlings were transferred to a growth chamber and maintained at 4 °C. Samples were collected after 0, 1, 3, 6, and 12 h, frozen in liquid nitrogen, and stored at -80 °C.
Microarray analysis: For microarray analysis, 2-week-old seedlings were treated in hydroponic solution with or without 200 mM NaCl for 6 h. RNA samples were prepared from shoot tissue by use of TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Transcriptome analysis involved the use of the Rice 4 × 44K Microarray RAP-DB (G2519F#15241; Agilent Technologies, Santa Clara, CA, USA) for three biological replicates and color swaps for each replicate. Fluorescent probe labeling and hybridization were performed according to the manufacturer’s instructions. Slides were scanned on an Agilent G2505C DNA microarray scanner. Scanned images were analyzed with Feature Extraction Software v. 10.5.1.1 (Agilent Technologies), with default parameters, to obtain background-subtracted and spatially detrended processed Cy3 signal intensities. For statistical analysis, genes with signal intensities less than 100 in all experiments were excluded after correction of the dye effect by averaging the two color swaps. Statistical analysis involved unpaired Student t-test with the use of GeneSpring GX11 (Agilent Technologies). In the t-test, P values were adjusted for multiple testing by the Benjamine and Hochberg’s method to correct the false discovery rate for multiple testing. The fold change for each probe after salt treatment was calculated by the mean of three biological replicates. Expressions of lipid transfer proteins with greater than two-fold change regulated by NaCl were selected for further analysis.

Tissue-specific expression analysis and gene expression profiles under abiotic stresses: For tissue-specific gene expression analysis, shoots and roots of 2-week-old rice seedlings and then flag leaves, leaf sheaths, stems, roots, flowers (at booting stage), and seeds (at milky stage) were harvested for reverse transcription (RT)-PCR analysis. Total RNA was isolated from shoot tissues of 2-week-old rice seedlings by the use of TRIzol reagent (Invitrogen). To prevent DNA contamination, RNA was treated with Turbo DNase I (Ambion, Austin, TX, USA) at 37 °C for 30 min before real time PCR analysis. Control PCR amplifications involved RNA used as a template after DNase I treatment to verify the complete elimination of contaminated DNA. Reverse transcription reactions involved 200 ng total RNA with the SuperScript III platinum one-step quantitative RT-PCR system (Invitrogen). The gene-specific primers were designed from the 3′-UTR of rice LtpII.3 (Os03g0111300), LtpII.5 (Os05g0550600), LtpII.6 (Os06g0705400), LtpV.1 (Os01g0849000), LtpV.2 (Os04g0415800), LtpL1 (Os06g0686400), and LtpL2 (Os07g0290500) (Table 1 Suppl.). The RT-PCR program was 50°C for 30 min; 94 °C denaturation for 5 min, followed by 94 °C for 30 s, 22 to 32 cycles of 50 °C for 30 s, and 68 °C for 30 s. All tests were repeated at least three times, and a representative repeat is shown. For all treatments, three replicates of RT-PCR were conducted with 3 batches of total RNA samples isolated independently. The PCR products were resolved by electrophoresis in 2 % (m/v) agarose gel and stained with ethidium bromide. Rice Actin1 was used as a reference for normalization.

Sequence alignment and phylogenetic analysis: To identify the rice LTPs and LTPLs homologs, sequences were aligned with the use of Clustal W 2.0 (Larkin et al. 2007), followed by manual alignment. Phylogenetic trees were constructed by using conserved regions of protein sequences with the neighbor-joining algorithm (MEGA 5.0) with the option of pairwise deletion (Tamura et al. 2011). To test inferred phylogeny, we used bootstraps with 1 000 bootstrap replicates. The transit peptide was predicted by Chloro P 1.1 (Emanuelsson et al. 1999). The maize ubiquitin1 promoter, together with its intron (Ubi1), was used to drive the constitutive expression (Christensen and Quail 1996) of green fluorescent protein (GFP), and Ltps-DsRed. Primers used for construction are in Table 1 Suppl. The pGOM2 plasmid was used as an ER marker (Wu et al. 2015).

Analysis of subcellular localization: Rice protoplasts were isolated from in vitro culture of 2-week-old rice seedlings as described by Zhang et al. (2011). PEG-mediated transient transformation was done according to the method described by Yoo et al. (2007). To detect endoplasmic reticulum, GFP-KDEL plasmid was used for PEG transient transformation. Fluorescence signals were visualized under a confocal laser-scanning microscope (Leica TCS SP5 II, Leica, Wetzlar, Germany). The excitation wavelength for GFP and chlorophyll autofluorescence was 488 nm. The emission wavelengths were 500 - 535 nm for GFP, 650 - 750 nm for chlorophyll autofluorescence and 570 - 630 nm for DsRed. All fluorescence experiments were repeated independently at least 3 times.

In silico analysis of rice Ltps and LtpLs promoters: Search for cis-regulatory elements in the 1.5-kb 5’ regions of Ltps and LtpLs involved the signal scan search provided by PLACE (http://www.dna.affrc.go.jp/htdocs/PLACE) (Higo et al. 1999).
Results

To examine the transcriptomic changes of lipid-transfer-protein genes in rice seedlings under salt stress, the whole genome expression profile of 2-week-old rice seedlings treated with 200 mM NaCl for 6 h was generated by rice 4 X 44K oligonucleotide microarray. Five Ltp genes (LtpII.3, LtpII.5, LtpII.6, LtpV.1, and LtpV.2) and two Ltp-like (LtpL) genes (LtpL1 and LtpL2) were up-regulated at least two-fold by salt stress in rice seedlings (Table 1). Under salt stress, LtpII.3, LtpII.5, and LtpV.2 were most highly up-regulated and LtpII.6 and LtpV.1 slightly up-regulated. Among the LtpL genes, LtpL1 and LtpL2 exhibited 9.1- and 2-fold up-regulation, respectively, with salt stress.

Table 1. Lipid transfer protein genes in rice seedlings significantly up-regulated by 200 mM NaCl for 6 h.

<table>
<thead>
<tr>
<th>Name</th>
<th>Probe Name</th>
<th>MSU ID</th>
<th>Annotation</th>
<th>Fold change</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LtpII.3</td>
<td>CUST_33540_Rice4x44kGene</td>
<td>LOC_Os03g02050</td>
<td>nonspecific LTP 2</td>
<td>419.0</td>
<td>0.000</td>
</tr>
<tr>
<td>LtpII.5</td>
<td>CUST_33819_Rice4x44kGene</td>
<td>LOC_Os05g47730</td>
<td>nonspecific LTP</td>
<td>97.0</td>
<td>0.000</td>
</tr>
<tr>
<td>LtpII.6</td>
<td>CUST_18812_Rice4x44kGene</td>
<td>LOC_Os06g49190</td>
<td>nonspecific LTP 2P</td>
<td>6.3</td>
<td>0.001</td>
</tr>
<tr>
<td>LtpV.1</td>
<td>CUST_1754_Rice4x44kGene</td>
<td>LOC_Os01g62980</td>
<td>LTP101</td>
<td>2.4</td>
<td>0.000</td>
</tr>
<tr>
<td>LtpV.2</td>
<td>CUST_11592_Rice4x44kGene</td>
<td>LOC_Os04g33920</td>
<td>plant LTP</td>
<td>582.0</td>
<td>0.000</td>
</tr>
<tr>
<td>LtpL1</td>
<td>CUST_21527_Rice4x44kGene</td>
<td>LOC_Os07g19000</td>
<td>plant LTP</td>
<td>9.1</td>
<td>0.001</td>
</tr>
<tr>
<td>LtpL2</td>
<td>CUST_26263_Rice4x44kGene</td>
<td>LOC_Os10g40510</td>
<td>plant LTP</td>
<td>2.0</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Fig. 1. Expression profiles of the seven salt-inducible Ltps in rice shoots (A) or roots (B) in response to external stimuli. Total RNA was isolated from roots or shoots of hydroponically cultivated 2-week-old seedlings exposed to 200 mM NaCl, 200 mM mannitol, 10 mM H2O2, 4 °C, 20 μM abscisic acid (ABA), 10 mM CaCl2 for 0, 1, 3, 6, or 12 h. The rice Actin1 gene was an internal control.

Phylogenetic analysis revealed that five Ltp and two LtpL genes formed a clade with high bootstrap value, which indicates high sequence homology (Fig. 1 Suppl.). Comparison of amino acid sequences of the five LTPs and two LTPLs revealed a signal peptide sequence at the N terminus of all LTP-related proteins (Fig. 2 Suppl.). In addition to LTPL1, all LTPs showed eight conserved cysteine residues in the peptide sequences. The LTPL1 peptide sequence showed only five conserved cysteine residues, with the second, seventh, and eighth conserved cysteine residues missing (Fig. 2 Suppl.).

To determine the response of Ltp-related genes under other abiotic stresses, we analyzed the temporal gene expression pattern of the five Ltp genes and the two LtpL genes in shoots of rice seedlings treated with NaCl, mannitol, H2O2, 4 °C, ABA, and CaCl2 (Fig. 1A). LtpV.1 was expressed in untreated rice seedlings but not LtpII.3, LtpII.5, LtpII.6, LtpV.2, LtpL1, and LtpL2. With NaCl treatment, all Ltp and LtpL genes were up-regulated. Both mannitol and H2O2 treatments increased the expression of
In silico analysis of putative cis-acting elements in 1.5-kb 5' regulatory sequences of rice Ltp and LtpL genes. Positions are with respect to the first base of the translation start site (ATG). The putative cis-elements are indicated in boxes. B - Frequency of the various abiotic stress responses-related cis-acting elements in LTP promoter regions. ABRE - ABA response element; CRT/DRE - C-repeat element/dehydration response element; MYB - MYB transcription factor binding site; MYC - MYC transcription factor binding site; ROSE - ROS/oxidative stress-responsive element.

$LtpII.3$, $LtpII.5$, $LtpII.6$, $LtpV.2$, $LtpL1$, and $LtpL2$, but no increased expression was in $LtpII.6$ with H_2O_2 treatment. With cold treatment, $LtpII.5$, $LtpV.1$, and $LtpL2$ were induced, but no expression of $LtpII.3$, $LtpII.6$, $LtpV.2$, and $LtpL1$ was detected. With ABA treatment, $LtpII.3$, $LtpII.5$, $LtpV.1$, and $LtpV.2$ were up-regulated, but no expression of $LtpII.3$, $LtpII.6$, $LtpL1$, and $LtpL2$ was detected. With CaCl$_2$ treatment, $LtpV.1$ and $LtpV.2$ were up-regulated, but no expression of $LtpII.3$, $LtpII.5$, $LtpII.6$, $LtpL1$ and $LtpL2$ was detected. In roots, $LtpV.2$ and $LtpL2$ were expressed under the normal conditions. With NaCl treatment, $LtpII.3$, $LtpV.1$, and $LtpL1$ were up-regulated, but no expression of $LtpII.3$ and $LtpII.6$ was detected. With mannitol and H_2O_2 treatments, $LtpII.3$ and $LtpL1$ were up-regulated. $LtpV.2$ and $LtpL2$ were constitutively expressed, with no $LtpII.3$ and $LtpII.6$ expression in root tissues (Fig. 1B).

An in silico analysis of a 1500-bp upstream region from the translational start site of five Ltp and two LtpL genes using the PLACE database (http://www.dna.affrc.go.jp/PLACE/) revealed the presence of various regulatory elements such as an ABA-responsive element.
(ABRE), MYB transcription factor recognition sequence (MYB), MYC transcription factor recognition sequence (MYC), dehydration-responsive/C-repeat element (DRE/CRT), and ROS/oxidative stress-responsive element (ROSE) motif, known to widely regulate various abiotic stress responses. Differences were observed also in the number and position of these cis-acting elements among the Ltp-related genes. All Ltp-related genes possessed most of the above-mentioned motifs except LtpII.5, which lacked the ROSE promoter element, and LtpL2, which lacked two cis-motifs such as DRE/CRT and ROSE. Interestingly, MYB and MYC motifs were present in all the Ltp-related genes, accounting for the response of these genes to drought and/or ABA (Fig. 2A, 2B).

Determination of spatial and temporal expression of Ltp-related genes at the seedling stage showed that LtpV.1 was expressed at low amounts only in shoots, whereas LtpV.2 and LtpL2 were expressed only in roots. No RNA transcripts could be detected for LtpII.3, LtpII.5, LtpII.6, and LtpL1 at the seedling stage. At the reproductive stage, LtpII.3 was expressed only in flowers and seeds. Expression of LtpII.5 and LtpII.6 was restricted to stem, flowers, and seeds. LtpV.1 was strongly expressed in stem, with lower expression in flag leaves and leaf sheaths and no expression in flowers, seeds, and roots. LtpL1 expression was restricted to the flag leaf, flowers and seeds. LtpL2 was expressed in stems, flowers, and roots, with no expression in flag leaves, leaf sheaths, and seeds (Fig. 3).

To observe the subcellular localization of LTP and LTPL proteins in rice cells, we fused the five Ltp and two LtpL genes to the coding region of DsRed reporter gene and observed their localization by PEG-mediated transient expression in rice protoplasts. The all seven tested genes targeted to the endoplasmic reticulum; the control DsRed protein was localized to the cytosol (Fig. 4).

Discussion

The plant LTPs are a multi-gene family and have been classified into two subfamilies by molecular mass: LTP1 (~9 kD) and LTP2 (~7 kD) (Yeats and Rose 2007). In rice, the first Ltp gene was described by Vignols et al. (1994) and then more genes have been cloned (Vignols et al. 1997) and annotated (Boutrot et al. 2008). However, their nomenclature may be confusing (Table 2 Suppl.). In this study, we used the accessions of the Rice Genome Annotation Project database (Kawahara et al. 2013) and nomenclature proposed by Boutrot et al. (2008).

This work reports five Ltp and two Ltp-like genes up-regulated by salinity (Table 1). In addition to salt stress, other stimuli, such as mannitol, \(\text{H}_2\text{O}_2 \), cold, ABA, and \(\text{CaCl}_2 \), elicited a response, which indicates a significant role for these genes in abiotic stress-triggered signaling and stress tolerance in rice plants (Fig. 1). Moreover, the stress-induced expression of rice LtpII.3 and LtpII.6 was also tissue-specifically regulated in rice seedlings. RNA transcripts of LtpII.3 and LtpII.6 were not detected in root tissues before and after stress treatments. However, the expression of LtpII.3 in shoots was induced by NaCl, mannitol, and \(\text{H}_2\text{O}_2 \), and that of LtpII.6 was induced by NaCl and mannitol. In contrast, the stress response of LtpV.2 and LtpL2 was restricted to shoot tissues, and constitutive in root tissues. LtpV.2 and LtpL2 expressions were not detected in root tissues before and after stress treatments (Fig. 1). In shoot tissues, the salt-inducible genes showed distinct responses to ABA: LtpII.5, LtpV.1 and LtpV.2 were upregulated by ABA, but LtpII.3, LtpII.6, LtpL1, and LtpL2 were not affected by ABA. Therefore, the expression of Ltp genes was mediated by an ABA-dependent or ABA-independent pathways.

Gene expression of Ltps regulated by external stimuli was not parallel between roots and shoots. For example, the expression of LtpV.1 was induced by salt, cold, ABA, and \(\text{CaCl}_2 \) in shoots, but its expression was up-regulated by NaCl and cold but not ABA and \(\text{CaCl}_2 \) in roots. The expression of LtpV.2 was induced by ABA, whereas that of LtpL2 did not respond to ABA. Interestingly, both genes showed constitutive expression in root tissues (Fig. 1). These data indicate that ABA-dependent or independent gene expression was also tissue-specific. The expression patterns of LtpII.3 (formerly named LTP2) and LtpV.2 (formerly named Os04g33920) were previously reported by Garcia-Garrido et al. (1998) and Tapia et al. (2013). The tissue-specific and stress-induced expression patterns of LtpII.3 were mostly consistent with previous study except the response to ABA. In this study, LtpII.3 was not induced by ABA, but the previous study showed that LTP2 was induced by ABA (Garcia-Garrido et al. 1998). The inconsistency may result from the use of different rice cultivars or plant materials at different stages for gene expression analysis. Rice seeds imbibed for 3 d were used for ABA treatment in this study. In agreement with earlier study (Wang et al. 2012), LtpV.2 transcripts were increased by dehydration in shoots. Conversely, the response to salinity showed distinct expression patterns. Possible reasons for inconsistent result can be attributed to the different cultivars used or treatments with different NaCl concentrations.

Apart from understanding the effect of different stresses on the transcription of the five Ltp and two LtpL genes, we checked the expression of these genes in different tissues at seedlings and reproductive stages. All seven genes showed distinct expression patterns with significant induction or repression or no change in expression at various stages of development, specifically or in common. Spatial and temporal fluctuations in the expression of these genes suggest that these genes might affect specific developmental stages positively or
negatively and ultimately could affect overall rice growth and development. Distinct patterns of expression also indicate non-redundancy and possible function in a coordinated manner to regulate rice development. Most interestingly, we observed that three LtpII group genes (LtpII.3, LtpII.5, LtpII.6) showed specific expression in flowers and seeds, and very strong expression of LtpV.1 in stem tissue (Fig. 3).

From the in-silico analysis of promoters for the five Ltp and two LtpL genes, we found five important cis-regulatory elements (ABRE, MYB, MYC, DRE/CRT, and ROSE motifs) known to regulate abiotic stress mediated responses of various genes (Fig. 4). Analysis of the promoter elements supports the expression patterns of these genes under diverse stress conditions. Gene expression patterns of the salt-inducible Ltp and LtpL genes revealed that they contained elements associated

Fig. 4. Subcellular localization of LTPs in rice protoplasts. Rice leaf sheath protoplasts were transiently transformed with C-terminal DsRed fusions to full length LtpS or LtpLs. LTP-DsRed fusion proteins were co-expressed with an endoplasmic reticulum (ER) marker. Maximum intensity signals from confocal images are shown for DsRed fluorescence (DsRed), YFP fluorescent ER marker (YFP(ER), GFP fluorescence (GFP), chlorophyll autofluorescence (Chl), an overlay of all fluorescence (merge), and bright-field image of the selected protoplast (bf). The constructs are depicted on the left. Bars = 2.5 μm.
with ABA-dependent and -independent stress responses. Previous report indicated that gene response to ABA and calcium shares the same element (ABRE) in the promoter region (Kaplan et al. 2006). LtpII.5 possesses six ABREs on the 1.5-kb promoter region. Surprisingly, LtpII.5 showed a distinct response to ABA and calcium in roots and shoots: LtpII.5 was induced by both ABA and calcium in roots but only by ABA and not by calcium in shoots (Fig. 1), so gene expression mediated by ABA and calcium may also be tissue-specific.

The localization of LTP has been reported in different organelles or tissues. Wheat LTPs are localized in membrane and cytoplasm (Wang et al. 2014) or cell walls (Safi et al. 2015). By immunocytological methods, Arabidopsis LTP1 was found to be localized at cell walls and the cytoplasm (Potocka et al. 2012). Arabidopsis LTP3 protein was localized to the cytoplasm (Guo et al. 2013), with another A2II protein expressed in endoplasmic reticulum (ER) and plasmodesmata (Yu et al. 2013). A GPI-anchored LTP in Physcomitrella patens was localized at the plasma membrane (Edstam et al. 2014). Several reports revealed LTPs localized in secretory vesicles of Brassica chinensis (Wang et al. 2008) and Capsicum annum (Diz et al. 2011), and glyoxysomes of Ricinus communis (Tsuboi et al. 1992) and Helianthus annuus (Pagnussat et al. 2012). We found the five LTP and two LTPL are localized at the ER (Fig. 4). These results are consistent with the existence of N-terminal signal peptide sequences in LTPs identified in this study (Fig. 2 Suppl).

In conclusion, we identified and validated five Ltp and two Ltp-like genes that were highly up-regulated under salt stress by microarray analysis. Differential gene expression patterns under various abiotic stress treatments and different development stages in both shoots and roots highlights the important biological role of these seven genes in overall rice growth and development. Subcellular localization studies showed that LTP and LTPL were all targeted to the endoplasmic reticulum. Future studies involving GUS histochemical analysis to check the tissue-specific expression and knock-out/knock-down studies would provide a clear idea about the specific site of action and the functional role of these genes in rice growth and development.

References

