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Abstract

About 70 % of the total land area in the world are affected by soil freeze and thaw (FT) cycles. Root is the first organ of
plant to sense soil environment and it is unclear how it copes with the soil FT. Based on the different functions of first-
order pioneer and fibrous roots in woody plants, we hypothesize that pioneer and fibrous roots respond differently. The
experiment was conducted in a growth chamber using Picea asperata seedlings. We designed the FT based on field
observation data. The physiological responses in fibrous and pioneer roots were examined. Fibrous roots had higher
root vitality and N content, whereas pioneer roots exhibited higher total nonstructural saccharide content. The
accumulation of O,  under FT treatment was similar in the two types of roots. Pioneer roots showed higher osmolyte
(especially proline) content, whereas fibrous roots had higher peroxidase activity. The present study confirmed that
fibrous roots have stronger metabolism ability, whereas pioneer roots are the key storage organs. FT in the temperature
range from -5 to 5 °C are mild and do not cause serious injury to roots. Pioneer roots have higher tolerance to soil FT in
spring than fibrous roots. The roots have different strategies to FT: fibrous roots increase the antioxidant system,
whereas pioneer roots accumulate more osmolytes. Such knowledge can help us to understand how roots of woody
plants cope with soil FT.
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Introduction

Seasonal freeze and thaw of soil are one of the most
significant temporal variability at high latitude and high
altitude areas (Joseph and Henry 2008). Frequent freeze
and thaw events occur mainly in late autumn and early
spring in the subalpine/alpine forests (Tan et al. 2011,
Zhu et al. 2012). The maximum extent of seasonally
frozen ground is about 55 % of the total land area of the
northern hemisphere (Zhang et al. 2003). Soil freeze-
thaw (FT) cycles are common in this area, however, they
received relatively less attention than in permafrost
regions (Zhang et al. 2003). Global warming coupled
with extreme and variable weather decreases snow cover

(Easterling et al. 2000, Mellander et al. 2007), which can
change the frequency of soil FT (Groffman et al. 2001,
Henry 2008). These processes have considerable impacts
on ecosystems (Kreyling 2010) including soil thermal
and hydraulic properties (Smith ef al. 2004, Kimball ef al.
2006) and plant species compositions (Joseph and Henry
2008).

Damage to vegetation by a sudden frost is evident
(Gorsuch and Oberbauer 2002), and a thaw can also be
injurious to vegetation. Some researchers have found that
fine root growth, longevity, and dynamics (Tierney et al.
2001, Repo et al. 2014), root-associated fungi (Kreyling
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et al. 2012), nitrogen uptake (Malyshev and Henry 2012,
Campbell er al. 2014), and ecosystem composition and
productivity (Schuerings et al. 2014) are affected by soil
FT. The roots are usually more frost-sensitive than above-
ground parts (Tierney et al. 2001, Gaul et al. 2008,
Schaberg et al. 2008), and frozen soil often causes
damage of root cells (Cleavitt et al. 2008). Fine roots are
a highly heterogeneous system with a complex structure
of branches (Pregitzer et al. 2002). Freeze tolerance of
fine roots vary with their structure and age. Generally,
mature woody roots are more frost tolerant than young
roots and frost tolerance is lowest at the root tips (Havis
1976, Colombo et al. 1995). Based on Strahler’s system,
the most distal root tips were defined as the first order
(Pregitzer et al. 2002). In woody plants, even the first-
order roots are classified to fibrous roots (absorptive,
short, or feeder) and pioneer roots (framework, long, or
skeletal) (Horsley and Wilson 1971, Lyford 1980) by
their roles. Polverigiani et al. (2011) reported that fibrous
and pioneer roots have different responses to soil
moisture deficits.

The subalpine coniferous forest ecosystems in the
Eastern Tibetan Plateau located at the transition zone
from the Qinghai-Tibet Plateau to the Sichuan Basin can
be very susceptible to global climate change. Spruce
(Picea asperata Mast.) is a dominant species and plays an
important role in maintaining regional ecosystem stability

Materials and methods

Plants and experimental design: This study was
conducted at Chengdu Institute of Biology, Chinese
Academy of Sciences, Chengdu, Sichuan, China. The soil
FT was designed based on the observed meteorological
data from Maoxian, a town in the west of Sichuan. From
December 1, 2010 to March 31, 2011, the mean air
temperature in this area was about 0.06 °C, diurnal air
temperature fluctuations ranged mainly from -5 to +5 °C,
and several FT occurred during the experimental period.
In addition, with the increase in air temperature, great
diurnal temperature fluctuations were observed, which
led to rapid FT in early March 2013. Thus we designed
typical air temperature profiles of the FT treatment
(Fig. 1 Suppl.). Namely, at first, the seedlings were
subjected to 3 diurnal FT fluctuations with air
temperature varying between -5 and +5 °C (air
temperature decreased or increased by 0.85 °C h’',
minimum temperature at 3:00 and maximum temperature
at 15:00); then maintained for 2 d to ensure complete
freeze under the minimum air temperature -5 °C, and then
the plants were exposed to +5 °C for 2 d after thaw. The
target air temperatures for the entire experiment ranged
from -5 to +5 °C, and 3 repeated FT were performed. The
air temperature of the control treatment was maintained at
5 °C. The air and soil temperature (at 5 cm below ground)
were recorded using DS1921G Thermochron iButton data
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and succession in subalpine coniferous ecosystems of
western Sichuan. P. asperata is a shallow root species
that is vulnerable to the damage caused by environmental
changes (Hennon et al. 2008, Schaberg et al. 2008).
Meanwhile, first-order roots were considered as sensitive
indicators of environmental changes (Polverigiani et al.
2011, Yin et al. 2014). Based on functions of pioneer and
fibrous roots in woody plants, we hypothesize that
pioneer and fibrous roots also respond differently to FT,
namely, the former would show higher tolerance to soil
FT in spring than the latter. Besides, we also expect
pioneer and fibrous roots have different physiological
mechanisms in response to FT. It is well known that
plants would try to alleviate oxidative stress and cellular
damage through osmotic adjustment and antioxidant
defense systems that include carotenoids, ascorbate, and
enzymes such as superoxide dismutase (SOD),
peroxidase (POD) and so on when exposed to
environmental changes (Noctor and Foyer 1998, Acosta-
Motos et al. 2014). Thus, the current study was
conducted to expose the seedlings of P. asperata to soil
FT, aiming to reveal the physiological responses of
pioneer and fibrous roots and explore the potential
protective mechanisms of fibrous and pioneer roots under
FT. Such knowledge is necessary to understand how
roots of woody plants cope with soil FT.

loggers (Dallas Semiconductor, Sunnyvale, CA, USA)
(Fig. 1 Suppl.).

A total of 30 healthy, uniform 2-year-old Picea
asperata Mast. seedlings were selected based on plant
height (about 28 cm) from a local nursery, and
transplanted into plastic pots filled with homogenized soil
(mountain brown earth with pH 5.85, 62.70 g kg™' organic
C, 3.66 g kg total N, 0.43 g kg™ total P, and 7.92 g kg
total K). The seedlings were grown in natural environ-
ment with routine management for about 5 months.
Afterward, the seedlings were exposed to treatment in a
growth chamber (Percival LT36VL, model 14, lowa,
USA) from 3" to 27™ March 2013. Fifteen P. asperata
seedlings were exposed to FT and other 15 seedlings
were grown as controls. In both control and FT
treatments, daily irradiance (photosynthetically active
radiation) was maintained at about 800 + 50 pmol m? s’
(based on the maximal measured data at sunny days of
winter in Maoxian), and a relative humidity at 65 - 70 %.
Before each FT procedure, all plants were watered to the
field capacity, i.e., the soil water content was about 38 %.
To avoid systematic errors resulting from the possible
differences in microclimates caused by different place in
the chamber, the pots were rotated every three days.

All plants were harvested at the last day of the
experiment (27" March 2013). Roots obtained from the



pots were immediately taken to the laboratory, cleared
from adhering soil particles and organic matter, rinsed
with deionized cold water (4 °C), and dissected into
fibrous and pioneer roots. The root parts were stored in
plastic bags in a refrigerator at 4 °C and processed within
4 d. In each replication, root samples from 5 seedlings
were mixed, so all measurements were carried out in
triplicate.

Root vitality assay was performed using a modified
triphenyltetrazolium chloride (TTC) test (Li et al. 2000).
The root samples were blot-dried by filter paper and then
cut into 1 - 2 mm long segments. Root vigour was
expressed according to triphenylformazan reduction per
1 g of fresh mass per min.

Enzyme activities and ascorbic acid content: Crude
enzyme extract was prepared according to Prochazkova
et al. (2001). Briefly, root samples (0.2 g) were placed in
an ice bath to preserve proteolytic activity and ground
with 8 cm® of 0.1 M phosphate buffer (pH 7.5) containing
0.5 mM ethylenediamine tetraacetic acid (EDTA) and
I mM ascorbic acid (ASA). The homogenate was then
centrifuged at 15000 g and 4 °C for 20 min and the
supernatant was used to determine superoxide dismutase
(SOD; EC 1.15.1.1) and peroxidase (POD; EC 1.11.1.7)
activities. The SOD activity was determined by
measuring the ability to inhibit the photochemical
reduction of nitroblue tetrazolium, and one unit of
enzyme activity was expressed as the amount of enzyme
that reduced absorbance to 50 % compared with tubes
that lacked the enzyme (Costa et al. 2002). The POD
activity was assayed by estimating the increase in
absorbance due to the formation of tetraguaiacol. One
unit of enzyme activity was defined as the increase of
absorbance (As7) by 0.01 per minute. ASA was
determined as described by Hodges et al. (1996).

Superoxide radical production, malondialdehyde
content, and relative electrolyte leakage: The rate of
O, production was analyzed following the method of
Sairam et al. (1997). Malondialdehyde (MDA), as a
marker for lipid peroxidation, was determined according
to Hodges et al. (1999) and calculated by the formula:
MDA content = 6.45 x (Asz - Agoo) - 0.56 x Ays.
Relative electrolyte leakage (REL) was measured as an
indicator of cell damage. The roots (about 0.2 g) were
rinsed three times with deionized water to remove the
surface-adhered electrolytes, placed in tubes containing
20 cm’ of deionized water, and then incubated on a
shaker at 25 °C for 30 min. Electrical conductivity of the
bathing solution (EC;) was determined by conductometer
LC116 (Mettler-Toledo Instruments, Shanghai, China).
The tubes were then incubated in a boiling water bath

TREE ROOTS AND FREEZE-THAW CYCLES

(100 °C) for 10 min, cooled to room temperature, and the
electrical conductivity (EC,) was measured. The REL
was calculated as: EC,/EC, x 100 according to Martin
etal. 1987.

Analyses of the content of free proline, proteins,
sugars, carbon, and nitrogen: Proline was quantified by
a colorimetric reaction with ninhydrin according to Bates
et al. (1973) and determined from a standard curve of 0 to
20 pg of proline. The amount of soluble protein was
quantified as described by Bradford (1976) using bovine
serum albumin as a standard. Soluble sugars and starch
were estimated spectrophotometrically using an anthrone-
sulphuric acid reagent as described by Hansen and Moller
(1975). Total nonstructural saccharides (TNC) was
calculated as the sum of soluble sugars and starch. Root
samples were oven-dried at 105 °C for 1 h, followed by
drying at 70 °C to a constant mass. In the ground tissues,
total carbon and nitrogen were analyzed using a CHN
analyzer (Model 2100, Perkin-Elmer, Norwalk, USA).

Statistical analyses: Two-way analysis of variance
(ANOVA) was conducted to evaluate the effects of soil FT
treatment and root types. The full factorial model was
employed to find the interaction between soil FT and root
type. Individual differences among means were deter-
mined by Duncan’s test at P < 0.05. Principal component
analysis (PCA) was used to reduce dimension, to show
similarities as well as differences in the individual
characteristics and responses of fibrous and pioneer roots
to FT. The first two components of PCA were
considered, for their cumulative eigenvalue was 82.58 %.
All statistical analyses were carried out using the
software package SPSS v. 16.0 (SPSS Inc., Chicago,
USA).
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Fig. 1. Effect of soil freeze-thaw (FT) cycle on root vitality of
the fibrous and pioneer roots. Means + SDs, n = 3; different
letters indicate significant differences (P < 0.05, Duncan test).
Results of ANOVA: effect of FT at P < 0.05, effect of root type
at P < 0.001, nonsignificant interactions.
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Results

Root vitality was significantly affected by FT and root
type, but no significant interaction of treatment X root
type was observed (Fig. 1). FT treatment in spring
increased root vitality of both fibrous and pioneer roots,
but more in pioneer roots (by 36.1%). Nevertheless, the
fibrous roots had significantly higher root vitality than
pioneer roots.
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Fig. 2. Rate of superoxide radicals (O,) production (A4),
malondialdehyde (MDA) content (B), and relative electrolyte
leakage (REL) (C) of the fibrous and pioneer roots under soil
freeze-thaw (FT) cycles. Means = SDs, n = 3; different letters
indicate significant differences (P < 0.05, Duncan test). Results
of ANOVA: effect of FT for O,” and MDA at P < 0.05 and for
REL at P < 0.001; effect of root type for for O,” and MDA non-
significant, for REL at P < 0.01; interaction for O, and MDA
non-significant, for REL at P < 0.001.

The O, production and MDA content were only
affected by the FT treatment, and not by root type and
their interaction (Fig. 24,B). FT significantly reduced the
rate of O, production and MDA content. The FT
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treatment also decreased REL and pioneer roots had
higher REL than fibrous roots. Moreover, the REL of
pioneer roots in FT treatment was 43.5 % lower than that
of control (Fig. 2C).

Ascorbic acid (ASA) content was slightly affected by
FT in pioneer roots but not in fibrous roots (Fig. 34).
SOD activity was significantly affected by FT treatment
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Fig. 3. Ascorbic acid (ASA) content (4), superoxide dismutase
(SOD) activity (B), and peroxidase (POD) activity (C) of the
pioneer and fibrous roots under soil freeze-thaw (FT) cycles.
Means + SDs, n = 3; different letters indicate significant
differences (P < 0.05, Duncan test). Results of ANOVA: effect
of FT for ASA content and SOD activity at P < 0.01, for POD
non-significant; effect of root type for ASA non-significant, but
for SOD and POD at P < 0.01; interactions for ASA and SOD
at P < 0.01, for POD non-significant.

and root type, but no significant interaction was observed.
The SOD activity was decreased by FT but significantly
only in fibrous roots, and fibrous roots had higher SOD
activity than pioneer roots (Fig. 3B). Similarly, the POD



activity in fibrous root was higher than that in pioneer
roots. The POD activity was affected only by root type,
and not significantly by FT treatment and their interaction
(Fig. 3C).

Compared with fibrous roots, pioneer roots had higher
free proline, soluble sugar, and protein content.
Especially, free proline content of pioneer roots was
twice as much as in fibrous roots under FT treatment
(Fig. 44). Whereas, FT treatment increased free proline
content, it decreased soluble sugar and protein content of
pioneer roots, but no significant changes were observed

Discussion

Root systems have a complex organization with different
roots having different functions for resource acquisition
or storage (Waisel and Eshel 2002). Root vitality is an
important metabolism index and has a direct relationship
to the ability of resource acquisition. Besides, high
N content and low C/N ratio are also the indices that
reflect the strong metabolic activity of roots (Guo et al.
2004). Our results showed that fibrous roots have greater
root vitality (Fig. 1), higher N content, and lower C/N
ratio (Fig. 54,B) than pioneer roots, indicating that
fibrous roots have higher metabolic ability than pioneer
roots. In contrast, pioneer roots exhibited higher soluble
protein (Fig. 4B), soluble sugar (Fig. 4C), starch
(Fig. 5C), and TNC content (Fig. 5D) than fibrous roots,
which highlighted that pioneer roots were key storage
organs. The results confirmed that fibrous and pioneer
roots have great physiological differences. Fibrous roots
primarily guarantee favourable water and nutrients supply
(Xia et al. 2010, Zadworny and Eissenstat 2011), whereas
pioneer roots accumulate sugars and proteins to facilitate
growth of fibrous roots (Lyford 1980). Additionally, it
was proved that pioneer roots have stronger growth
plasticity than fibrous roots (Polverigiani ez al. 2011).
Even if TTC reduction in this study was relatively
lower than that found in other literature (Ruf and Brunner
2003), the root samples were alive based on their colour
and texture. The lower root vitality might be caused by
low temperature (Sardans et al. 2007) in spring and by
treatments. Electrolyte leakage has good correlation with
survival under freeze stress (Sutinen et al. 1992).
Electrolyte leakages of both fibrous and pioneer roots
were less than 50 % (Fig. 2C), which implied that FT
treatment did not cause serious injury to the roots. Our
findings are in line with the results of those employing
moderate amplitude of FT cycles (Larsen et al. 2002,
Sjursen et al. 2005). Similarly, Tierney et al. (2001)
found that mild freeze temperatures (-5 °C) are
insufficient to directly injure the winter-hardened fine
roots, and Repo et al. (2014) detected that Norway spruce
fine roots were not strongly affected by increasing frost
during winter. In addition, root cold tolerance differs
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in fibrous roots (Fig. 4B,C).

Significant effects of root type, FT treatment, and
their interaction were observed in N content, C/N ratio,
starch content, and TNC content (Fig. 5). Fibrous roots
had higher N content than pioneer roots. FT treatment
had different effects in two root types. In particular, FT
treatment increased the N content in fibrous roots but
decreased it in pioneer roots (Fig. 54). The opposite
trends were observed in C/N ratio, starch, and TNC
content (Fig. 5B,C,D). The pioneer roots had higher
values of these parameters than fibrous roots.
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Fig. 4. Free proline content (4), soluble protein content (B), and
soluble sugar content (C) of the first-order pioneer and fibrous
roots under soil freeze-thaw (FT) cycles. Means + SD, n = 3;
different letters indicate significant differences (P < 0.05,
Duncan test). Results of ANOVA: effect of FT, root type, and
interactions on free proline content and soluble protein content
at P < 0.001, on soluble sugar content at P < 0.01, 0.001, and
0.01, respectively.
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among species; the whole root systems of Norway spruce,
white spruce, Serbian spruce, and black spruce have a
maximum cold tolerance up to -20 °C (Bigras et al.
2001). Our study was conducted in spring, and
temperature was controlled in range of -5°C to 5 °C;
thus, the FT scenarios should belong to the mild FT
treatment.

The FT treatment significantly decreased the rate of
O, production, MDA content, and electrolyte leakage
(Fig. 2), accompanied by increased root vitality (Fig. 1)
and proline content (Fig. 44) of pioneer roots, but no
significant effect of FT on these parameters was found in
fibrous roots. These results confirmed that mild FT did
not cause serious injury to the roots. Unexpectedly, root
vitality was enhanced and REL was reduced in pioneer
roots under FT. The latter result agrees with previous
study that REL is reduced in pioneer roots by soil
moisture deficit (Polverigiani et al. 2011), but differs
with the finding of Kreyling et al. (2012). The main
reason might be that the first-order pioneer and fibrous
roots samples were used in this study and by Polverigiani
et al. (2011), whereas a whole of fine roots were used by
Kreyling et al. (2012). Moreover, the season (spring vs.
winter), the cycle length, and soil temperature were also
different.

In the present study, the proline content increased
significantly in pioneer roots under FT treatment
(Fig. 44), whereas fibrous roots had higher antioxidant

(mainly POD) activity than pioneer roots (Fig. 34,C).
Soluble sugars, proline, and some soluble proteins are the
major constituents of osmoregulation in many plants (Xu
et al. 2011, Zhang et al. 2012), and have crucial
protective functions in plant adaptation to stresses (Jiang
et al. 2013, Radic et al. 2013). Besides, soluble sugars are
involved in reactive oxygen species (ROS) balance
(Couee et al. 2006) and proline helps to protect the
membrane integrity of plants (Kim ez al. 2004), prevents
protein denaturation, and acts as a free radical scavenger
(Ben Ahmed et al. 2009, Kohler et al. 2009). Anti-
oxidants have important roles in eliminating ROS, e.g.,
SOD catalyzes the dismutation of O, to O, and H,O,,
and H,0, is subsequently detoxified by POD and ASA
(Halliwell and Gutteridge 1989). Our results suggest that
fibrous roots increased the activity of antioxidant system
in response to unfavorable environment, whereas pioneer
roots accumulated osmolytes. In addition, the fibrous
roots had higher SOD activity than pioneer roots under
the control treatment (Fig. 3B), suggesting that more
effective O, detoxification occurred in fibrous roots. The
results of PCA showed: TNC, starch, proline and N
content, and C/N ratio were related on component 1,
which represented mainly osmotic adjustment ability;
whereas REL, root vitality, O, , MDA and ASA content,
and POD activity were related on component 2, which
illustrated primarily the extent of damage and capacity of
antioxidants (Fig. 2 Suppl.).
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Fig. 5. Nitrogen content (4), C/N ratio (B), starch content (C), and total non-structural saccharide (TNC) content (D) of the first-order
pioneer and fibrous roots under soil freeze-thaw cycles. Means + SDs, n = 3; different letters indicate significant differences
(P <0.05, Duncan test). Results of ANOVA: effect of FT on C/N ratio, N content, starch, and TNC content at P < 0.001.
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Conclusions

The present study confirmed that fibrous roots had higher
metabolic ability than pioneer roots, whereas pioneer
roots were the key storage organs. Under FT treatment,
electrolyte leakages of both fibrous and pioneer roots
were less than 50 %, which implied that FT scenarios of
temperature in range of -5 °C to 5 °C were mild and did
not cause serious injury to roots. Pioneer roots have
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