

Brassinosteroids and iron plaque affect arsenic and cadmium uptake by rice seedlings grown in hydroponic solution

B. XU, J.Y. YU, T. XIE, Y.L. LI, M.J. LIU, J.X. GUO, H.L. LI, Y. YU, C.Y. ZHENG, Y.H. CHEN*, and G. WANG

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, P.R. China

Abstract

Brassinosteroids (Brs) have drawn a wide attention due to their protective role against toxicity of heavy metals in plants. To better understand the role of Br in arsenic (As) and cadmium (Cd) uptake by rice plants, a hydroponic experiment was conducted to investigate the combined effect of 24-epibrassinolide (Br24) or 28-homobrassinolide (Br28) and iron plaque (IP) on As and Cd uptake and accumulation in rice seedlings. Six-week-old seedlings were sprayed with 0.2 or 0.02 μM Br24 or Br28 and grown in nutrient solution for 3 d, and then 20 or 60 mg $\text{Fe}^{2+} \text{dm}^{-3}$ was used to induce root IP formation for 3 d. These seedlings with or without Br and with or without IP were exposed to solution containing 0.5 mg dm^{-3} As^{III} or Cd for 9 d. The results showed that rice growth decreased when Br24 were applied, but it increased when a combination of Br24 and IP was applied. Fe concentrations in dithionite-citrate-bicarbonate (DCB) extracts were increased after 0.2 or 0.02 μM Br24 application in the absence of IP, but decreased by Br24 in the presence of IP. In the absence of IP, As and Cd content in leaves was significantly reduced by 0.02 μM Br24 and 0.2 μM Br28, respectively. The As content in leaves was also reduced by the combination of 0.02 and 0.2 μM Br28 and IP, and the Cd content in leaves was reduced by the combined effect of 0.2 μM Br24 and IP. These results indicate that Br24 and Br28 could impede As and Cd accumulation, and the interactions between Br and IP may have a potential in restricting the transport of As and Cd into rice shoots.

Additional key words: 24-epibrassinolide, 28-homobrassinolide, heavy metals.

Introduction

Arsenic is a toxic element classified as a carcinogen to humans (Smith *et al.* 2002). Cadmium is one of the most toxic elements in the environment. Most bioavailable As or Cd is derived from anthropogenic sources, namely fertilizer application and waste (Clemens and Ma 2016).

Rice is one of the most widespread food crops. Rice can accumulate higher concentrations of As compared to wheat, maize, or barley owing to the increased bioavailable As in flooded soil (Meharg *et al.* 2009, 2013, Li *et al.* 2011). However, Cd exhibits higher bioavailability in sufficiently aerated soils because of the deposition of CdS under anaerobic conditions (Fan *et al.* 2010). Therefore, controlling aerobic and anaerobic

environments by regulating flooding conditions cannot efficiently block As or Cd uptake by rice plants when they simultaneously occur.

Iron plaque (IP), widely distributed on root surfaces of wetland plants, is generally precipitated *via* oxidation of ferrous to ferric ions by the release of oxygen or oxidants from roots (Armstrong 1964). IP is a strategy for wetland plants to survive under flooding or anaerobic conditions (Khan *et al.* 2016). As other wetland plants, IP can be formed on the root surfaces of rice plants grown in wet soil or in hydroponic culture (Liu *et al.* 2008, Luo *et al.* 2015, Xu *et al.* 2015). IP can immobilize heavy metals (As, Al, Cd, and Zn), retard their uptake by plants,

Submitted 16 November 2016, last revision 27 September 2017, accepted 2 October 2017.

Abbreviations: Br - brassinosteroid; Br24 - 24-epibrassinolide; Br28 - 28-homobrassinolide; DCB - dithionite-citrate-bicarbonate; IP - iron plaque.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (31500319), the National and Fujian Provincial College Students' Innovative Entrepreneurial Training Program of China (201610389015 and 201610389084), and the Research Fund for the Doctoral Program of Higher Education of China (20133515120020).

* Corresponding author; e-mail: 382072058@qq.com

and so ameliorate their toxicity (Liu *et al.* 2004a, Chen *et al.* 2006, Xu and Yu 2013). Previous studies mostly focus on single element As or Cd; little information has been obtained on the effect of IP on As and Cd uptake by rice plants when they coexist. Anaerobic conditions result in As mobilization and higher As bioavailability to rice in paddy soil but at the same time, these conditions cause low Cd solubility due to Cd reaction with S forming CdS. However, the increased oxygen concentration in drained soil can convert CdS to CdSO₄ which is more bioavailable (Fan *et al.* 2010). Therefore, translocation of As and Cd into rice plants when they simultaneously occur cannot be efficiently controlled *via* field water management. Hence, exploring more effective approaches to reducing their uptake and accumulation in rice are particularly important in soils contaminated by both elements.

Brassinosteroids (Brs) play critical roles in plant growth and development (Jin *et al.* 2015) and their

analogues can be artificially synthesized, *e.g.*, 24-epibrassinolide (Br24) or 28-homobrassinolide (Br28). At present many BRs are often applied to protect plants against heavy metal stress (Yusuf *et al.* 2012, Ramakrishna and Rao 2013a,b, Fariduddin *et al.* 2014). It was reported that Br28 could regulate ion uptake, reduce heavy metals accumulation and alleviate their toxicity to plants (Sharma *et al.* 2011, Yusuf *et al.* 2011, Fariduddin *et al.* 2014). However, the effect of Brs on As and Cd uptake by rice plants is still not clear. Limited information is available on effects of Br on IP formation and the interactions of Br and IP on uptake of As and Cd in rice plants. Therefore, the aim of the present paper was to determine the contribution of IP to blocking heavy metal uptake by plants and the pivotal role of Brs in protecting plants against heavy metals. We hypothesized that Br24 or Br28 application may help root IP impede As and Cd uptake and accumulation in rice seedlings.

Materials and methods

Seeds of rice (*Oryza sativa* L.) cv. Yiyou 673 (local cultivar in Fujian Province, China) were disinfected in 30 % (v/v) H₂O₂ for 15 min and washed thoroughly with double distilled water. The seeds were germinated in moistened quartz for 20 d. Uniform seedlings were selected and grown in pots with 1/3-strength nutrient solution (pH 5.5). The composition of full-strength nutrient solution was as follows [mM]: NH₄NO₃, 5; K₂SO₄, 2; CaCl₂, 4; MgSO₄ · 7 H₂O, 1.5; KH₂PO₄, 1.3; H₃BO₄, 0.01; ZnSO₄ · 7 H₂O, 10⁻³; CuSO₄ · 5 H₂O, 10⁻³; MnSO₄ · H₂O, 5 × 10⁻³; Na₂MoO₄ · 2 H₂O, 5 × 10⁻⁴; CoSO₄ · 7 H₂O, 2 × 10⁻⁴; Fe(II)-ethylenediaminetetraacetic acid (EDTA), 0.05. The nutrient solution was changed every 3 d and the experiment was carried out in a naturally lit greenhouse with a photoperiod about 12 h and a temperature between 25 and 35 °C.

After 3 weeks, 48 seedlings sprayed with Br24 (0.2 or 0.02 µM) or Br28 (0.2 or 0.02 µM) and 12 seedlings without Br were grown in nutrient solution for 3 d to test the effect of Br on IP formation or combined effect of Br and IP on As and Cd uptake. Then, FeSO₄ · 7 H₂O (20 or 60 mg dm⁻³) was added to the seedlings to induce IP formation during next 3 d. Afterwards, seedlings were grown in normal 1/3-strength nutrient solution for 3 d and then subjected to a mixture of 0.5 mg dm⁻³ As (NaAsO₂) and 0.5 mg dm⁻³ Cd [Cd(NO₃)₂ · 4 H₂O] for 9 d. On the third day of As and Cd treatments, another 24 seedlings without IP were sprayed with Br24 or Br28 in both concentrations and continuously grown in nutrient solution containing 0.5 mg dm⁻³ As and 0.5 mg dm⁻³ Cd for another 6 d for testing the effect of Br on As and Cd

uptake. In addition, there were 3 seedlings without Br, IP and As and Cd, and 3 seedlings with only As and Cd treatments. There were 30 different combinations of treatments, each replicated three times to give a total of 90 pots (Table 1 Suppl.).

At harvest, all seedlings were divided into two parts: leaves and roots. Iron plaque on roots was characterized by the dithionite-citrate-bicarbonate (DCB) method (Taylor and Crowder 1983). The whole fresh root was incubated in 50 cm³ of a solution containing 0.03 M sodium citrate (Na₃C₆H₅O₇ · 2 H₂O), 0.125 M sodium bicarbonate (NaHCO₃), and 1 g of sodium dithionite (Na₂S₂O₄) at 25 °C for 60 min. Roots were washed 3 times using deionized water, which was added to a DCB extracts, and the volume of solution was brought to 100 cm³. The solutions were then filtered using 0.45-µm membrane filters and stored at 4 °C for analyses of Fe, As, and Cd. Then, leaves and roots were oven-dried at 70 °C for 72 h after which dry masses were recorded. After that, these leaf and root samples were ground to a fine powder and digested to determine the content of Fe, As, and Cd according to Williams *et al.* (2007). The content of Fe, As, and Cd in plant samples and DCB extracts were measured by Induced Couple Plasma-Mass Spectrometer (ICP-MS, *NexION 300X*, Perkin Elmer, Norwalk, USA).

Analysis of variance (ANOVA) and independent *t*-tests were carried out using SPSS software (v.19.0, Chicago, IL, USA). Presented data are means ± SDs (*n* = 3), and they were also analyzed using least significant difference (LSD) at the 5 % level.

Results

In the present study, IP, Br, As, and Cd treatments had significant effects on leaf and root biomass of rice

seedlings (Table 2 Suppl.). Compared to the control seedlings, Br24 in concentration of 0.02 μM (Br24_L) and

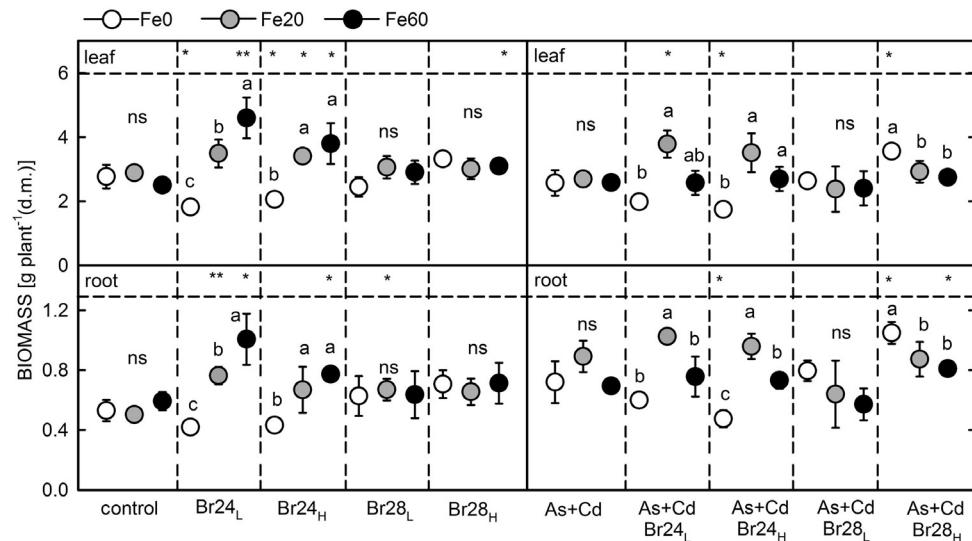


Fig. 1. Leaf and root biomass of rice seedlings exposed to 0 or 0.5 mg dm^{-3} As and Cd for 9 d as affected by 0.2 and 0.02 μM 24-epibrassinosteroid (Br24_L and Br24_H) or 28-homobrassinosteroid (Br28_L and Br28_H), as well as iron plaque (IP; 0, 20, and 60 mg dm^{-3} Fe^{2+}). Data are means \pm SDs, $n = 3$. Different letters indicate significant differences at $P < 0.05$ among IP levels and * between control and Br treatments.

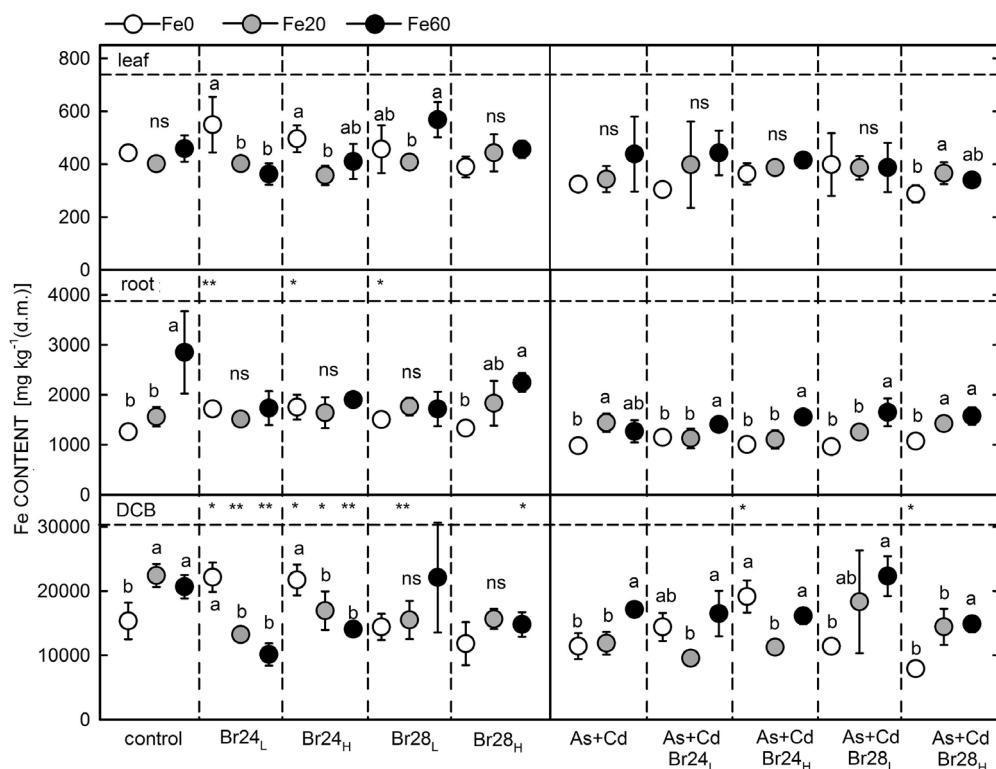


Fig. 2. Iron content in leaf, root and dithionite-citrate-bicarbonate (DCB) extract of rice seedlings exposed to 0 or 0.5 mg dm^{-3} As and Cd for 9 d as affected by 0.2 and 0.02 μM 24-epibrassinosteroid (Br24_L and Br24_H) or 28-homobrassinosteroid (Br28_L and Br28_H), as well as iron plaque (IP; 0, 20, and 60 mg dm^{-3} Fe^{2+}). Data are means \pm SDs, $n = 3$. Different letters indicate significant differences at $P < 0.05$ among IP levels and * between control and Br treatments.

0.2 μM (Br24_H) significantly reduced leaf biomass in the absence of IP, but Br24_L , in the presence of iron plaque, significantly increased leaf biomass of rice seedlings exposed to As and Cd treatments.

Root biomass was significantly increased by Br24 (Br24_L and Br24_H) in the presence of IP in comparison with control group (Fig. 1). Under As and Cd treatments, root biomass was significantly decreased and increased by Br24_H and Br28_H in the absence of IP, respectively, and only Br28_H with Fe60 significantly increased root biomass.

The Fe content in leaves, roots, and DCB extracts was significantly affected by As and Cd treatments, IP, and Br respectively (Table 2 Suppl.). Compared to the control, Fe content in roots and DCB extracts significantly was increased by Br24 (Br24_L and Br24_H) without IP, but DCB-Fe concentrations were decreased by Br24 with IP (Fig. 2). Under As and Cd treatments, Br24_H increased and Br28_H decreased Fe concentrations

in DCB extracts in the absence of IP. In addition, compared to the control group, As and Cd treatments generally reduced Fe content in leaf, root and DCB extract regardless of IP (Fig. 3).

The content of As and Cd in roots was affected by IP (Table 2 Suppl.). As content in roots was increased by IP at Br24_L or Br28_H (Fig. 3). The leaf As content varied widely at different Br supply. IP increased As content in leaves at Br24_L , but decreased at Br28_L and Br28_H (Fig. 3). In the absence of IP, compared with control, As content in leaves was significantly reduced by Br24_L , but was increased at Br28_L and Br28_H (Fig. 3).

At Br24_H group, Cd content in roots and leaves was decreased by IP (Fig. 4). But IP (Fe20) increased content in roots of Br28_L and Br28_H groups (Fig. 4). Cd content in roots and leaves was decreased by IP at Br24_H . However without IP, compared with control, leaf and root Cd content was significantly increased at Br24_H ; and leaf Cd content was decreased at Br28_H (Fig. 4).

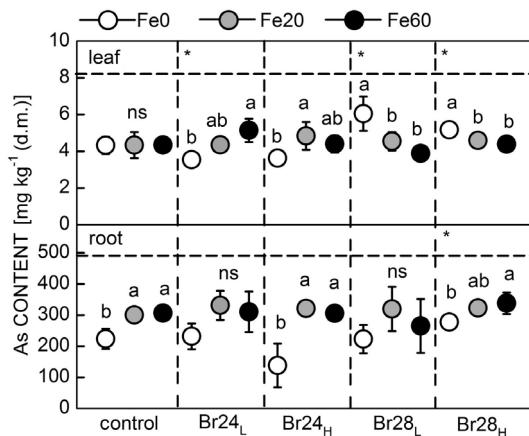


Fig. 3. Arsenic content in leaf, root, and dithionite-citrate-bicarbonate (DCB) extract of rice seedlings as affected by 0.2 and 0.02 μM 24-epibrassinosteroid (Br24_L and Br24_H) or 28-homobrassinosteroid (Br28_L and Br28_H), as well as iron plaque (IP; 0, 20, and 60 mg dm^{-3} Fe^{2+}). Data are means \pm SDs, $n = 3$. Different letters indicate significant differences at $P < 0.05$ among IP levels and * between control and Br treatments.

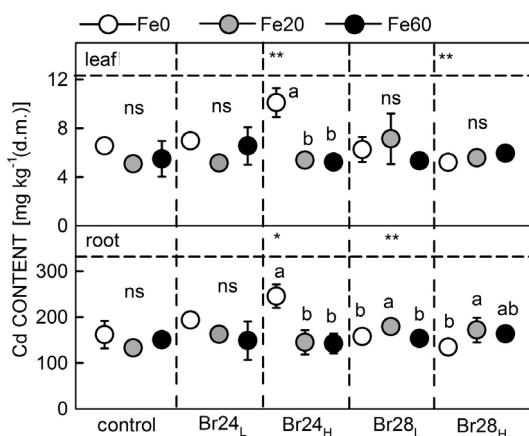


Fig. 4. Cadmium content in leaf, root, and dithionite-citrate-bicarbonate (DCB) extract of rice seedlings as affected by 0.2 and 0.02 μM 24-epibrassinosteroid (Br24_L and Br24_H) or 28-homobrassinosteroid (Br28_L and Br28_H), as well as iron plaque (IP; 0, 20, and 60 mg dm^{-3} Fe^{2+}). Data are means \pm SDs, $n = 3$. Different letters indicate significant differences at $P < 0.05$ among IP levels and * between control and Br treatments.

Discussion

In this study, the results showed that Fe content in roots and DCB extracts was significantly increased by supplied Fe (Fe20 and Fe60), which is consistent with reports in the literature (Liu *et al.* 2004b, 2007a); however, the opposite results were found in DCB extracts in the presence of Br24_L and Br24_H (Fig. 2). The significant increase in root biomass could explain this (Fig. 1). Ye *et al.* (1998) showed that more Fe was sequestered on root surface in plants with lower root biomass. As and Cd treatments consistently reduced Fe content in leaf, root, and DCB extracts, which agrees with the conclusions of Liu *et al.* (2010), who found that Cd in soil (10 mg kg⁻¹) can significantly reduce Fe content in rice plants and Liu *et al.* (2004b) found that Fe content in shoots and roots of rice seedlings with 0.5 mg dm⁻³ As was lower than without As. However, Liu *et al.* (2007b) reported no significant difference in Fe content in rice plants with or without supplied Cd. Different genotypes may be the main factor affecting Fe uptake and transport in rice plants (Liu *et al.* 2010).

Our study showed that IP increased As content in rice leaves at Br24_L and Br24_H, but decreased it at Br28_L and Br28_H (Fig. 3). Compared to the control, in the absence of IP, Br24_L significantly reduced As content in rice leaves, but Br28_L and Br28_H increased it (Fig. 4). Our results showed that Br28_L and Br28_H increased As content in rice leaves, but the interactions of IP (Fe20 and Fe60) and Br28 decreased it. Kaim *et al.* (2016) showed that As^V accumulation was markedly lowered by Br24 in *Cicer arietinum*, which partially explained the decreasing As in rice leaf in our present study. At present, no research has been reported on the effect of Br28 on As uptake and translocation in plants, and whether or not Br28 can be used to reduce As uptake by plants or to promote the plant. Our findings are consistent with those showing that the content of Cu and Ni in *Brassica juncea* (Kanwar *et al.* 2013, Sharma and Bhardwaj 2007), B in *Arabidopsis thaliana* (Surgun *et al.* 2016), and Cr in tobacco (Bukhari *et al.* 2016) are significantly decreased by proper concentrations of Br24. Bukhari *et al.* (2016) found that Br24 significantly reduced Cr content in leaves of tomato genotypes Meiyu2-1 and NC107, but increased it in leaves of genotype 2010-38. These results imply that Br24 can decrease uptake of heavy metals by plants and ameliorate their toxicity.

Our results showed that in the absence of IP, Cd content in leaves was increased by Br24_H, but decreased by Br28_H. Different metal elements, Br concentrations,

plant species, and genotypes may have led to the observed differences. Ramakrishna and Rao (2013b) and Sharma *et al.* (2008) reported that Br28 significantly reduced content of Zn in radish seedlings and Ni in *Brassica juncea*. They pointed out that Br28 can alleviate Zn and Ni stresses by increasing the activities and metabolism of glutathione and other antioxidative enzymes (Ramakrishna and Rao 2013a). However, Sharma *et al.* (2011) found that Br28 can promote Cr uptake by *Raphanus sativus* and increased activities of antioxidant enzymes (Sharma *et al.* 2011). Different metal elements, Br concentrations, plant species, and genotypes may have led to the observed differences, and further research is needed to elucidate the molecular mechanisms of Br in mediating plant responses to heavy metals.

Ekinci *et al.* (2012) showed Br24 (1, 2, and 3 µM) could decrease Cd content in leaves of lettuce under 50 mM NaCl, but increases it under 0 or 100 mM NaCl. Our results showed that Br24_H increased Cd content in leaves without IP. But the interactions of IP and Br24_H reduced Cd content in leaves in comparison with single action of Br24_H. This could be due to the increasing Fe content, which could decrease Cd accumulation in rice shoot (Liu *et al.* 2008, 2010). He *et al.* (2017) also showed that Fe supply inhibits Cd uptake by *Arabidopsis thaliana*. Br24 decreases Fe content in shoots of rice, cucumber, and lettuce (Ekinci *et al.* 2012, Wang *et al.* 2012, 2015), but increases Fe content under salt stress or Fe deficiency (Ekinci *et al.* 2012, Song *et al.* 2016), which is consistent with our results. Actually, Cd exposure can induce Fe deficiency in plants (Astolfi *et al.* 2014). In this respect, Br24 probably alleviated Fe loss under salt or heavy metals and prevented Cd uptake by plants.

The present study suggests that Br24_L can decrease As content, and Br28_H can reduce Cd content in leaves of rice plants without IP. The combined effects of Br28 and IP decreased As content in rice leaves, and the combined effects of Br24_H and IP decreased leaf Cd content, indicating that the interactions between Br and IP could play pivotal roles in reducing As and Cd uptake by rice plants. Further studies are still required to detect the effects of three-way interactions between Br24, Br28, and IP on As and Cd uptake and accumulation in rice root, leaf, and grain tissue, and elucidate the molecular mechanisms of Br in mediating plant responses to heavy metals.

References

Armstrong, W.: Oxygen diffusion from the roots of some British bog plants. - *Nature* **204**: 801-802, 1964.

Astolfi, S., Ortolani, M.R., Catarcione, G., Paolacci, A.R., Cesco, S., Pinton, R., Ciaffi, M.: Cadmium exposure affects

iron acquisition in barley (*Hordeum vulgare*) seedlings. - *Physiol. Plant.* **152**: 646-659, 2014.

Bukhari, S.A.H., Wang, R.F., Wang, W., Ahmed, I.M., Zheng, W.T., Cao, F.B.: Genotype-dependent effect of exogenous 24-epibrassinolide on chromium-induced changes in ultrastructure and physicochemical traits in tobacco seedlings. - *Environ. Sci. Pollut. Res.* **23**: 18229-18238, 2016.

Chen, R.F., Shen, R.F., Gu, P., Dong, X.Y., Du, C.W., Ma, J.F.: Response of rice (*Oryza sativa*) with root surface iron plaque under aluminium stress. - *Ann. Bot.* **98**: 389-395, 2006.

Clemens, S., Ma, J.F.: Toxic heavy metal and metalloid accumulation in crop plants and foods. - *Annu. Rev. Plant Biol.* **67**: 489-512, 2016.

Ekinci, M., Yildirim, E., Dursun, A., Turan, M.: Mitigation of salt stress in lettuce (*Lactuca sativa* L. var. *Crispa*) by seed and foliar 24-epibrassinolide treatments. - *HortScience* **47**: 631-636, 2012.

Fan, J.L., Hu, Z.Y., Ziadi, N., Xia, X., Wu, C.Y.H.: Excessive sulfur supply reduces cadmium accumulation in brown rice (*Oryza sativa* L.). - *Environ. Pollut.* **158**: 409-415, 2010.

Fariduddin, Q., Yusuf, M., Ahmad, I., Ahmad, A.: Brassinosteroids and their role in response of plants to abiotic stresses. - *Biol. Plant.* **58**: 9-17, 2014.

He, X.L., Fan, S.K., Zhu, J., Guan, M.Y., Liu, X.X., Zhang, Y.S., Jin, C.W.: Iron supply prevents Cd uptake in *Arabidopsis* by inhibiting *IRT1* expression and favoring competition between Fe and Cd uptake. - *Plant Soil* **416**: 453-462, 2017.

Jin, S.H., Li, X.Q., Wang, G.G., Zhu, X.T.: Brassinosteroids alleviate high-temperature injury in *Ficus concinna* seedlings via maintaining higher antioxidant defence and glyoxalase systems. - *Aob Plants* **7**: plv009, 2015.

Kaim, A.S., Kaur, I., Bhatnagar, A.K.: Impact of 24-epibrassinolide on tolerance, accumulation, growth, photosynthesis, and biochemical parameters in arsenic stressed *Cicer arietinum* L. - *Agr. Sci. Res. J.* **6**: 201-212, 2016.

Kanwar, M.K., Bhardwaj, R., Chowdhary, S.P., Arora, P., Sharma, P., Kumar, S.: Isolation and characterization of 24-epibrassinolide from *Brassica juncea* L. and its effects on growth, Ni ion uptake, antioxidant defense of *Brassica* plants and *in vitro* cytotoxicity. - *Acta Physiol. Plant.* **35**: 1351-1362, 2013.

Khan, N., Seshadri, B., Bolan, N., Saint, C.P., Kirkham, M.B., Chowdhury, S., Yamaguchi, N., Lee, D.Y., Li, G., Kunhikrishnan, A., Qi, F., Karunanithi, R., Qiu, R., Zhu, Y.G., Syu, C.H.: root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. - In: Sparks, D.L. (ed.): *Advances in Agronomy*. Vol. 138. Pp. 1-96. Academic Press, Newark - Delaware 2016.

Li, G., Sun, G.X., Williams, P.N., Nunes, L., Zhu, Y.G.: Inorganic arsenic in Chinese food and its cancer risk. - *Environ. Int.* **37**: 1219-1225, 2011.

Liu, H.J., Zhang, J.L., Christie, P., Zhang, F.S.: Influence of external zinc and phosphorus supply on Cd uptake by rice (*Oryza sativa* L.) seedlings with root surface iron plaque. - *Plant Soil* **300**: 105-115, 2007b.

Liu, H.J., Zhang, J.L., Christie, P., Zhang, F.S.: Influence of iron plaque on uptake and accumulation of Cd by rice (*Oryza sativa* L.) seedlings grown in soil. - *Sci. total Environ.* **394**: 361-368, 2008.

Liu, H.J., Zhang, J.L., Christie, P., Zhang, F.S.: Influence of iron fertilization on cadmium uptake by rice seedlings irrigated with cadmium solution. - *Commun. Soil Sci. Plant Anal.* **41**: 584-594, 2010.

Liu, H.J., Zhang, J.L., Zhang, F.S.: Role of iron plaque in Cd uptake by and translocation within rice (*Oryza sativa* L.) seedlings grown in solution culture. - *Environ. exp. Bot.* **59**: 314-320, 2007a.

Liu, J.G., Cao, C.X., Wong, M.H., Zhang, Z.J., Chai, Y.H.: Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. - *J. Environ. Sci.* **22**: 1067-1072, 2010.

Liu, W.J., Zhu, Y.G., Smith, F.A., Smith, S.E.: Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? - *New Phytol.* **162**: 481-488, 2004a.

Liu, W.J., Zhu, Y.G., Smith, F.A., Smith, S.E.: Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (*Oryza sativa* L.) grown in solution culture? - *J. exp. Bot.* **55**: 1707-1713, 2004b.

Luo, X.S., Jing, Y.S., Li, P., Xu, X.H., Xu, B.: Effects of major cations on copper uptake by rice seedlings. - *Adv. Food Sci.* **37**: 126-131, 2015.

Meharg, A.A., Norton, G., Deacon, C., Williams, P., Adomako, E.E., Price, A., Zhu, Y.G., Li, G., Zhao, F.J., McGrath, S., De Silva, P.M.C.S., Brammer, H., Dasgupta, T., Islam, M.R.: Variation in rice cadmium related to human exposure. - *Environ. Sci. Technol.* **47**: 5613-5618, 2013.

Meharg, A.A., Williams, P.N., Adomako, E., Lawgali, Y.Y., Deacon, C., Villada, A., Cambell, R.C.J., Sun, G., Zhu, Y.G., Feldmann, J., Raab, A., Zhao, F.J., Islam, R., Hossain, S., Yanai, J.: Geographical variation in total and inorganic arsenic content of polished (white) rice. - *Environ. Sci. Technol.* **43**: 1612-1617, 2009.

Ramakrishna, B., Rao, S.S.R.: Preliminary studies on the involvement of glutathione metabolism and redox status against zinc toxicity in radish seedlings by 28-homo-brassinolide. - *Environ. exp. Bot.* **96**: 52-58, 2013.

Ramakrishna, B., Rao, S.S.R.: 24-Epibrassinolide maintains elevated redox state of AsA and GSH in radish (*Raphanus sativus* L.) seedlings under zinc stress. - *Acta Physiol. Plant.* **35**: 1291-1302, 2013.

Sharma, I., Pati, P.K., Bhardwaj, R.: Effect of 28-homobrassinolide on antioxidant defence system in *Raphanus sativus* L. under chromium toxicity. - *Ecotoxicology* **20**: 862-874, 2011.

Sharma, P., Bhardwaj, R.: Effects of 24-epibrassinolide on growth and metal uptake in *Brassica juncea* L. under copper metal stress. - *Acta Physiol. Plant.* **29**: 259-263, 2007.

Sharma, P., Bhardwaj, R., Arora, N., Arora, H.K., Kumar, A.: Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in *Brassica juncea*. - *Biol. Plant.* **52**: 767-770, 2008.

Sharma, P., Kumar, A., Bhardwaj, R.: Plant steroid hormone epibrassinolide regulate heavy metal stress tolerance in Smith, A.H., Lopipero, P.A., Bates, M.N., Steinmaus, C.M.: Public health - arsenic epidemiology and drinking water standards. - *Science* **296**: 2145-2146, 2002.

Song, Y.L., Dong, Y.J., Tian, X.Y., Kong, J., Bai, X.Y., Xu, L.L., He, Z.L.: Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. - *Biol. Plant.* **60**: 329-342, 2016.

Surgun, Y., Col, B., Burun, B.: 24-Epibrassinolide ameliorates the effects of boron toxicity on *Arabidopsis thaliana* (L.)

Heynh by activating an antioxidant system and decreasing boron accumulation. - *Acta Physiol. Plant.* **38**: 71, 2016.

Taylor, G.J., Crowder, A.A.: Use of the DCB technique for extraction of hydrous iron-oxides from roots of wetland plants. - *Amer. J. Bot.* **70**: 1254-1257, 1983.

Wang, B.L., Li, Y.S., Zhang, W.H.: Brassinosteroids are involved in response of cucumber (*Cucumis sativus*) to iron deficiency. - *Ann. Bot.* **110**: 681-688, 2012.

Wang, B.L., Li, G., Zhang, W.H.: Brassinosteroids are involved in Fe homeostasis in rice (*Oryza sativa* L.). - *J. exp. Bot.* **66**: 2749-2761, 2015.

Williams, P.N., Raab, A., Feldmann, J., Meharg, A.A.: Market basket survey shows elevated levels of as in South Central US processed rice compared to California: consequences for human dietary exposure. - *Environ. Sci. Technol.* **41**: 2178-2183, 2007.

Xu, B., Yu, S.: Root iron plaque formation and characteristics under N₂ flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (*Oryza sativa*). - *Ann. Bot.* **111**: 1189-1195, 2013.

Xu, B., Yu, S., Ding, J., Wu, S.C., Ma, J.: Metal-dependent root iron plaque effects on distribution and translocation of chromium and nickel in yellow flag (*Iris pseudacorus* L.). - *Int. J. Phytoremed.* **17**: 175-181, 2015.

Yusuf, M., Fariduddin, Q., Ahmad, A.: 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in *Vigna radiata* plants. - *Chemosphere* **85**: 1574-1584, 2011.

Yusuf, M., Fariduddin, Q., Ahmad, A.: 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of *Vigna radiata* under different levels of nickel: a shotgun approach. - *Plant Physiol. Biochem.* **57**: 143-153, 2012.