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Abstract

Brassinosteroids (Brs) have drawn a wide attention due to their protective role against toxicity of heavy metals in plants.
To better understand the role of Br in arsenic (As) and cadmium (Cd) uptake by rice plants, a hydroponic experiment
was conducted to investigate the combined effect of 24-epibrassinolide (Br24) or 28-homobrassinolide (Br28) and iron
plaque (IP) on As and Cd uptake and accumulation in rice seedlings. Six-week-old seedlings were sprayed with 0.2 or
0.02 uM Br24 or Br28 and grown in nutrient solution for 3 d, and then 20 or 60 mg Fe** dm™ was used to induce root
IP formation for 3 d. These seedlings with or without Br and with or without IP were exposed to solution containing
0.5 mg dm™ As™ or Cd for 9 d. The results showed that rice growth decreased when Br24 were applied, but it increased
when a combination of Br24 and IP was applied. Fe concentrations in dithionite-citrate-bicarbonate (DCB) extracts
were increased after 0.2 or 0.02 uM Br24 application in the absence of IP, but decreased by Br24 in the presence of IP.
In the absence of IP, As and Cd content in leaves was significantly reduced by 0.02 uM Br24 and 0.2 uM Br28,
respectively. The As content in leaves was also reduced by the combination of 0.02 and 0.2 uM Br28 and IP, and the Cd
content in leaves was reduced by the combined effect of 0.2 uM Br24 and IP. These results indicate that Br24 and Br28
could impede As and Cd accumulation, and the interactions between Br and IP may have a potential in restricting the
transport of As and Cd into rice shoots.
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Introduction

Arsenic is a toxic element classified as a carcinogen to
humans (Smith et al. 2002). Cadmium is one of the most
toxic elements in the environment. Most bioavailable As
or Cd is derived from anthropogenic sources, namely
fertilizer application and waste (Clemens and Ma 2016).
Rice is one of the most widespread food crops. Rice
can accumulate higher concentrations of As compared to
wheat, maize, or barley owing to the increased
bioavailable As in flooded soil (Meharg et al. 2009, 2013,
Li et al. 2011). However, Cd exhibits higher bio-
availability in sufficiently aerated soils because of the
deposition of CdS under anaerobic conditions (Fan ef al.
2010). Therefore, controlling aerobic and anaerobic

environments by regulating flooding conditions cannot
efficiently block As or Cd uptake by rice plants when
they simultaneously occur.

Iron plaque (IP), widely distributed on root surfaces
of wetland plants, is generally precipitated via oxidation
of ferrous to ferric ions by the release of oxygen or
oxidants from roots (Armstrong 1964). IP is a strategy for
wetland plants to survive under flooding or anaerobic
conditions (Khan ef al. 2016). As other wetland plants, IP
can be formed on the root surfaces of rice plants grown in
wet soil or in hydroponic culture (Liu et al. 2008, Luo
et al. 2015, Xu et al. 2015). IP can immobilize heavy
metals (As, Al, Cd, and Zn), retard their uptake by plants,
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and so ameliorate their toxicity (Liu et al. 2004a, Chen
et al. 2006, Xu and Yu 2013). Previous studies mostly
focus on single element As or Cd; little information has
been obtained on the effect of IP on As and Cd uptake by
rice plants when they coexist. Anaerobic conditions result
in As mobilization and higher As bioavailability to rice in
paddy soil but at the same time, these conditions cause
low Cd solubility due to Cd reaction with S forming CdS.
However, the increased oxygen concentration in drained
soil can convert CdS to CdSO, which is more bio-
available (Fan et al. 2010). Therefore, translocation of As
and Cd into rice plants when they simultaneously occur
cannot be efficiently controlled via field water manage-
ment. Hence, exploring more effective approaches to
reducing their uptake and accumulation in rice are
particularly important in soils contaminated by both
elements.

Brassinosteroids (Brs) play critical roles in plant
growth and development (Jin et al. 2015) and their

Materials and methods

Seeds of rice (Oryza sativa L.) cv. Yiyou 673 (local
cultivar in Fujian Province, China) were disinfected in
30 % (v/v) H,O, for 15 min and washed thoroughly with
double distilled water. The seeds were geminated in
moistened quartz for 20 d. Uniform seedlings were
selected and grown in pots with 1/3-strength nutrient
solution (pH 5.5). The composition of full-strength
nutrient solution was as follows [mM]: NH4NOs, 5;
KzSO4, 2, CaClz, 4, MgSO4 .7 Hzo, 15, KH2P04, 13,
H;BO,, 0.01; ZnSO, . 7 H,0, 107; CuSO,-. 5 H,0, 107;
MnSOy. H,0, 5 x 10%; Na,MoO,-. 2 H,0, 5 x 107%
CoSO,. 7H,0, 2 x 10'4; Fe(I)-ethylenediaminetetra-
acetic acid (EDTA), 0.05. The nutrient solution was
changed every 3 d and the experiment was carried out in
a naturally lit greenhouse with a photoperiod about 12 h
and a temperature between 25 and 35 °C.

After 3 weeks, 48 seedlings sprayed with Br24 (0.2 or
0.02 uM) or Br28 (0.2 or 0.02 uM) and 12 seedlings
without Br were grown in nutrient solution for 3 d to test
the effect of Br on IP formation or combined effect of Br
and IP on As and Cd uptake. Then, FeSO,4 . 7 H,O (20 or
60 mg dm™) was added to the seedlings to induce IP
formation during next 3 d. Afterwards, seedlings were
grown in normal 1/3-strength nutrient solution for 3 d and
then subjected to a mixture of 0.5 mg dm™ As (NaAsO,)
and 0.5 mg dm” Cd [Cd(NOs), . 4 H,0] for 9 d. On the
third day of As and Cd treatments, another 24 seedlings
without IP were sprayed with Br24 or Br28 in both
concentrations and continuously grown in nutrient
solution containing 0.5 mg dm™ As and 0.5 mg dm™ Cd
for another 6 d for testing the effect of Br on As and Cd

analogues can be artificially synthesized, e.g,
24-epibrassinolide  (Br24) or 28-homobrassinolide
(Br28). At present many BRs are often applied to protect
plants against heavy metal stress (Yusuf et al. 2012,
Ramakrishna and Rao 2013a,b, Fariduddin ef al. 2014). It
was reported that Br28 could regulate ion uptake, reduce
heavy metals accumulation and alleviate their toxicity to
plants (Sharma et al. 2011, Yusuf et al. 2011, Fariduddin
et al. 2014). However, the effect of Brs on As and Cd
uptake by rice plants is still not clear. Limited
information is available on effects of Br on IP formation
and the interactions of Br and IP on uptake of As and Cd
in rice plants. Therefore, the aim of the present paper was
to determine the contribution of IP to blocking heavy
metal uptake by plants and the pivotal role of Brs in
protecting plants against heavy metals. We hypothesized
that Br24 or Br28 application may help root IP impede
As and Cd uptake and accumulation in rice seedlings.

uptake. In addition, there were 3 seedlings without Br, IP
and As and Cd, and 3 seedlings with only As and Cd
treatments. There were 30 different combinations of
treatments, each replicated three times to give a total of
90 pots (Table 1 Suppl.).

At harvest, all seedlings were divided into two parts:
leaves and roots. Iron plaque on roots was characterized
by the dithionite-citrate-bicarbonate (DCB) method
(Taylor and Crowder 1983). The whole fresh root was
incubated in 50 cm’ of a solution containing 0.03 M
sodium citrate (Na;CgHsO7'. 2 H,0), 0.125 M sodium
bicarbonate (NaHCOs3), and 1 g of sodium dithionite
(Na,S,04) at 25 °C for 60 min. Roots were washed
3 times using deionized water, which was added to a
DCB extracts, and the volume of solution was brought to
100 cm®. The solutions were then filtered using 0.45-um
membrane filters and stored at 4 °C for analyses of Fe,
As, and Cd. Then, leaves and roots were oven-dried at
70 °C for 72 h after which dry masses were recorded.
After that, these leaf and root samples were ground to a
fine powder and digested to determine the content of Fe,
As, and Cd according to Williams et al. (2007). The
content of Fe, As, and Cd in plant samples and DCB
extracts were measured by Induced Couple Plasma-Mass
Spectrometer (ICP-MS, Nex/ION 300X, Perkin Elmer,
Norwalk, USA).

Analysis of variance (ANOVA) and independent
t-tests were carried out using SPSS software (v.79.0,
Chicago, IL, USA). Presented data are means = SDs
(n = 3), and they were also analyzed using least
significant difference (LSD) at the 5 % level.
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Results

In the present study, IP, Br, As, and Cd treatments had  seedlings (Table 2 Suppl.). Compared to the control
significant effects on leaf and root biomass of rice  seedlings, Br24 in concentration of 0.02 uM (Br24;) and
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Fig. 1. Leaf and root biomass of rice seedlings exposed to 0 or 0.5 mg dm™ As and Cd for 9 d as affected by 0.2 and 0.02 uM
24-epibrassinosteroid (Br24; and Br24y) or 28-homobrassinosteroid (Br28; and Br28y), as well as iron plaque (IP; 0, 20, and
60 mg dm™ Fe?"). Data are means = SDs, n = 3. Different letters indicate significant differences at P < 0.05 among IP levels and
* between control and Br treatments.
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Fig. 2. Iron content in leaf, root and dithionite-citrate-bicarbonate (DCB) extract of rice seedlings exposed to 0 or 0.5 mg dm™ As and
Cd for 9 d as affected by 0.2 and 0.02 uM 24-epibrassinosteroid (Br24; and Br24y) or 28-homobrassinosteroid (Br28; and Br28y), as
well as iron plaque (IP; 0, 20, and 60 mg dm™ Fe?*). Data are means + SDs, n = 3. Different letters indicate significant differences at
P <0.05 among IP levels and * between control and Br treatments.
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0.2 uM (Br24y) significantly reduced leaf biomass in the
absence of IP, but Br24, in the presence of iron plaque,
significantly increased leaf biomass of rice seedlings
exposed to As and Cd treatments.

Root biomass was significantly increased by Br24
(Br24; and Br24y) in the presence of IP in comparison
with control group (Fig. 1). Under As and Cd treatments,
root biomass was significantly decreased and increased
by Br24y and Br28y in the absence of IP, respectively,
and only Br28y with Fe60 significantly increased root
biomass.

The Fe content in leaves, roots, and DCB extracts
was significantly affected by As and Cd treatments, IP,
and Br respectively (Table 2 Suppl.). Compared to the
control, Fe content in roots and DCB extracts
significantly was increased by Br24 (Br24; and Br24y)
without IP, but DCB-Fe concentrations were decreased
by Br24 with IP (Fig. 2). Under As and Cd treatments,
Br24y increased and Br28y decreased Fe concentrations

in DCB extracts in the absence of IP. In addition,
compared to the control group, As and Cd treatments
generally reduced Fe content in leaf, root and DCB
extract regardless of IP (Fig. 3).

The content of As and Cd in roots was affected by IP
(Table 2 Suppl.). As content in roots was increased by IP
at Br24; or Br28y (Fig. 3). The leaf As content varied
widely at different Br supply. IP increased As content in
leaves at Br24;, but decreased at Br28; and Br28y
(Fig. 3). In the absence of IP, compared with control, As
content in leaves was significantly reduced by Br24,, but
was increased at Br28; and Br28y (Fig. 3).

At Br24y group, Cd content in roots and leaves was
decreased by IP (Fig. 4). But IP (Fe20) increased content
in roots of Br28; and Br28y groups (Fig. 4). Cd content
in roots and leaves was decreased by IP at Br24y.
However without IP, compared with control, leaf and root
Cd content was significantly increased at Br24y; and leaf
Cd content was decreased at Br28y (Fig. 4).
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Fig. 3. Arsenic content in leaf, root, and dithionite-citrate-bicarbonate (DCB) extract of rice seedlings as affected by 0.2 and 0.02 uM
24-epibrassinosteroid (Br24; and Br24y) or 28-homobrassinosteroid (Br28; and Br28y), as well as iron plaque (IP; 0, 20, and
60 mg dm™ Fe?"). Data are means = SDs, n = 3. Different letters indicate significant differences at P < 0.05 among IP levels and

* between control and Br treatments.
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Fig. 4. Cadmium content in leaf, root, and dithionite-citrate-bicarbonate (DCB) extract of rice seedlings as affected by 0.2 and
0.02 uM 24-epibrassinosteroid (Br24; and Br24y) or 28-homobrassinosteroid (Br28; and Br28y), as well as iron plaque (IP; 0, 20,
and 60 mg dm™ Fe*"). Data are means = SDs, n = 3. Different letters indicate significant differences at P < 0.05 among IP levels and

* between control and Br treatments.
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Discussion

In this study, the results showed that Fe content in roots
and DCB extracts was significantly increased by supplied
Fe (Fe20 and Fe60), which is consistent with reports in
the literature (Liu er al. 2004b, 2007a); however, the
opposite results were found in DCB extracts in the
presence of Br24; and Br24y (Fig. 2). The significant
increase in root biomass could explain this (Fig. 1). Ye
et al. (1998) showed that more Fe was sequestered on
root surface in plants with lower root biomass. As and Cd
treatments consistently reduced Fe content in leaf, root,
and DCB extracts, which agrees with the conclusions of
Liu et al. (2010), who found that Cd in soil (10 mg kg™)
can significantly reduce Fe content in rice plants and Liu
et al. (2004b) found that Fe content in shoots and roots of
rice seedlings with 0.5 mg dm™ As was lower than
without As. However, Liu et al. (2007b) reported no
significant difference in Fe content in rice plants with or
without supplied Cd. Different genotypes may be the
main factor affecting Fe uptake and transport in rice
plants (Liu et al. 2010).

Our study showed that IP increased As content in rice
leaves at Br24; and Br24y, but decreased it at Br28; and
Br28y (Fig. 3). Compared to the control, in the absence of
IP, Br24, significantly reduced As content in rice leaves,
but Br28; and Br28y increased it (Fig. 4). Our results
showed that Br28; and Br28y increased As content in rice
leaves, but the interactions of IP (Fe20 and Fe60) and
Br28 decreased it. Kaim et al. (2016) showed that As"
accumulation was markedly lowered by Br24 in Cicer
arietinum, which partially explained the decreasing As in
rice leaf in our present study. At present, no research has
been reported on the effect of Br28 on As uptake and
translocation in plants, and whether or not Br28 can be
used to reduce As uptake by plants or to promote the
plant. Our findings are consistent with those showing that
the content of Cu and Ni in Brassica juncea (Kanwar et
al. 2013, Sharma and Bhardwaj 2007), B in Arabidopsis
thaliana (Surgun et al. 2016), and Cr in tobacco (Bukhari
et al. 2016) are significantly decreased by proper
concentrations of Br24. Bukhari et al. (2016) found that
Br24 significantly reduced Cr content in leaves of tomato
genotypes Meiyu2-1 and NC107, but increased it in
leaves of genotype 2010-38. These results imply that
Br24 can decrease uptake of heavy metals by plants and
ameliorate their toxicity.

Our results showed that in the absence of IP, Cd
content in leaves was increased by Br24y, but decreased
by Br28y. Different metal elements, Br concentrations,
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